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@ Poisson processes
@ Markov jump processes

@ Some queueing networks
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The Poisson distribution
(Siméon-Denis Poisson, 1781-1840)

AN . . .
{e WS neN As prevalent as Gaussian distribution
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The Poisson distribution
(Siméon-Denis Poisson, 1781-1840)

AN . . .
{e WS neN As prevalent as Gaussian distribution

Law of rare events (a.k.a. law of small numbers)
Pn,i > 0 such that lim,_oo sup; pni = 0, limp_ec > pni = A >0
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The Poisson distribution
(Siméon-Denis Poisson, 1781-1840)

AN . . .
{e WS neN As prevalent as Gaussian distribution

Law of rare events (a.k.a. law of small numbers)
Pn,i > 0 such that lim,_oo sup; pni = 0, limp_ec > pni = A >0

Then X, = >, Z,; with Z, ;: independent Bernoulli(p, ;) verifies

X, 3 Poisson(\)
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Point process on R

Definition

Point process on R :
Collection of random times {T,},~0 with 0 < T3 < Ty ..

Alternative description
Collection {N¢}rer, with Ny := > o T1,cl0,4

Yet another description
Collection {N(C)} for all measurable C C R where

N(C) = ZHTHGC

n>0

Laurent Massoulié Markov processes and queueing networks



Poisson process on R,

Definition

Point process such that for all sp =0<s1 < s < ... < sp,
@ Increments {Ns, — Ns,_, }1<j<n independent
@ Law of N5 — Ns only depends on t
© for some A > 0, N; ~ Poisson(\t)
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Poisson process on R,

Definition

Point process such that for all sp =0<s1 < s < ... < sp,
@ Increments {Ns, — Ns,_, }1<j<n independent
@ Law of N5 — Ns only depends on t
© for some A > 0, N; ~ Poisson(\t)

In fact, (3) follows from (1)—(2)
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Poisson process on R,

Definition

Point process such that for all sp =0<s1 < s < ... < sp,
@ Increments {Ns, — Ns,_, }1<j<n independent
@ Law of N5 — Ns only depends on t
© for some A > 0, N; ~ Poisson(\t)

In fact, (3) follows from (1)—(2)

A is called the intensity of the process
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A first construction

Given [An] i.i.d. numbers U, , uniform on [0, n], let
Nt(n) = Z?:1HUn,;§t

Then forany ke N, 5 =0<s1 <5 <...<5p,

(N — NP Yacici B @1<ickPoisson(A(s — si-1))
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A first construction

Given [An] i.i.d. numbers U, , uniform on [0, n], let
Nt(n) = Z?:1HUn,;§t

Then forany ke N, 5 =0<s1 <5 <...<5p,
(N — NP Yacici B @1<ickPoisson(A(s — si-1))
Proof: Multinomial distribution of {Ns(,.") — Ns(,i)l}lgigk

=- Convergence of Laplace transform
Eexp(— S5, a; (N — NE ) for all ok € R
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A first construction

Given [An] i.i.d. numbers U, , uniform on [0, n], let
Nt(n) = Z?:1HUn,;§t

Then forany ke N, 5 =0<s1 <5 <...<5p,
N (n) (n) ) D . Poi s — s;
{Ns, Ns,”’, }i<i<k = ®1<i<kPoisson(A(s; — si—1))
Proof: Multinomial distribution of {Ns(,.") 51 1}1<,<k

= Convergence of Laplace transform
Eexp(— S5, a; (N — NE ) for all ok € R

Suggests Poisson processes exist and are limits of this construction
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A second characterization

Proposition

For Poisson process { Tp}n>0 of intensity A, its interarrival times
7; = Tiy1 — T;, where To = 0, verify
{Tn}n>0 i.i.d. with common distribution Exp(\)
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A second characterization

Proposition

For Poisson process { Tp}n>0 of intensity A, its interarrival times
7; = Tiy1 — T;, where To = 0, verify
{Tn}n>0 i.i.d. with common distribution Exp(\)

Density of Exp()\): Ae ™I~
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A second characterization

Proposition

For Poisson process { Tp}n>0 of intensity A, its interarrival times
7; = Tiy1 — T;, where To = 0, verify
{Tn}n>0 i.i.d. with common distribution Exp(\)

