Markov processes and queueing networks

Laurent Massoulié

Inria

September 22, 2015

Laurent Massoulié Markov processes and queueing networks

- Poisson processes
- Markov jump processes
- Some queueing networks

∃ >

The Poisson distribution (Siméon-Denis Poisson, 1781-1840)

$\big\{e^{-\lambda}\frac{\lambda^n}{n!}\big\}_{n\in\mathbb{N}}$ As prevalent as Gaussian distribution

Laurent Massoulié Markov processes and queueing networks

The Poisson distribution (Siméon-Denis Poisson, 1781-1840)

$\left\{e^{-\lambda}\frac{\lambda^{n}}{n!}\right\}_{n\in\mathbb{N}}$ As prevalent as Gaussian distribution

Law of rare events (a.k.a. law of small numbers) $p_{n,i} \ge 0$ such that $\lim_{n\to\infty} \sup_i p_{n,i} = 0$, $\lim_{n\to\infty} \sum_i p_{n,i} = \lambda > 0$

The Poisson distribution (Siméon-Denis Poisson, 1781-1840)

$\left\{e^{-\lambda}\frac{\lambda^{n}}{n!}\right\}_{n\in\mathbb{N}}$ As prevalent as Gaussian distribution

Law of rare events (a.k.a. law of small numbers) $p_{n,i} \ge 0$ such that $\lim_{n\to\infty} \sup_i p_{n,i} = 0$, $\lim_{n\to\infty} \sum_i p_{n,i} = \lambda > 0$

Then $X_n = \sum_i Z_{n,i}$ with $Z_{n,i}$: independent Bernoulli $(p_{n,i})$ verifies

 $X_n \xrightarrow{\mathcal{D}} \text{Poisson}(\lambda)$

Point process on \mathbb{R}_+ :

Collection of random times $\{T_n\}_{n>0}$ with $0 < T_1 < T_2 \dots$

Alternative description Collection $\{N_t\}_{t \in \mathbb{R}_+}$ with $N_t := \sum_{n>0} \mathbb{I}_{T_n \in [0,t]}$

Yet another description Collection $\{N(C)\}$ for all measurable $C \subset \mathbb{R}_+$ where

$$N(C) := \sum_{n>0} \mathbb{I}_{T_n \in C}$$

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t
- for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t
- for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

In fact, (3) follows from (1)-(2)

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t
- for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

In fact, (3) follows from (1)-(2)

 λ is called the **intensity** of the process

Given $\lceil \lambda n \rceil$ i.i.d. numbers $U_{n,i}$, uniform on [0, n], let $N_t^{(n)} := \sum_{i=1}^n \mathbb{I}_{U_{n,i} \leq t}$

Then for any $k \in \mathbb{N}, \ s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

 $\{N_{s_{i}}^{(n)} - N_{s_{i-1}}^{(n)}\}_{1 \leq i \leq k} \xrightarrow{\mathcal{D}} \otimes_{1 \leq i \leq k} \mathsf{Poisson}(\lambda(s_{i} - s_{i-1}))$

Given $\lceil \lambda n \rceil$ i.i.d. numbers $U_{n,i}$, uniform on [0, n], let $N_t^{(n)} := \sum_{i=1}^n \mathbb{I}_{U_{n,i} \leq t}$

Then for any $k \in \mathbb{N}, \ s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

 $\{N_{s_{i}}^{(n)} - N_{s_{i-1}}^{(n)}\}_{1 \leq i \leq k} \xrightarrow{\mathcal{D}} \otimes_{1 \leq i \leq k} \mathsf{Poisson}(\lambda(s_{i} - s_{i-1}))$

Proof: Multinomial distribution of $\{N_{s_i}^{(n)} - N_{s_{i-1}}^{(n)}\}_{1 \le i \le k}$

 $\Rightarrow \text{ Convergence of Laplace transform} \\ \mathbb{E} \exp\left(-\sum_{i=1}^{k} \alpha_i (N_{s_i}^{(n)} - N_{s_{i-1}}^{(n)})\right) \text{ for all } \alpha_1^k \in \mathbb{R}_+^k$

Given $\lceil \lambda n \rceil$ i.i.d. numbers $U_{n,i}$, uniform on [0, n], let $N_t^{(n)} := \sum_{i=1}^n \mathbb{I}_{U_{n,i} \leq t}$

Then for any $k \in \mathbb{N}, \ s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

