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Laurent Massoulié Markov processes and queueing networks



Outline

Poisson processes

Markov jump processes

Some queueing networks

Laurent Massoulié Markov processes and queueing networks



The Poisson distribution
(Siméon-Denis Poisson, 1781-1840)

{
e−λ λ

n

n!

}
n∈N As prevalent as Gaussian distribution

Law of rare events (a.k.a. law of small numbers)
pn,i ≥ 0 such that limn→∞ supi pn,i = 0, limn→∞

∑
i pn,i = λ > 0

Then Xn =
∑

i Zn,i with Zn,i : independent Bernoulli(pn,i ) verifies

Xn
D→ Poisson(λ)
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Point process on R+

Definition

Point process on R+:

Collection of random times {Tn}n>0 with 0 < T1 < T2 . . .

Alternative description
Collection {Nt}t∈R+ with Nt :=

∑
n>0 ITn∈[0,t]

Yet another description
Collection {N(C )} for all measurable C ⊂ R+ where

N(C ) :=
∑
n>0

ITn∈C
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Poisson process on R+

Definition

Point process such that for all s0 = 0 < s1 < s2 < . . . < sn,

1 Increments {Nsi − Nsi−1}1≤i≤n independent

2 Law of Nt+s − Ns only depends on t

3 for some λ > 0, Nt ∼ Poisson(λt)

In fact, (3) follows from (1)–(2)

λ is called the intensity of the process
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A first construction

Given dλne i.i.d. numbers Un,i , uniform on [0, n], let

N
(n)
t :=

∑n
i=1 IUn,i≤t

Then for any k ∈ N, s0 = 0 < s1 < s2 < . . . < sn,

{N(n)
si − N

(n)
si−1}1≤i≤k

D→ ⊗1≤i≤kPoisson(λ(si − si−1))

Proof: Multinomial distribution of {N(n)
si − N

(n)
si−1}1≤i≤k

⇒ Convergence of Laplace transform

E exp(−
∑k

i=1 αi (N
(n)
si − N

(n)
si−1)) for all αk

1 ∈ Rk
+

Suggests Poisson processes exist and are limits of this construction
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A second characterization

Proposition

For Poisson process {Tn}n>0 of intensity λ, its interarrival times
τi = Ti+1 − Ti , where T0 = 0, verify
{τn}n≥0 i.i.d. with common distribution Exp(λ)

Density of Exp(λ): λe−λxIx>0

Key property: Exponential random variable τ is memoryless,
i.e. ∀t > 0, P(τ − t ∈ ·|τ > t) = P(τ ∈ ·)
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A third characterization

Proposition

Process with i.i.d., Exp(λ) interarrival times {τi}i≥0 can be
constructed on [0, t] by
1) Drawing Nt ∼ Poisson(λt)
2) Putting Nt points U1, . . . ,UNt on [0, t] where Ui : i.i.d. uniform
on [0, t]

Proof.

Establish identity for all n ∈ N, φ : Rn
+ → R:

E[φ(τ0, τ0 + τ1, . . . , τ0 + . . .+ τn−1)INt=n] = · · ·

e−λt (λt)n

n! × n!
∫

(0,t]n φ(s1, s2, . . . , sn)Is1<s2<...<sn

∏n
i=1 dsi

= P(Poisson(λt) = n)×E[φ(S1, . . . ,Sn)]

where Sn
1 : sorted version of i.i.d. variables uniform on [0, t]

Laurent Massoulié Markov processes and queueing networks



A third characterization

Proposition

Process with i.i.d., Exp(λ) interarrival times {τi}i≥0 can be
constructed on [0, t] by
1) Drawing Nt ∼ Poisson(λt)
2) Putting Nt points U1, . . . ,UNt on [0, t] where Ui : i.i.d. uniform
on [0, t]

Proof.

Establish identity for all n ∈ N, φ : Rn
+ → R:

E[φ(τ0, τ0 + τ1, . . . , τ0 + . . .+ τn−1)INt=n] = · · ·

e−λt (λt)n

n! × n!
∫

(0,t]n φ(s1, s2, . . . , sn)Is1<s2<...<sn

∏n
i=1 dsi

= P(Poisson(λt) = n)×E[φ(S1, . . . ,Sn)]

where Sn
1 : sorted version of i.i.d. variables uniform on [0, t]
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Laplace transform of Poisson processes

Definition

The Laplace transform of point process N ↔ {Tn}n>0 is the
functional whose evaluation at f : R+ → R+ is

LN(f ) := E exp(−N(f )) = E(exp(−
∑
n>0

f (Tn))).

