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 Goal: allow machines on remote islands to transmit by radio to 
« master machine » without heavy coordination between them

 Key idea: use randomization for scheduling transmissions to avoid
collisions between transmitters

 A randomized, distributed algorithm

Aloha: the first random access
protocol for channel access

[Abramson, Hawaii 70]
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Aloha’s principle

Slotted time: fixed transmission intervals

Station with message to send: emits it with probability p

By end of interval: learns whether msg successfully received, or not (due to 
collision or other interference)

Repeat until no message left to be sent

Minimal feedback (only listen for ack after having emitted)
implicit coordination by receiver’s acknowledgement
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Ethernet principles
[Metcalfe, Xerox Parc 73]

Machine emits on shared medium randomly:

After k failed attempts, waits before retransmitting for random number of 
slots picked uniformy from {1,2,…,2k} (so-called contention window)
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Ethernet principles
[Metcalfe, Xerox Parc 73]

Machine emits on shared medium randomly:

After k failed attempts, waits before retransmitting for random number of 
slots picked uniformy from {1,2,…,2k} (so-called contention window)

The exponential backoff method, a refinement over Aloha

Other refinement: sense channel before transmitting (allows to compete by 
random access only during small fraction of total time)

Principles underly 802.11x (Wi-Fi) protocols



Goals

Understand performance of random access protocols

for given traffic, or demand, or workload offered to 
system (=process of message request arrivals), 

Does system transmit them all? 

Does it reach some steady state behaviour?

How long do transmissions take? 



Outline

Introduction to Markov chain theory
Fundamental notions (recurrence, irreducibility, 

ergodicity, transience)

Criteria for ergodicity or transience

Performance of Random Access Protocols
Aloha with finitely many stations

Aloha with an infinite number of stations

Results for Ethernet and other variants



Markov chains

E a countable set (e.g., N or [n] = {1, . . . , n})

Definition: {Xn}n∈N Markov chain with transition matrix P iff
∀n > 0,∀xn0 = {x0, . . . , xn} ∈ En+1,

P(Xn = xn|X n−1
0 = xn−1

0 ) = P(Xn = xn|Xn−1 = xn−1) = pxnxn−1

where ∀x , y ∈ E , pxy ≥ 0 and
∑

z∈E pxz = 1
(i.e. P is a stochastic matrix)

Canonical example
X0 independent of {Yn}n≥0 an i.i.d. sequence, Yn ∈ E ′

For some function f : E × E ′ → E ,

∀n ≥ 0, Xn+1 = f (Xn,Yn)

Illustration: reflected Random Walk on
N : Xn+1 = max(0,Xn + Yn)
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Laurent Massoulié Markov chains – Random access protocols



Markov chains

E a countable set (e.g., N or [n] = {1, . . . , n})

Definition: {Xn}n∈N Markov chain with transition matrix P iff
∀n > 0,∀xn0 = {x0, . . . , xn} ∈ En+1,

P(Xn = xn|X n−1
0 = xn−1

0 ) = P(Xn = xn|Xn−1 = xn−1) = pxnxn−1

where ∀x , y ∈ E , pxy ≥ 0 and
∑

z∈E pxz = 1
(i.e. P is a stochastic matrix)

Canonical example
X0 independent of {Yn}n≥0 an i.i.d. sequence, Yn ∈ E ′

For some function f : E × E ′ → E ,

∀n ≥ 0, Xn+1 = f (Xn,Yn)

Illustration: reflected Random Walk on
N : Xn+1 = max(0,Xn + Yn)
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Basic properties

By induction P(X n+m
n = xn+m

n ) = P(Xn = xn)
∏n+m

i=n+1 pxi−1xi

⇒ P(X n+m
0 = xn+m

0 |Xn = xn) = P(X n−1
0 = xn−1

0 |Xn = xn)× · · ·
· · · ×P(X n+m

n+1 = xn+m
n+1 |Xn = xn)

(past and future independent conditionally on present)

Noting pnx ,y = P(Xn = y |X0 = x), semi-group property:

pn+m
xy =

∑
z∈E

pnxzp
m
zy

Linear algebra interpretation
For finite E (e.g. E = [k]), Matrix pn = n-th power of P
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Laurent Massoulié Markov chains – Random access protocols