 $\{N_{s_{i}}^{(n)} - N_{s_{i-1}}^{(n)}\}_{1 \leq i \leq k} \xrightarrow{\mathcal{D}} \otimes_{1 \leq i \leq k} \mathsf{Poisson}(\lambda(s_{i} - s_{i-1}))$

Proof: Multinomial distribution of $\{N_{s_i}^{(n)} - N_{s_{i-1}}^{(n)}\}_{1 \le i \le k}$

 $\Rightarrow \text{ Convergence of Laplace transform} \\ \mathbb{E} \exp\left(-\sum_{i=1}^{k} \alpha_i (N_{s_i}^{(n)} - N_{s_{i-1}}^{(n)})\right) \text{ for all } \alpha_1^k \in \mathbb{R}_+^k$

Suggests Poisson processes exist and are limits of this construction

For Poisson process $\{T_n\}_{n>0}$ of intensity λ , its interarrival times $\tau_i = T_{i+1} - T_i$, where $T_0 = 0$, verify $\{\tau_n\}_{n>0}$ i.i.d. with common distribution $\text{Exp}(\lambda)$

For Poisson process $\{T_n\}_{n>0}$ of intensity λ , its interarrival times $\tau_i = T_{i+1} - T_i$, where $T_0 = 0$, verify $\{\tau_n\}_{n>0}$ i.i.d. with common distribution $\text{Exp}(\lambda)$

Density of $\text{Exp}(\lambda)$: $\lambda e^{-\lambda x} \mathbb{I}_{x>0}$

For Poisson process $\{T_n\}_{n>0}$ of intensity λ , its interarrival times $\tau_i = T_{i+1} - T_i$, where $T_0 = 0$, verify $\{\tau_n\}_{n>0}$ i.i.d. with common distribution $\text{Exp}(\lambda)$

Density of $\text{Exp}(\lambda)$: $\lambda e^{-\lambda x} \mathbb{I}_{x>0}$

Key property: Exponential random variable τ is **memoryless**, i.e. $\forall t > 0$, $\mathbb{P}(\tau - t \in \cdot | \tau > t) = \mathbb{P}(\tau \in \cdot)$

A third characterization

Proposition

Process with i.i.d., $\text{Exp}(\lambda)$ interarrival times $\{\tau_i\}_{i\geq 0}$ can be constructed on [0, t] by 1) Drawing $N_t \sim \text{Poisson}(\lambda t)$ 2) Putting N_t points U_1, \ldots, U_{N_t} on [0, t] where U_i : i.i.d. uniform on [0, t]

A third characterization

Proposition

Process with i.i.d., $\text{Exp}(\lambda)$ interarrival times $\{\tau_i\}_{i\geq 0}$ can be constructed on [0, t] by 1) Drawing $N_t \sim \text{Poisson}(\lambda t)$ 2) Putting N_t points U_1, \ldots, U_{N_t} on [0, t] where U_i : i.i.d. uniform on [0, t]

Proof.

Establish identity for all $n \in \mathbb{N}$, $\phi : \mathbb{R}^n_+ \to \mathbb{R}$:

$$\mathbb{E}[\phi(\tau_0,\tau_0+\tau_1,\ldots,\tau_0+\ldots+\tau_{n-1})\mathbb{I}_{N_t=n}]=\cdots$$

$$e^{-\lambda t} rac{(\lambda t)^n}{n!} imes n! \int_{(0,t]^n} \phi(s_1,s_2,\ldots,s_n) \mathbb{I}_{s_1 < s_2 < \ldots < s_n} \prod_{i=1}^n ds_i$$

 $= \mathbb{P}(\mathsf{Poisson}(\lambda t) = n) \times \mathbb{E}[\phi(S_1, \ldots, S_n)]$

where S_1^n : sorted version of i.i.d. variables uniform on [0, t] Laurent Massoulié Markov processes and gueueing networks

Definition

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n>0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_{N}(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n))).$$

Definition

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n>0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_{N}(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n))).$$

Proposition: Knowledge of $\mathcal{L}_N(f)$ on sufficiently rich class of functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ (e.g. piecewise continuous with compact support) characterizes law of point process N.

Definition

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n>0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_N(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n))).$$

Proposition: Knowledge of $\mathcal{L}_N(f)$ on sufficiently rich class of functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ (e.g. piecewise continuous with compact support) characterizes law of point process N.