Proposition: Knowledge of LN(f ) on sufficiently rich class of
functions f : R+ → R+ (e.g. piecewise continuous with compact
support) characterizes law of point process N.

Laplace transform of Poisson process with intensity λ:

LN(f ) = exp(−
∫
R+

λ(1− e−f (x))dx)

(i) Previous construction yields expression for LN(f )
(ii) For f =

∑
i αiICi

⇒N(Ci ) ∼ Poisson(λ
∫
Ci
dx), with

independence for disjoint Ci . Hence existence of Poisson process...
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Poisson process with general space and intensity

Definition

For λ : Rd → R+ locally integrable function, N ↔ {Tn}n>0 point
process on Rd is Poisson with intensity function λ if and only if
for measurable, disjoint Ci ⊂ Rd , i = 1, . . . , n,
N(Ci ) independent, ∼ Poisson(

∫
Ci
λ(x)dx)

Proposition

Such a process exists and admits Laplace transform

LN(f ) = exp

(
−
∫
Rd

λ(x)(1− e−f (x))dx

)
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Further properties

Strong Markov property: Poisson process N with intensity
λ, stopping time T (i.e. ∀t ≥ 0, {T ≤ t} ∈ σ(Ns , s ≤ t))
then on {T < +∞}, {NT+t − NT}t≥0: Poisson with
intensity λ and independent of {Ns}s≤T

Superposition: For independent Poisson processes Ni with
intensities λi , i = 1, . . . , n then N =

∑
i Ni : Poisson with

intensity
∑

i λi

Thinning: For Poisson process N ↔ {Tn}n>0 with intensity
λ, {Zn}n>0 independent of N, i.i.d., valued in [k],
processes Ni : Ni (C ) =

∑
n>0 ITn∈CIZn=i are independent,

Poisson with intensities λi = λP(Zn = i)
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Markov jump processes

Process {Xt}t∈R+ with values in E , countable or finite, is

Markov if
P(Xtn = xn|Xtn−1 = xn−1, . . .Xt1 = x1) = P(Xtn = xn|Xtn−1 = xn−1),
tn1 ∈ Rn

+, t1 < · · · < tn, x
n
1 ∈ En

Homogeneous if P(Xt+s = y |Xs = x) =: pxy (t) independent of s,
s, t ∈ R+, x , y ∈ E

⇒ Semi-group property pxy (t + s) =
∑

z∈E pxz(t)pzy (s),
or P(t + s) = P(t)P(s) with P(t) = {pxy (t)}x ,y∈E

Definition

{Xt}t∈R+ is a pure jump Markov process if in addition
(i) It spends with probability 1 a strictly positive time in each state
(ii) Trajectories t → Xt are right-continuous
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Markov jump processes: examples

Poisson process {Nt}t∈R+ : then Markov jump process with
pxy (t) = P(Poisson(λt) = y − x)

Single-server queue, FIFO (“First-in-first-out”) discipline,
arrival times: N Poisson (λ), service times: i.i.d. Exp(µ)
independent of N
Xt= number of customers present at time t: Markov jump
process by Memoryless property of Exponential distribution +
Markov property of Poisson process
(the M/M/1/∞ queue)

Infinite server queue with Poisson arrivals and Exponential
service times: customer arrived at Tn stays in system till
Tn + σn, where σn: service time
Xt= number of customers present at time t:
Markov jump process (the M/M/∞/∞ queue)

Laurent Massoulié Markov processes and queueing networks



Markov jump processes: examples

Poisson process {Nt}t∈R+ : then Markov jump process with
pxy (t) = P(Poisson(λt) = y − x)

Single-server queue, FIFO (“First-in-first-out”) discipline,
arrival times: N Poisson (λ), service times: i.i.d. Exp(µ)
independent of N
Xt= number of customers present at time t: Markov jump
process by Memoryless property of Exponential distribution +
Markov property of Poisson process
(the M/M/1/∞ queue)

Infinite server queue with Poisson arrivals and Exponential
service times: customer arrived at Tn stays in system till
Tn + σn, where σn: service time
Xt= number of customers present at time t:
Markov jump process (the M/M/∞/∞ queue)
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Structure of Markov jump processes