Basic properties

By induction P(X n+m
n = xn+m

n ) = P(Xn = xn)
∏n+m

i=n+1 pxi−1xi

⇒ P(X n+m
0 = xn+m

0 |Xn = xn) = P(X n−1
0 = xn−1

0 |Xn = xn)× · · ·
· · · ×P(X n+m

n+1 = xn+m
n+1 |Xn = xn)

(past and future independent conditionally on present)

Noting pnx ,y = P(Xn = y |X0 = x), semi-group property:

pn+m
xy =

∑
z∈E

pnxzp
m
zy

Linear algebra interpretation
For finite E (e.g. E = [k]), Matrix pn = n-th power of P
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Further properties

Denote Px(·) = P(·|X0 = x) distribution of chain started at 0

Def: T ∈ N ∪ {+∞} stopping time iff
∀n ∈ N, {T = n} is σ(X n

0 )-measurable, i.e.
∃φn : En+1 → {0, 1} such that IT=n = φn(X n

0 )

Key example Tx := inf{n > 0 : Xn = x}

Strong Markov property
Markov chain X∞0 with transition matrix P, stopping time T
Then conditionally on T < +∞ and XT = x ,
XT

0 and X∞T independent with X∞T ∼ Px
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Positive recurrence, null recurrence, transience, periodicity

State x is

recurrent if Px(Tx < +∞) = 1

positive recurrent if Ex(Tx) < +∞
null recurrent if Px(Tx < +∞) = 1 & Ex(Tx) = +∞
transient if not recurrent, i.e. Px(Tx < +∞) < 1

d-periodic if d = GCD(n ≥ 0 : pnxx > 0)

Illustration: reflected random walk on N,
Sn+1 = max(0,Sn + Yn)
State 0 is

positive recurrent if E(Yn) < 0

transient if E(Yn) > 0

null recurrent if E(Yn) = 0 & 0 < Var(Yn) < +∞
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Decomposition in cycles of recurrent chains

Fix a state x that is recurrent (Px(Tx < +∞) = 1),

Let Tx ,k = instant of k-th visit to state x

⇒ Trajectory X∞1 : concatenation of cycles
Ck := {Xn}Tx,k<n≤Tx,k+1

Strong Markov property ⇒ cycles Ck are i.i.d.

Laurent Massoulié Markov chains – Random access protocols



Irreducibility

Markov chain is irreducible iff ∀x , y ∈ E ,
∃n ∈ N, xn0 ∈ En+1 | x0 = x , xn = y &

∏n
i=1 pxi−1xi > 0

i.e., graph on E with directed edge (x , y) iff pxy > 0 strongly
connected

Example
Standard random walk on graph G irreducible iff G connected

Proposition

For irreducible chain, if one state x is transient (resp. null
recurrent, positive recurrent, d-periodic) then all are

Laurent Massoulié Markov chains – Random access protocols
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Stationary measures

Non-negative measure π on E is stationary for P iff
∀x ∈ E , πx =

∑
y∈E πypyx

Notation: Pν :=
∑

x∈E νxPx chain’s distribution when X0 ∼ ν

⇒ For stationary probability distribution π,
∀n > 0,Pπ(X∞n ∈ ·) = Pπ(X∞0 ∈ ·)
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Limit theorems 1

Recurrence and stationary measures

Irreducible recurrent chain admits a stationary measure, unique up

to multiplicative factor ∀y ∈ E , πy = Ex

Tx∑
n=1

IXn=y

Irreducible chain admits a stationary probability distribution iff it is
positive recurrent

Ergodic theorem

Irreducible, positive recurrent chain satisfies almost sure
convergence

lim
n→∞

1

n

n∑
k=1

f (Xn) =
∑
x∈E

πx f (x)

for all π-integrable f , where π = unique stationary distribution

Such chains are called ergodic
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Laurent Massoulié Markov chains – Random access protocols



Limit theorems 1

Recurrence and stationary measures

Irreducible recurrent chain admits a stationary measure, unique up

to multiplicative factor ∀y ∈ E , πy = Ex

Tx∑
n=1

IXn=y

Irreducible chain admits a stationary probability distribution iff it is
positive recurrent

Ergodic theorem

Irreducible, positive recurrent chain satisfies almost sure
convergence

lim
n→∞

1

n

n∑
k=1

f (Xn) =
∑
x∈E

πx f (x)

for all π-integrable f , where π = unique stationary distribution

Such chains are called ergodic
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Limit theorems 2

Convergence in distribution

Ergodic, aperiodic chain satisfies ∀x ∈ E , limn→∞P(Xn = x) = πx
where π: unique stationary distribution

“Converse”

Irreducible, non-ergodic chain satisfies
∀x ∈ E , limn→∞P(Xn = x) = 0
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Foster-Lyapunov criterion for ergodicity

Theorem

An irreducible chain such that there exist V : E → R+, a finite set
K ⊂ E and ε, b > 0 satisfying

E(V (Xn+1)− V (Xn)|Xn = x) ≤
{
−ε, x /∈ K ,
b − ε, x ∈ K ,

is then ergodic.
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Aloha with finitely many stations

Stations s ∈ S, |S| <∞

New arrivals at station s in slot n: An,s ∈ N, {An,s}n≥0 i.i.d.