Laplace transform of Poisson process with intensity λ :

$$\mathcal{L}_{N}(f) = \exp(-\int_{\mathbb{R}_{+}} \lambda(1 - e^{-f(x)}) dx)$$

Definition

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n>0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_N(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n))).$$

Proposition: Knowledge of $\mathcal{L}_N(f)$ on sufficiently rich class of functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ (e.g. piecewise continuous with compact support) characterizes law of point process N.

Laplace transform of Poisson process with intensity λ :

$$\mathcal{L}_{N}(f) = \exp(-\int_{\mathbb{R}_{+}} \lambda(1 - e^{-f(x)}) dx)$$

(i) Previous construction yields expression for $\mathcal{L}_N(f)$ (ii) For $f = \sum_i \alpha_i \mathbb{I}_{C_i} \Rightarrow N(C_i) \sim \text{Poisson}(\lambda \int_{C_i} dx)$, with independence for disjoint C_i . Hence existence of Poisson process.

For $\lambda : \mathbb{R}^d \to \mathbb{R}_+$ locally integrable function, $N \leftrightarrow \{T_n\}_{n>0}$ point process on \mathbb{R}^d is Poisson with intensity function λ if and only if for measurable, disjoint $C_i \subset \mathbb{R}^d$, i = 1, ..., n, $N(C_i)$ independent, $\sim \text{Poisson}(\int_C \lambda(x) dx)$

For $\lambda : \mathbb{R}^d \to \mathbb{R}_+$ locally integrable function, $N \leftrightarrow \{T_n\}_{n>0}$ point process on \mathbb{R}^d is Poisson with intensity function λ if and only if for measurable, disjoint $C_i \subset \mathbb{R}^d$, i = 1, ..., n, $N(C_i)$ independent, $\sim \text{Poisson}(\int_C \lambda(x) dx)$

Proposition

Such a process exists and admits Laplace transform

$$\mathcal{L}_{N}(f) = \exp\left(-\int_{\mathbb{R}^{d}}\lambda(x)(1-e^{-f(x)})dx\right)$$

Further properties

• **Strong Markov property:** Poisson process *N* with intensity λ , stopping time *T* (i.e. $\forall t \ge 0$, $\{T \le t\} \in \sigma(N_s, s \le t)$) then on $\{T < +\infty\}$, $\{N_{T+t} - N_T\}_{t\ge 0}$: Poisson with intensity λ and independent of $\{N_s\}_{s < T}$

Further properties

- **Strong Markov property:** Poisson process *N* with intensity λ , stopping time *T* (i.e. $\forall t \ge 0$, $\{T \le t\} \in \sigma(N_s, s \le t)$) then on $\{T < +\infty\}$, $\{N_{T+t} N_T\}_{t\ge 0}$: Poisson with intensity λ and independent of $\{N_s\}_{s < T}$
- **Superposition:** For independent Poisson processes N_i with intensities λ_i , i = 1, ..., n then $N = \sum_i N_i$: Poisson with intensity $\sum_i \lambda_i$

伺い イラト イラト

- **Strong Markov property:** Poisson process *N* with intensity λ , stopping time *T* (i.e. $\forall t \ge 0$, $\{T \le t\} \in \sigma(N_s, s \le t)$) then on $\{T < +\infty\}$, $\{N_{T+t} N_T\}_{t\ge 0}$: Poisson with intensity λ and independent of $\{N_s\}_{s \le T}$
- **Superposition:** For independent Poisson processes N_i with intensities λ_i , i = 1, ..., n then $N = \sum_i N_i$: Poisson with intensity $\sum_i \lambda_i$
- **Thinning**: For Poisson process $N \leftrightarrow \{T_n\}_{n>0}$ with intensity λ , $\{Z_n\}_{n>0}$ independent of N, i.i.d., valued in [k], processes $N_i : N_i(C) = \sum_{n>0} \mathbb{I}_{T_n \in C} \mathbb{I}_{Z_n = i}$ are independent, Poisson with intensities $\lambda_i = \lambda \mathbb{P}(Z_n = i)$

伺 と く ヨ と く ヨ と …

Markov jump processes

Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in *E*, countable or finite, is

Markov if

 $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}), t_1^n \in \mathbb{R}^n_+, t_1 < \dots < t_n, x_1^n \in \mathbb{E}^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of *s*, $s, t \in \mathbb{R}_+, x, y \in E$

Markov jump processes

Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in *E*, countable or finite, is

Markov if

 $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}), \\ t_1^n \in \mathbb{R}^n_+, \ t_1 < \dots < t_n, \ x_1^n \in E^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of *s*, $s, t \in \mathbb{R}_+, x, y \in E$