Density of Exp()\): Ae ™I~

Key property: Exponential random variable 7 is memoryless,
ie. Vi >0, P(r—te |r>t)=P(re€")
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A third characterization

Proposition

Process with i.i.d., Exp()) interarrival times {7;}i>o can be
constructed on [0, t] by

1) Drawing N; ~ Poisson(At)

2) Putting N; points U, ..., Uy, on [0, t]| where U;: i.i.d. uniform
on [0, ]
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A third characterization

Proposition

Process with i.i.d., Exp()) interarrival times {7;}i>o can be
constructed on [0, t] by

1) Drawing N; ~ Poisson(At)

2) Putting N; points U, ..., Uy, on [0, t]| where U;: i.i.d. uniform
on [0, ]

Proof
Establish identity for all n € N, ¢ : Rl — R:

]E[(b(TOa T0) SR LG 0 O ) S GO 6 Tn—l)]INt:n] = ...

—At(At) .
e x n! f(O t]n 517 Sgooo 7Sn)]Isl<s2<...<sn H,-:]_ dS,‘

= IP(Poisson(At) = n) x E[¢(S1,. .., Sn)]

where SI': sorted version of i.i.d. variables uniform on [0, t []
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Laplace transform of Poisson processes

Definition

The Laplace transform of point process N <> { T, },~0 is the
functional whose evaluation at f : Ry — R is

Ln(f) :=BEexp(—N(f)) = E(exp(— > _ f(T»))).

n>0
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Laplace transform of Poisson processes

Definition

The Laplace transform of point process N <> { T, },~0 is the
functional whose evaluation at f : Ry — R is

Ln(f) :=BEexp(—N(f)) = E(exp(— > _ f(T»))).

n>0

Proposition: Knowledge of Ly(f) on sufficiently rich class of
functions f : Ry — R (e.g. piecewise continuous with compact
support) characterizes law of point process N.
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Laplace transform of Poisson processes

Definition

The Laplace transform of point process N <> { T, },~0 is the
functional whose evaluation at f : Ry — R4 is

Ln(f) :=BEexp(—N(f)) = E(exp(— > _ f(T»))).

n>0

Proposition: Knowledge of Ly(f) on sufficiently rich class of
functions f : Ry — R (e.g. piecewise continuous with compact
support) characterizes law of point process N.

Laplace transform of Poisson process with intensity A:

Ln(f) :exp(—/R A1 — e ) dx)
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Laplace transform of Poisson processes

Definition

The Laplace transform of point process N <> { T, },~0 is the
functional whose evaluation at f : Ry — R4 is

Ln(f) :=BEexp(—N(f)) = E(exp(— > _ f(T»))).

n>0

Proposition: Knowledge of Ly(f) on sufficiently rich class of
functions f : Ry — R (e.g. piecewise continuous with compact
support) characterizes law of point process N.

Laplace transform of Poisson process with intensity A:

Ln(f) :exp(—/R A1 — e ) dx)

(i) Previous construction yields expression for Ly(f)
(i) For f = 37, ailc, =N(C;) ~ Poisson(A [ dx), with
independence for disjoint C;. Hence existence of Poisson process...
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Poisson process with general space and intensity

Definition

For A : RY — R locally integrable function, N <> {T,},~0 point
process on R? is Poisson with intensity function X if and only if
for measurable, disjoint CG; Cc RY,i=1,...,n,

N(C;) independent, ~ Poisson( [ A(x)dx)
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Poisson process with general space and intensity

For A : RY — R locally integrable function, N <> {T,},~0 point
process on R? is Poisson with intensity function X if and only if
for measurable, disjoint CG; Cc RY,i=1,...,n,

N(C;) independent, ~ Poisson( [ A(x)dx)

Such a process exists and admits Laplace transform

Ly(f) = exp <— A(x)(1 — e—f(x))dx>

R4
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Further properties

@ Strong Markov property: Poisson process N with intensity
A, stopping time T (i.e. Vt >0, {T <t} € o(Ns,s < t))
then on {T < 400}, {N74¢+ — N7}e>0: Poisson with
intensity A and independent of {Ns}s<T
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Further properties