Infinitesimal Generator

∀x , y , y 6= x ∈ E , limits qx := limt→0
1−pxx (t)

t , qxy = limt→0
pxy (t)

t
exist in R+ and satisfy

∑
y 6=x qxy = qx

qxy : Jump rate from x to y
Q := {qxy}x ,y∈E where qxx = −qx : Infinitesimal Generator of
process {Xt}t∈R+

Formally: Q = limh→0
1
h [P(h)− I ] where I : identity matrix

Structure of Markov jump processes

Sequence {Yn}n∈N of visited states: Markov chain with transition
matrix pxy = Ix 6=y

qxy
qx

Conditionally on {Yn}n∈N, sojourn times {τn}n∈N in successive
states Yn: independent, with distributions Exp(qYn)
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Examples

for Poisson process (λ): only non-zero jump rate
qx ,x+1 = λ = qx , x ∈ N

For FIFO M/M/1/∞ queue, non-zero rates: qx ,x+1 = λ,
qx ,x−1 = µIx>0, x ∈ N hence qx = λ+ µIx>0

For M/M/∞/∞ queue, non-zero rates: qx ,x+1 = λ,
qx ,x−1 = µx , x ∈ N hence qx = λ+ µx
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Structure of Markov jump processes (continued)

Let Tn :=
∑n−1

k=0 τk : time of n-th jump.

If T∞ = +∞ almost surely: trajectory determined on R+, hence
generator Q determines law of process {Xt}t∈R+

Process is called explosive if instead T∞ < +∞ with positive
probability. Then process not completely characterized by generator

Sufficient conditions for non-explosiveness:

supx∈E qx < +∞
Recurrence of induced chain {Yn}n∈N
For Birth and Death processes (i.e. E = N, only non-zero
rates: βn = qn,n+1, birth rate; δn = qn,n−1, death rate),
non-explosiveness holds if∑

n>0

1

βn + δn
= +∞
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rates: βn = qn,n+1, birth rate; δn = qn,n−1, death rate),
non-explosiveness holds if∑

n>0

1

βn + δn
= +∞
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Kolmogorov’s forward and backward equations

Formal differentiation of P(t + h) = P(t)P(h) = P(h)P(t) yields

d
dtP(t) = P(t)Q Kolmogorov’s forward equation
d
dt pxy (t) =

∑
z∈E pxz(t)qzy

d
dtP(t) = QP(t) Kolmogorov’s backward equation
d
dt pxy (t) =

∑
z∈E qxzpzy (t)

Follow directly from Q = limh→0
1
h [P(h)− I ] for finite E , in which

case P(t) = exp(tQ), t ≥ 0

Hold more generally–in particular for non-explosive processes–with
a more involved proof (justifying exchange of summation and
differentiation)
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Stationary distributions and measures

Definition

Measure {πx}x∈E is stationary if it satisfies πTQ = 0, or
equivalently the global balance equations

∀x ∈ E , πx
∑

y 6=x qxy =
∑

y 6=x πyqyx
flow out of x flow into x

Kolmogorov’s equations suggest that, if X0 ∼ π for stationary π
then Xt ∼ π for all t ≥ 0

,

Example: stationarity for birth and death processes

π0β0 = π1δ1,
πx(βx + δx) = πx−1βx−1 + πx+1δx+1, x ≥ 1
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Laurent Massoulié Markov processes and queueing networks



Irreducibility, recurrence, invariance

Definition

Process {Xt}t∈R+ is irreducible (respectively, irreducible
recurrent) if induced chain {Yn}n∈N is.

State x is positive recurrent if Ex(Rx) < +∞, where

Rx = inf{t > τ0 : Xt = x}.

Measure π is invariant for process {Xt}t∈R+ if for all t > 0,
πTP(t) = πT , i.e.

∀x ∈ E ,
∑
y∈E

πypyx(t) = πx .
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Limit theorems 1

Theorem

For irreducible recurrent {Xt}t∈R+ , ∃ invariant measure π, unique
up to some scalar factor. It can be defined as, for any x ∈ E:

∀y ∈ E , πy = Ex

∫ Rx

0
IXt=ydt,

or alternatively with Tx := inf{n > 0 : Yn = x},

∀y ∈ E , πy =
1

qy
Ex

Tx∑
n=1

IYn=y .

Corollaries

{π̂y} invariant for {Yn}n∈N ⇔ {π̂y/qy} invariant for
{Xt}t∈R+ .
For irreducible recurrent {Xt}t∈R+ , either all or no state
x ∈ E is positive recurrent.
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Limit theorems 2

Theorem

{Xt}t∈R+ is ergodic (i.e. irreducible, positive recurrent) iff it is
irreducible, non-explosive and such that ∃π satisfying global
balance equations.
Then π is also the unique invariant probability distribution.