 $\Rightarrow \text{Semi-group property } p_{xy}(t+s) = \sum_{z \in E} p_{xz}(t)p_{zy}(s),$ or P(t+s) = P(t)P(s) with $P(t) = \{p_{xy}(t)\}_{x,y \in E}$

Markov jump processes

Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in *E*, countable or finite, is

Markov if

 $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}), \\ t_1^n \in \mathbb{R}^n_+, \ t_1 < \dots < t_n, \ x_1^n \in E^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of *s*, $s, t \in \mathbb{R}_+, x, y \in E$

 $\Rightarrow \text{Semi-group property } p_{xy}(t+s) = \sum_{z \in E} p_{xz}(t)p_{zy}(s),$ or P(t+s) = P(t)P(s) with $P(t) = \{p_{xy}(t)\}_{x,y \in E}$

Definition

 $\{X_t\}_{t \in \mathbb{R}_+}$ is a **pure jump** Markov process if in addition (i) It spends with probability 1 a strictly positive time in each state (ii) Trajectories $t \to X_t$ are right-continuous

Markov jump processes: examples

• Poisson process $\{N_t\}_{t \in \mathbb{R}_+}$: then Markov jump process with $p_{xy}(t) = \mathbb{P}(\text{Poisson}(\lambda t) = y - x)$

글 🖌 🖌 글 🕨

Markov jump processes: examples

- Poisson process $\{N_t\}_{t \in \mathbb{R}_+}$: then Markov jump process with $p_{xy}(t) = \mathbb{P}(\text{Poisson}(\lambda t) = y x)$
- Single-server queue, FIFO ("First-in-first-out") discipline, arrival times: N Poisson (λ), service times: i.i.d. Exp(μ) independent of N

 X_t = number of customers present at time t: Markov jump process by Memoryless property of Exponential distribution + Markov property of Poisson process (the $M/M/1/\infty$ queue)

伺 ト イ ヨ ト イ ヨ ト

Markov jump processes: examples

- Poisson process $\{N_t\}_{t \in \mathbb{R}_+}$: then Markov jump process with $p_{xy}(t) = \mathbb{P}(\text{Poisson}(\lambda t) = y x)$
- Single-server queue, FIFO ("First-in-first-out") discipline, arrival times: N Poisson (λ), service times: i.i.d. Exp(μ) independent of N

 X_t = number of customers present at time t: Markov jump process by Memoryless property of Exponential distribution + Markov property of Poisson process (the $M/M/1/\infty$ queue)

Infinite server queue with Poisson arrivals and Exponential service times: customer arrived at T_n stays in system till T_n + σ_n, where σ_n: service time X_t = number of customers present at time t: Markov jump process (the M/M/∞/∞ queue)

Infinitesimal Generator

 $\begin{array}{l} \forall x, y, \ y \neq x \in E, \ \text{limits} \ q_x := \lim_{t \to 0} \frac{1 - p_{xx}(t)}{t}, \ q_{xy} = \lim_{t \to 0} \frac{p_{xy}(t)}{t} \\ \text{exist in } \mathbb{R}_+ \ \text{and satisfy} \ \sum_{y \neq x} q_{xy} = q_x \\ q_{xy}: \ \textbf{Jump rate from } x \ \text{to } y \\ Q := \{q_{xy}\}_{x,y \in E} \ \text{where} \ q_{xx} = -q_x: \ \textbf{Infinitesimal Generator of} \\ \text{process} \ \{X_t\}_{t \in \mathbb{R}_+} \end{array}$

Formally: $Q = \lim_{h \to 0} \frac{1}{h} [P(h) - I]$ where I: identity matrix

Infinitesimal Generator

 $\begin{array}{l} \forall x, y, \ y \neq x \in E, \ \text{limits} \ q_x := \lim_{t \to 0} \frac{1 - p_{xx}(t)}{t}, \ q_{xy} = \lim_{t \to 0} \frac{p_{xy}(t)}{t} \\ \text{exist in } \mathbb{R}_+ \ \text{and satisfy} \ \sum_{y \neq x} q_{xy} = q_x \\ q_{xy}: \ \textbf{Jump rate from } x \ \text{to } y \\ Q := \{q_{xy}\}_{x,y \in E} \ \text{where} \ q_{xx} = -q_x: \ \textbf{Infinitesimal Generator of} \\ \text{process} \ \{X_t\}_{t \in \mathbb{R}_+} \end{array}$