@ Strong Markov property: Poisson process N with intensity
A, stopping time T (i.e. Vt >0, {T <t} € o(Ns,s < t))
then on {T < 400}, {N74¢+ — N7}e>0: Poisson with
intensity A and independent of {Ns}s<T

@ Superposition: For independent Poisson processes N; with
intensities \;, i =1,...,nthen N = ). N;: Poisson with
intensity » ;A
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Further properties

@ Strong Markov property: Poisson process N with intensity
A, stopping time T (i.e. Vt >0, {T <t} € o(Ns,s < t))
then on {T < 400}, {N74¢+ — N7}e>0: Poisson with
intensity A and independent of {Ns}s<T

@ Superposition: For independent Poisson processes N; with
intensities \;, i =1,...,nthen N = ). N;: Poisson with
intensity » ;A

@ Thinning: For Poisson process N <> { T} ,~0 with intensity
A, {Zn}n>0 independent of N, i.i.d., valued in [k],
processes N; : Ni(C) = >, .o I1,eclz,—; are independent,
Poisson with intensities \; = AP(Z, = 1)
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Markov jump processes

Process {X;}tcr, with values in E, countable or finite, is

Markov if

]]?(th = Xn‘th_l = Xp—1y--- th = X]_) = ]P(th = Xn’th_l = Xn_]_),
treRY, 1 < - <y, x{ €E"

Homogeneous if (X5 = y|Xs = x) =: py,/(t) independent of s,
s,te Ry, x,y € E
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Markov jump processes

Process {X;}tcr, with values in E, countable or finite, is

Markov if

]]?(th = Xn‘th_l = Xp—1y--- th = X]_) = ]P(th = Xn’th_l = Xn_]_),
treRY, 1 < - <y, x{ €E"

Homogeneous if (X5 = y|Xs = x) =: py,/(t) independent of s,
s,te Ry, x,y € E

= Semi-group property pxy(t +5) = > g Pxz(t)Pzy(5),
or P(t+s) = P(t)P(s) with P(t) = {px, (t)}x,ycE
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Markov jump processes

Process {X;}tcr, with values in E, countable or finite, is

Markov if
]]?(th = Xn‘th_l = Xp—1y--- th = X]_) = ]P(th = Xn’th_l = Xn_]_),
tr R, t1 <o <'ty, x{ €E"

Homogeneous if (X5 = y|Xs = x) =: py,/(t) independent of s,
s,te Ry, x,y € E

= Semi-group property pxy(t +5) = > g Pxz(t)Pzy(5),
or P(t+s) = P(t)P(s) with P(t) = {px, (t)}x,ycE

Definition

{Xt}ter, is a pure jump Markov process if in addition
(i) It spends with probability 1 a strictly positive time in each state
(ii) Trajectories t — X; are right-continuous
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Markov jump processes: examples

e Poisson process {/N;}:cr,: then Markov jump process with
Pxy(t) = P(Poisson(At) = y — x)
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Markov jump processes: examples

e Poisson process {/N;}:cr,: then Markov jump process with
Pxy(t) = P(Poisson(At) = y — x)

@ Single-server queue, FIFO (“First-in-first-out”) discipline,
arrival times: N Poisson (), service times: i.i.d. Exp(u)
independent of N
Xy= number of customers present at time t: Markov jump
process by Memoryless property of Exponential distribution +
Markov property of Poisson process
(the M/M/1/o0 queue)
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Markov jump processes: examples

e Poisson process {/N;}:cr,: then Markov jump process with
Pxy(t) = P(Poisson(At) = y — x)

@ Single-server queue, FIFO (“First-in-first-out”) discipline,
arrival times: N Poisson (), service times: i.i.d. Exp(u)
independent of N
Xt= number of customers present at time t: Markov jump
process by Memoryless property of Exponential distribution +
Markov property of Poisson process
(the M/M/1/o0 queue)

@ Infinite server queue with Poisson arrivals and Exponential
service times: customer arrived at T, stays in system till
T, + 0,, where o,: service time
Xy= number of customers present at time t:

Markov jump process (the M /M /oco/oco queue)
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Structure of Markov jump processes

Infinitesimal Generator

Vx,y, y # x € E, limits gy := lim;_,o l_pt () Gxy = lime_o pxy(t)
exist in Ry and satisfy > . gy = dx