Theorem

For ergodic {Xt}t∈R+ with stationary distribution π, any initial
distribution for X0 and π-integrable f ,

almost surely lim
t→∞

1

t

∫ t

0
f (Xs)ds =

∑
x∈E

πx f (x) (ergodic theorem)

and in distribution Xt
D→ π as t →∞.
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Limit theorems 3

Theorem

For irreducible, non-ergodic {Xt}t∈R+ , any initial distribution for
X0, then for all x ∈ E,

lim
t→∞

P(Xt = x) = 0.

Laurent Massoulié Markov processes and queueing networks



Time reversal and reversibility

For stationary ergodic {Xt}t∈R with stationary distribution π,
time-reversed process X̃t = X−t :
Markov with transition rates q̃xy =

πyqyx
πx

Definition

Stationary ergodic {Xt}t∈R with stationary distribution π
reversible iff distributed as time-reversal {X̃t}t∈R, i.e.

∀x 6= y ∈ E , πxqxy = πyqyx ,
flow from x to y flow from y to x

detailed balance equations.

Detailed balance, i.e. reversibility for π implies global balance for π.
Example: for birth and death processes, detailed balance always
holds for stationary measure.
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Reversibility and truncation

Proposition

Let generator Q on E admit reversible measure π. Then for subset
F ⊂ E , truncated generator Q̂:

Q̂xy = Qxy , x 6= y ∈ F ,

Q̂xx = −
∑

y 6=x Q̂xy , x ∈ F

admits {πx}x∈F as reversible measure.
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Erlang’s model of telephone network

Call types s ∈ S: type-s calls arrive at instants of Poisson
(λs) process, last (if accepted) for duration Exponential (µs)

type-s calls require one circuit (unit of capacity) per link ` ∈ s

Link ` has capacity C` circuits

Stationary probability distribution:

πx =
1

Z

∏
s∈S

ρxss
xs !

∏
`

I∑
s3` xs≤C`

,

where: ρs = λs/µs , Z : normalizing constant.

Basis for dimensioning studies of telephone networks (prediction of
call rejection probabilities)
More recent application: performance analysis of peer-to-peer
systems for video streaming.
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Jackson networks

Stations i ∈ I receive external arrivals at Poisson rate λi

Station i when processing xi customers completes service at
rate µiφi (xi ) (e.g.: φi (x) = min(xi , ni ): queue with ni servers
and service times Exponential (µi ))

After completing service at station i , customer joins station j
with probability pij , j ∈ I , and leaves system with probability
1−

∑
j∈I pij

Matrix P = (pij): sub-stochastic, such that ∃(I − P)−1

Traffic equations

∀i ∈ I , λi = λi +
∑
j∈I

λjpji

or λ = (I − PT )−1λ
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Jackson networks (continued)

Stationary measure:

πx =
∏
i∈I

ρxii∏xi
m=1 φi (m)

,

where ρi = λi/µi , and λi : solutions of traffic equations

Application: process ergodic when π has finite mass. e.g. for
φi (x) = min(x , ni ), ergodicity iff ∀i ∈ I , ρi < ni .
Proof: verify partial balance equations for all x ∈ NI :

∀i ∈ I ,
πx [
∑

j 6=i qx ,x−ei+ej + qx ,x−ei ] =
∑

j 6=i πx−ei+ejqx−ei+ej ,x + πx−eiqx−ei ,x ,

πx
∑

i∈I qx ,x+ei =
∑

i∈I πx+eiqx+ei ,x ,

which imply global balance equations

πx [
∑

i∈I (qx ,x−ei + qx ,x+ei +
∑

j 6=i qx ,x−ei+ej )] =∑
i∈I (πx−eiqx−ei ,x + πx+eiqx+ei ,x +

∑
j 6=i πx−ei+ejqx−ei+ej ,x)
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Takeaway messages

Poisson process a fundamental continuous-time process,
adequate model for aggregate of infrequent independent
events

Markov jump processes:
i) generator Q characterizes distribution if not explosive
ii) Balance equation characterizes invariant distribution if
irreducible non-explosive
iii) Limit theorems: stationary distribution reflects long-term
performance

Exactly solvable models include reversible processes, plus
several other important classes (e.g. Jackson networks)
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