Formally: $Q = \lim_{h \to 0} \frac{1}{h} [P(h) - I]$ where I: identity matrix

Structure of Markov jump processes

Sequence $\{Y_n\}_{n \in \mathbb{N}}$ of visited states: Markov chain with transition matrix $p_{xy} = \mathbb{I}_{x \neq y} \frac{q_{xy}}{q_x}$ Conditionally on $\{Y_n\}_{n \in \mathbb{N}}$, sojourn times $\{\tau_n\}_{n \in \mathbb{N}}$ in successive states Y_n : independent, with distributions $\operatorname{Exp}(q_{Y_n})$ • for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, \ x \in \mathbb{N}$

-

- for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, x \in \mathbb{N}$
- For FIFO $M/M/1/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, $q_{x,x-1} = \mu \mathbb{I}_{x>0}, x \in \mathbb{N}$ hence $q_x = \lambda + \mu \mathbb{I}_{x>0}$

- for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, x \in \mathbb{N}$
- For FIFO $M/M/1/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, $q_{x,x-1} = \mu \mathbb{I}_{x>0}, x \in \mathbb{N}$ hence $q_x = \lambda + \mu \mathbb{I}_{x>0}$
- For $M/M/\infty/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, $q_{x,x-1} = \mu x, x \in \mathbb{N}$ hence $q_x = \lambda + \mu x$

Structure of Markov jump processes (continued)

Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Structure of Markov jump processes (continued)

Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Process is called **explosive** if instead $T_{\infty} < +\infty$ with positive probability. Then process not completely characterized by generator

Structure of Markov jump processes (continued)

Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Process is called **explosive** if instead $T_{\infty} < +\infty$ with positive probability. Then process not completely characterized by generator

Sufficient conditions for non-explosiveness:

- $\sup_{x\in E} q_x < +\infty$
- Recurrence of induced chain $\{Y_n\}_{n \in \mathbb{N}}$
- For Birth and Death processes (i.e. *E* = ℕ, only non-zero rates: β_n = q_{n,n+1}, birth rate; δ_n = q_{n,n-1}, death rate), non-explosiveness holds if

$$\sum_{n>0} \frac{1}{\beta_n + \delta_n} = +\infty$$

Kolmogorov's forward and backward equations

Formal differentiation of P(t + h) = P(t)P(h) = P(h)P(t) yields

 $\frac{d}{dt}P(t) = P(t)Q$ Kolmogorov's forward equation $\frac{d}{dt}p_{xy}(t) = \sum_{z \in F} p_{xz}(t)q_{zy}$

 $\frac{d}{dt}P(t) = QP(t)$ $\frac{d}{dt}p_{xy}(t) = \sum_{z \in F} q_{xz}p_{zy}(t)$

Kolmogorov's backward equation

Formal differentiation of P(t + h) = P(t)P(h) = P(h)P(t) yields

 $\frac{d}{dt} P(t) = P(t)Q$ Kolmogorov's forward equation $\frac{d}{dt} p_{xy}(t) = \sum_{z \in E} p_{xz}(t)q_{zy}$ Kolmogorov's backward equation $\frac{d}{dt} P(t) = QP(t)$ Kolmogorov's backward equation $\frac{d}{dt} p_{xy}(t) = \sum_{z \in E} q_{xz} p_{zy}(t)$

Follow directly from $Q = \lim_{h\to 0} \frac{1}{h} [P(h) - I]$ for finite *E*, in which case $P(t) = \exp(tQ), t \ge 0$

Hold more generally-in particular for non-explosive processes-with a more involved proof (justifying exchange of summation and differentiation)

Stationary distributions and measures

Definition

Measure $\{\pi_x\}_{x\in E}$ is stationary if it satisfies $\pi^T Q = 0$, or equivalently the global balance equations

,

$$\forall x \in E, \ \pi_x \sum_{y \neq x} q_{xy} = \sum_{y \neq x} \pi_y q_{yx}$$
 flow out of x flow into x

Stationary distributions and measures

Definition

Measure $\{\pi_x\}_{x \in E}$ is stationary if it satisfies $\pi^T Q = 0$, or equivalently the global balance equations

$$\forall x \in E, \ \pi_x \sum_{y \neq x} q_{xy} = \sum_{y \neq x} \pi_y q_{yx}$$
 flow out of x flow into x

Kolmogorov's equations suggest that, if $X_0 \sim \pi$ for stationary π then $X_t \sim \pi$ for all $t \ge 0$,