Gxy: Jump rate from x to y

Q := {qxy }x.yeE Where gxx = —gx: Infinitesimal Generator of
process { X }ter.,

Formally: @ = lims_,o +[P(h) — I] where I: identity matrix
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Structure of Markov jump processes

Infinitesimal Generator

Vx,y, y # x € E, limits gy := lim;_,o l_pt () Gxy = lime_o pxy(t)
exist in Ry and satisfy > . gy = dx

Gxy: Jump rate from x to y

Q := {qxy }x.yeE Where gxx = —gx: Infinitesimal Generator of
process { X }ter.,

Formally: @ = lims_,o +[P(h) — I] where I: identity matrix

Structure of Markov jump processes

Sequence {Y, }nelN of visited states: Markov chain with transition
matrix py, = Iy, qxxy
Conditionally on { Y} },en, sojourn times {7,}pen in successive

states Y,: independent, with distributions Exp(qy,)
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e for Poisson process (\): only non-zero jump rate
Ox,x+1 = A= gx, X € N
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e for Poisson process (\): only non-zero jump rate
Ox,x+1 = A= gx, X € N

e For FIFO M/M/1/oo queue, non-zero rates: gy x+1 = A,
Gxx—1 = x>0, x € N hence gx = A + plli~0

Laurent Massoulié Markov processes and queueing networks



e for Poisson process (\): only non-zero jump rate
Ox,x+1 = A= gx, X € N

e For FIFO M/M/1/oo queue, non-zero rates: gy x+1 = A,
Gxx—1 = x>0, x € N hence gx = A + plli~0

e For M/M/oo/oo queue, non-zero rates: gy x+1 = A,
Gxx—1 = i1X, X € N hence gx = A + px
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Structure of Markov jump processes (continued)

Let T, := Zz;(l) Ti: time of n-th jump.

If Too = +00 almost surely: trajectory determined on R, hence
generator Q determines law of process {X;}tcr.,
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Structure of Markov jump processes (continued)

Let T, := Zz;(l) Ti: time of n-th jump.

If Too = +00 almost surely: trajectory determined on R, hence
generator Q determines law of process {X;}tcr.,

Process is called explosive if instead T, < 400 with positive
probability. Then process not completely characterized by generator
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Structure of Markov jump processes (continued)

Let T, := Zz;(l) Ti: time of n-th jump.

If Too = +00 almost surely: trajectory determined on R, hence
generator Q determines law of process {X;}tcr.,

Process is called explosive if instead T, < 400 with positive
probability. Then process not completely characterized by generator

Sufficient conditions for non-explosiveness:
@ SUp,cg gx < +00
@ Recurrence of induced chain {Y,}nen
e For Birth and Death processes (i.e. E =N, only non-zero
rates: [, = Qnnt1, birth rate; 6, = gp n—1, death rate),
non-explosiveness holds if

1
> 543, =t
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Kolmogorov's forward and backward equations

Formal differentiation of P(t + h) = P(t)P(h) = P(h)P(t) yields

A SP(t)=P(1)Q Kolmogorov's forward equation
dthy( ) ZZEE pxz(t)qzy
%P( ) = QP(t) Kolmogorov's backward equation

Sty (t) = 2 e GxzPy (1)
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Kolmogorov's forward and backward equations

Formal differentiation of P(t + h) = P(t)P(h) = P(h)P(t) yields

A SP(t)=P(1)Q Kolmogorov's forward equation
dthy( ) ZZEE pxz(t)qzy
%P( ) = QP(t) Kolmogorov's backward equation

Sty (t) = 2 e GxzPy (1)

Follow directly from @ = lim,_,o +[P(h) — /] for finite E, in which
case P(t) = exp(tQ), t >0

Hold more generally—in particular for non-explosive processes—with
a more involved proof (justifying exchange of summation and
differentiation)
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Stationary distributions and measures

Definition

Measure {m, } cE is stationary if it satisfies 7' Q = 0, or
equivalently the global balance equations

VX € E, M) s Gy = Dysx Tyyx
flow out of x flow into x
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Stationary distributions and measures

Definition

Measure {m, } cE is stationary if it satisfies 7' Q = 0, or
equivalently the global balance equations