Stationary distributions and measures

Definition

Measure $\{\pi_x\}_{x \in E}$ is stationary if it satisfies $\pi^T Q = 0$, or equivalently the global balance equations

$$\forall x \in E, \ \pi_x \sum_{y \neq x} q_{xy} = \sum_{y \neq x} \pi_y q_{yx}$$
 flow out of x flow into x

Kolmogorov's equations suggest that, if $X_0 \sim \pi$ for stationary π then $X_t \sim \pi$ for all $t \ge 0$,

EXAMPLE: stationarity for birth and death processes

$$\begin{aligned} \pi_0 \beta_0 &= \pi_1 \delta_1, \\ \pi_x (\beta_x + \delta_x) &= \pi_{x-1} \beta_{x-1} + \pi_{x+1} \delta_{x+1}, \ x \ge 1 \end{aligned}$$

Irreducibility, recurrence, invariance

Definition

- Process {X_t}_{t∈ℝ+} is irreducible (respectively, irreducible recurrent) if induced chain {Y_n}_{n∈ℕ} is.
- State x is **positive recurrent** if $\mathbb{E}_{x}(R_{x}) < +\infty$, where

$$R_x = \inf\{t > \tau_0 : X_t = x\}.$$

• Measure π is **invariant** for process $\{X_t\}_{t \in \mathbb{R}_+}$ if for all t > 0, $\pi^T P(t) = \pi^T$, i.e.

$$\forall x \in E, \sum_{y \in E} \pi_y p_{yx}(t) = \pi_x.$$

Limit theorems 1

Theorem

For irreducible recurrent $\{X_t\}_{t \in \mathbb{R}_+}$, \exists invariant measure π , unique up to some scalar factor. It can be defined as, for any $x \in E$:

$$\forall y \in E, \ \pi_y = \mathbb{E}_x \int_0^{R_x} \mathbb{I}_{X_t=y} dt,$$

or alternatively with $T_x := \inf\{n > 0 : Y_n = x\}$,

$$\forall y \in E, \ \pi_y = rac{1}{q_y} \mathbb{E}_x \sum_{n=1}^{T_x} \mathbb{I}_{Y_n = y}.$$

Limit theorems 1

Theorem

For irreducible recurrent $\{X_t\}_{t \in \mathbb{R}_+}$, \exists invariant measure π , unique up to some scalar factor. It can be defined as, for any $x \in E$:

$$\forall y \in E, \ \pi_y = \mathbb{E}_x \int_0^{R_x} \mathbb{I}_{X_t=y} dt,$$

or alternatively with $T_x := \inf\{n > 0 : Y_n = x\}$,

$$\forall y \in E, \ \pi_y = \frac{1}{q_y} \mathbb{E}_x \sum_{n=1}^{T_x} \mathbb{I}_{Y_n = y}.$$

COROLLARIES

- $\{\hat{\pi}_y\}$ invariant for $\{Y_n\}_{n\in\mathbb{N}} \Leftrightarrow \{\hat{\pi}_y/q_y\}$ invariant for $\{X_t\}_{t\in\mathbb{R}_+}$.
- For irreducible recurrent $\{X_t\}_{t \in \mathbb{R}_+}$, either all or no state $x \in E$ is positive recurrent.

Theorem

 $\{X_t\}_{t \in \mathbb{R}_+}$ is **ergodic** (i.e. irreducible, positive recurrent) iff it is irreducible, non-explosive and such that $\exists \pi$ satisfying global balance equations.

Then π is also the unique invariant probability distribution.

Theorem

 $\{X_t\}_{t \in \mathbb{R}_+}$ is **ergodic** (i.e. irreducible, positive recurrent) iff it is irreducible, non-explosive and such that $\exists \pi$ satisfying global balance equations.

Then π is also the unique invariant probability distribution.

Theorem

For ergodic $\{X_t\}_{t \in \mathbb{R}_+}$ with stationary distribution π , any initial distribution for X_0 and π -integrable f,

almost surely
$$\lim_{t\to\infty} \frac{1}{t} \int_0^t f(X_s) ds = \sum_{x\in E} \pi_x f(x)$$
 (ergodic theorem)

and in distribution $X_t \xrightarrow{\mathcal{D}} \pi$ as $t \to \infty$.

Theorem

For irreducible, non-ergodic $\{X_t\}_{t \in \mathbb{R}_+}$, any initial distribution for X_0 , then for all $x \in E$,

$$\lim_{t\to\infty}\mathbb{P}(X_t=x)=0.$$

3 N

Time reversal and reversibility

For stationary ergodic $\{X_t\}_{t \in \mathbb{R}}$ with stationary distribution π , time-reversed process $\tilde{X}_t = X_{-t}$: Markov with transition rates $\tilde{q}_{xy} = \frac{\pi_y q_{yx}}{\pi_x}$ For stationary ergodic $\{X_t\}_{t \in \mathbb{R}}$ with stationary distribution π , time-reversed process $X_t = X_{-t}$: Markov with transition rates $\tilde{q}_{xy} = \frac{\pi_y q_{yx}}{\pi_x}$

Definition

Stationary ergodic $\{X_t\}_{t \in \mathbb{R}}$ with stationary distribution π reversible iff distributed as time-reversal $\{\tilde{X}_t\}_{t \in \mathbb{R}}$, i.e.

 $\forall x \neq y \in E, \qquad \pi_x q_{xy} = \pi_y q_{yx}, \\ \text{flow from } x \text{ to } y \quad \text{flow from } y \text{ to } x$

detailed balance equations.

For stationary ergodic $\{X_t\}_{t\in\mathbb{R}}$ with stationary distribution π , time-reversed process $\tilde{X}_t = X_{-t}$: Markov with transition rates $\tilde{q}_{xy} = \frac{\pi_y q_{yx}}{\pi_x}$

Definition

Stationary ergodic $\{X_t\}_{t \in \mathbb{R}}$ with stationary distribution π reversible iff distributed as time-reversal $\{\tilde{X}_t\}_{t \in \mathbb{R}}$, i.e.

 $\forall x \neq y \in E, \qquad \pi_x q_{xy} = \pi_y q_{yx}, \\ \text{flow from } x \text{ to } y \quad \text{flow from } y \text{ to } x$

detailed balance equations.

Detailed balance, i.e. reversibility for π implies global balance for π . EXAMPLE: for birth and death processes, detailed balance always holds for stationary measure.

Let generator Q on E admit reversible measure π . Then for subset $F \subset E$, truncated generator \hat{Q} :

$$egin{array}{rl} \hat{Q}_{xy} &= Q_{xy}, \; x
eq y \in F, \ \hat{Q}_{xx} &= -\sum_{y
eq x} \hat{Q}_{xy}, \; x \in F \end{array}$$

admits $\{\pi_x\}_{x\in F}$ as reversible measure.

Erlang's model of telephone network

- Call types s ∈ S: type-s calls arrive at instants of Poisson
 (λ_s) process, last (if accepted) for duration Exponential (μ_s)
- type-s calls require one circuit (unit of capacity) per link $\ell \in s$
- Link ℓ has capacity C_{ℓ} circuits

Erlang's model of telephone network

- Call types s ∈ S: type-s calls arrive at instants of Poisson
 (λ_s) process, last (if accepted) for duration Exponential (μ_s)
- type-s calls require one circuit (unit of capacity) per link $\ell \in s$
- Link ℓ has capacity C_{ℓ} circuits

Stationary probability distribution:

$$\pi_{\mathsf{x}} = \frac{1}{Z} \prod_{s \in \mathcal{S}} \frac{\rho_s^{\mathsf{x}_s}}{\mathsf{x}_s!} \prod_{\ell} \mathbb{I}_{\sum_{s \ni \ell} \mathsf{x}_s \le C_\ell},$$

where: $\rho_s = \lambda_s / \mu_s$, Z: normalizing constant.

Erlang's model of telephone network

- Call types s ∈ S: type-s calls arrive at instants of Poisson
 (λ_s) process, last (if accepted) for duration Exponential (μ_s)
- type-s calls require one circuit (unit of capacity) per link $\ell \in s$
- Link ℓ has capacity C_{ℓ} circuits

Stationary probability distribution:

$$\pi_{\mathsf{x}} = \frac{1}{Z} \prod_{\boldsymbol{s} \in \mathcal{S}} \frac{\rho_{\boldsymbol{s}}^{\mathsf{x}}}{\mathsf{x}_{\boldsymbol{s}}!} \prod_{\ell} \mathbb{I}_{\sum_{\boldsymbol{s} \ni \ell} \mathsf{x}_{\boldsymbol{s}} \le C_{\ell}},$$

where: $\rho_s = \lambda_s / \mu_s$, Z: normalizing constant.

Basis for dimensioning studies of telephone networks (prediction of call rejection probabilities) More recent application: performance analysis of peer-to-peer systems for video streaming.