VX € E, M) s Gy = Dysx Tyyx
flow out of x flow into x

Kolmogorov's equations suggest that, if Xy ~ 7 for stationary 7
then Xy ~ mw forall t >0,
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Stationary distributions and measures

Definition

Measure {m, } cE is stationary if it satisfies 7' Q = 0, or
equivalently the global balance equations

VX € E, M) s Gy = Dysx Tyyx
flow out of x flow into x

Kolmogorov's equations suggest that, if Xy ~ 7 for stationary 7
then Xy ~ mw forall t >0,

EXAMPLE: stationarity for birth and death processes

700 = 101,
71-x(ﬁx + 5)() = WX*lBX*l + 7Tx+15><+1a x>1
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Irreducibility, recurrence, invariance

@ Process {X;}tcr, is irreducible (respectively, irreducible
recurrent) if induced chain {Y,},en is.

e State x is positive recurrent if E,(R,) < 400, where
Ry = inf{t > 70 : X; = x}.
@ Measure 7 is invariant for process {X;}+cr, if for all t > 0,
aTP(t)=xT, ie.

Vx € E, Z T 12)) = e
y€eE
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Limit theorems 1

For irreducible recurrent {X:}+cr,, 3 invariant measure 7, unique
up to some scalar factor. It can be defined as, for any x € E:

Ry
VyeE, m, = IEX/ Ix,—,dt,
0

or alternatively with T, :=inf{n >0:Y, = x},

;
1 X
Vy € E, my= —FEyx > Iy,

dy n=1
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Limit theorems 1

For irreducible recurrent {X:}+cr,, 3 invariant measure 7, unique
up to some scalar factor. It can be defined as, for any x € E:

Ry
VyeE, m, = IEX/ Ix,—,dt,
0

or alternatively with T, :=inf{n >0:Y, = x},

;
1 X
Vy € E, my= —FEyx > Iy,

qy n=1
COROLLARIES
o {#,} invariant for { Y, },en < {#,/qy} invariant for
{Xt}t€R+-

@ For irreducible recurrent {X;}+cr,, either all or no state
x € E is positive recurrent.
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Limit theorems 2

{Xt}ter, is ergodic (i.e. irreducible, positive recurrent) iff it is
irreducible, non-explosive and such that 3 satisfying global
balance equations.

Then 7 is also the unique invariant probability distribution.
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Limit theorems 2

{Xt}ter, is ergodic (i.e. irreducible, positive recurrent) iff it is
irreducible, non-explosive and such that 3 satisfying global
balance equations.

Then 7 is also the unique invariant probability distribution.

For ergodic {X:}tcw, with stationary distribution m, any initial
distribution for Xo and m-integrable f,

almost surely I|m / f(Xs)ds = Zﬂ'x (x) (ergodic theorem)
x€E

e e D
and in distribution Xy — m as t — 0.
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Limit theorems 3

For irreducible, non-ergodic {X:}+cwr, any initial distribution for
Xo, then for all x € E,

lim P(X: =x)=0.

t—00
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Time reversal and reversibility

For stationary ergodic {X;}+er with stationary distribution T,
time-reversed process X; = X_¢:

. .. ~ T
Markov with transition rates G,, = %
X
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Time reversal and reversibility

For stationary ergodic {X;}+er with stationary distribution T,
time-reversed process X; = X_¢:
Markov with transition rates G,, = er—zyx

Definition

Stationary ergodic {X;}+cr with stationary distribution 7
reversible iff distributed as time-reversal {X;}:cR, i.e.

Vx ;é y S E, 7rquy = 7quyX7
flow from x to y  flow from y to x

detailed balance equations.
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Time reversal and reversibility

For stationary ergodic {X;}+er with stationary distribution T,
time-reversed process X; = X_¢:

. .. ~ T
Markov with transition rates G,, = %
X

Definition

Stationary ergodic {X;}+cr with stationary distribution 7
reversible iff distributed as time-reversal {X;}:cR, i.e.