Jackson networks

- Stations $i \in I$ receive external arrivals at Poisson rate $\overline{\lambda}_i$
- Station *i* when processing x_i customers completes service at rate μ_iφ_i(x_i) (e.g.: φ_i(x) = min(x_i, n_i): queue with n_i servers and service times Exponential (μ_i))
- After completing service at station *i*, customer joins station *j* with probability $p_{ij}, j \in I$, and leaves system with probability $1 \sum_{j \in I} p_{ij}$
- Matrix $P = (p_{ij})$: sub-stochastic, such that $\exists (I P)^{-1}$

Jackson networks

- Stations $i \in I$ receive external arrivals at Poisson rate $\overline{\lambda}_i$
- Station *i* when processing x_i customers completes service at rate μ_iφ_i(x_i) (e.g.: φ_i(x) = min(x_i, n_i): queue with n_i servers and service times Exponential (μ_i))
- After completing service at station *i*, customer joins station *j* with probability $p_{ij}, j \in I$, and leaves system with probability $1 \sum_{j \in I} p_{ij}$
- Matrix $P = (p_{ij})$: sub-stochastic, such that $\exists (I P)^{-1}$

TRAFFIC EQUATIONS

$$\forall i \in I, \ \lambda_i = \overline{\lambda}_i + \sum_{j \in I} \lambda_j p_{ji}$$

or $\lambda = (I - P^T)^{-1}\overline{\lambda}$

Jackson networks (continued)

Stationary measure:

$$\pi_{\mathbf{x}} = \prod_{i \in I} \frac{\rho_i^{\mathbf{x}_i}}{\prod_{m=1}^{\mathbf{x}_i} \phi_i(m)},$$

where $\rho_i = \lambda_i / \mu_i$, and λ_i : solutions of traffic equations

Jackson networks (continued)

Stationary measure:

$$\pi_{\mathsf{x}} = \prod_{i \in I} \frac{\rho_i^{\mathsf{x}_i}}{\prod_{m=1}^{\mathsf{x}_i} \phi_i(m)},$$

where $\rho_i = \lambda_i / \mu_i$, and λ_i : solutions of traffic equations Application: process ergodic when π has finite mass. e.g. for $\phi_i(x) = \min(x, n_i)$, ergodicity iff $\forall i \in I$, $\rho_i < n_i$.

Jackson networks (continued)

Stationary measure:

$$\pi_{\mathsf{x}} = \prod_{i \in I} \frac{\rho_i^{\mathsf{x}_i}}{\prod_{m=1}^{\mathsf{x}_i} \phi_i(m)},$$

where $\rho_i = \lambda_i / \mu_i$, and λ_i : solutions of traffic equations Application: process ergodic when π has finite mass. e.g. for $\phi_i(x) = \min(x, n_i)$, ergodicity iff $\forall i \in I$, $\rho_i < n_i$. Proof: verify **partial balance** equations for all $x \in \mathbb{N}^I$:

$$\begin{aligned} \forall i \in I, \\ \pi_{x} [\sum_{j \neq i} q_{x, x-e_{i}+e_{j}} + q_{x, x-e_{i}}] &= \sum_{j \neq i} \pi_{x-e_{i}+e_{j}} q_{x-e_{i}+e_{j}, x} + \pi_{x-e_{i}} q_{x-e_{i}, x} \\ \pi_{x} \sum_{i \in I} q_{x, x+e_{i}} &= \sum_{i \in I} \pi_{x+e_{i}} q_{x+e_{i}, x}, \end{aligned}$$

which imply global balance equations

$$\pi_{x} \left[\sum_{i \in I} (q_{x,x-e_{i}} + q_{x,x+e_{i}} + \sum_{j \neq i} q_{x,x-e_{i}+e_{j}}) \right] = \sum_{i \in I} (\pi_{x-e_{i}} q_{x-e_{i},x} + \pi_{x+e_{i}} q_{x+e_{i},x} + \sum_{j \neq i} \pi_{x-e_{i}+e_{j}} q_{x-e_{i}+e_{j},x})$$

- Poisson process a fundamental continuous-time process, adequate model for aggregate of infrequent independent events
- Markov jump processes:

i) generator *Q* characterizes distribution if not explosive
ii) Balance equation characterizes invariant distribution if irreducible non-explosive
iii) Limit theorems: stationary distribution reflects long-term performance

• Exactly solvable models include reversible processes, plus several other important classes (e.g. Jackson networks)