Vx ;é y S E, 7rquy = 7quyX7
flow from x to y  flow from y to x

detailed balance equations.

v

Detailed balance, i.e. reversibility for 7 implies global balance for 7.
EXAMPLE: for birth and death processes, detailed balance always
holds for stationary measure.
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Reversibility and truncation

Proposition
Let generator @ on E admit reversible measure 7. Then for subset
F C E, truncated generator Q:

C:)Xy :Qxyax#/\ye"__a
QXX — _Zy;éx Qxy, X € F

admits {7y }xeF as reversible measure.
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Erlang’'s model of telephone network

o Call types s € S: type-s calls arrive at instants of Poisson
(Xs) process, last (if accepted) for duration Exponential (1ss)

@ type-s calls require one circuit (unit of capacity) per link £ € s

@ Link ¢ has capacity C; circuits

Laurent Massoulié Markov processes and queueing networks



Erlang’'s model of telephone network

o Call types s € S: type-s calls arrive at instants of Poisson
(Xs) process, last (if accepted) for duration Exponential (1ss)

@ type-s calls require one circuit (unit of capacity) per link £ € s

@ Link ¢ has capacity C; circuits

Stationary probability distribution:

Tx ZH S H D 50 Xs<Cpo

where: ps = As/us, Z: normalizing constant.
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Erlang’'s model of telephone network

o Call types s € S: type-s calls arrive at instants of Poisson
(Xs) process, last (if accepted) for duration Exponential (1ss)

@ type-s calls require one circuit (unit of capacity) per link £ € s

@ Link ¢ has capacity C; circuits

Stationary probability distribution:

Tx ZH S H D 50 Xs<Cpo

where: ps = As/us, Z: normalizing constant.

Basis for dimensioning studies of telephone networks (prediction of
call rejection probabilities)

More recent application: performance analysis of peer-to-peer
systems for video streaming.
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Jackson networks

@ Stations i € | receive external arrivals at Poisson rate \;

@ Station / when processing x; customers completes service at
rate pioi(x;) (e.g.: ¢i(x) = min(x;, n;): queue with n; servers
and service times Exponential (1))

@ After completing service at station /, customer joins station j
with probability p;;,j € I, and leaves system with probability

1- Zjel Pij
e Matrix P = (p;): sub-stochastic, such that 3(/ — P)~!
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Jackson networks

@ Stations i € | receive external arrivals at Poisson rate \;

@ Station / when processing x; customers completes service at
rate pioi(x;) (e.g.: ¢i(x) = min(x;, n;): queue with n; servers
and service times Exponential (1))

@ After completing service at station /, customer joins station j
with probability p;;,j € I, and leaves system with probability

1- Zjel Pij
e Matrix P = (p;): sub-stochastic, such that 3(/ — P)~!

TRAFFIC EQUATIONS

Viel X=X+ Y Apj
Jjel

or A= (I—-PT)IX
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Jackson networks (continued)

Stationary measure:

HHX' 1 @i(m)’

iel

where p; = \;/ui, and \;: solutions of traffic equations
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Jackson networks (continued)

Stationary measure:
iel m 1 ' )

where p; = \;/ui, and \;: solutions of traffic equations
Application: process ergodic when 7 has finite mass. e.g. for
®i(x) = min(x, n;), ergodicity iff Vi € I, p; < n;.
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Jackson networks (continued)

Stationary measure:

,1;[/ m 1 ’ )
where p; = \;/ui, and \;: solutions of traffic equations
Application: process ergodic when 7 has finite mass. e.g. for
®i(x) = min(x, n;), ergodicity iff Vi € I, p; < n;.
Proof: verify partial balance equations for all x € N':

Viel,
Wx[z_i;éi Qx,x—eit+e T Oxx—e] = Zj;éi Tx—ej+ejQx—ej+ej,x T Tx—e;Gx—ei,x
Tx Ziel 9x.x+e = Z,’g[ Tx+ejGx+ej, x>

which imply global balance equations

Tx[D e (Axx—e + Axxte; + 2 zj Axx—eite)] =
Ziel(ﬂ'x—ei Qx—ej,x T Tx+ejQx+eix 1 Zﬁg; 7TX-€,‘+equ—e,'+ej7X)
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Takeaway messages

@ Poisson process a fundamental continuous-time process,
adequate model for aggregate of infrequent independent
events

@ Markov jump processes:
i) generator Q characterizes distribution if not explosive
ii) Balance equation characterizes invariant distribution if
irreducible non-explosive
iii) Limit theorems: stationary distribution reflects long-term
performance

o Exactly solvable models include reversible processes, plus
several other important classes (e.g. Jackson networks)
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