Probability of transmission by s if message in queue: ps

Source of randomness: {Bn,s}n≥0 i.i.d., Bernoulli(ps)

Transmits iff B ′n,s = 0 where B ′n,s = Bn,sILn,s>0

Queue dynamics

Ln+1,s = Ln,s + An,s − B ′n,s
∏
s′ 6=s

(1− B ′n,s′)
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Aloha with finitely many stations

Assume ∀s, 0 < P(An,s = 0) < 1
Then chain is irreducible and aperiodic

Sufficient condition for ergodicity

∀s, λs := E(An,s) < ps
∏
s′ 6=s

(1− ps′)

Sufficient condition for transience

∀s, λs > ps
∏
s′ 6=s

(1− ps′)
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Aloha with finitely many stations

Symmetric case λs = λ/|S|, ps ≡ p:

Recurrence if λ < |S|p(1− p)|S|−1

Transience if λ > |S|p(1− p)|S|−1

⇒ To achieve stability (ergodicity) for fixed λ, need p → 0 as
|S| → ∞

Impractical! (Collisions take forever to be resolved)
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Aloha with infinitely many stations

Many stations, very rarely active (just one message)

An new messages in interval n, {An}n≥0 i.i.d.

Source of randomness {Bn,i}n,i≥0 i.i.d., Bernoulli (p)

Queue evolution

Ln+1 = Ln + An − I∑Ln
i=1 Bn,i=1

Assumption 0 < P(An = 0) < 1 ensures irreducibility (and
aperiodicity)
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Aloha with infinitely many stations

Abramson’s heuristic argument

For An ∼ Poisson(λ), Nb of attempts per slot ≈ Poisson(G ) for
unknown G

Hence successful transmission with probability Ge−G per slot

Solution to λ = Ge−G exists for all λ < 1/e

Hence “Aloha should be stable (ergodic) whenever λ < 1/e”

Theorem: Instability of Aloha

With probability 1, channel jammed forever (
∑Ln

i=1 Bn,i > 1) after
finite time. Hence only finite number of messages ever transmitted.
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Fixing Aloha: richer feedback

Assumption: Ln known

Backlog-dependent retransmission probability pn = 1/Ln
Then system ergodic if λ := E(An) < 1

e ≈ 0.368

Denote Jn = {0, 1, ∗} outcome of n-th channel use
(0: no transmission. 1: single successful transmission. ∗: collision)

Weaker assumption: channel state Jn heard by all stations

Backlog-dependent retransmission probability pn = 1/L̂n, where
estimate L̂n computed by

L̂n+1 = max(1, L̂n + αIJn=∗ − βIJn=0)

renders Markov chain (Ln, L̂n)n≥0 ergodic for suitable α, β > 0 if
λ := E(An) < 1

e ≈ 0.368
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Fixing Aloha: richer feedback

With same ternary feedback Jn = {0, 1, ∗}, can stability hold for
λ > 1/e?

Yes: rather intricate protocols have been invented and shown to
achieve stability up to λ = 0.487

Largest λ for which some protocol based on this feedback is
stable? Unknown (only bounds)
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Ethernet and variants

Return to Acknowledgement-based feedback (only listen channel’s
state after transmission)
Variant of exponential backoff: transmit with probability 2−k after
k collisions
Assume An ∼ Poisson (λ)

Theorem: instability of Ethernet’s variant

For any λ > 0, (modification of) Ethernet is transient.

Weaker performance guarantees

Ethernet and its modification are such that with probability 1:
For λ < ln(2) ≈ 0.693, infinite number of messages is transmitted
For λ > ln(2), only finitely many messages are transmitted

Unsolved conjecture

No acknowledgement-based scheme can induce a stable (ergodic)
system for any λ > 0.
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Conclusions on Random Access Protocols

Mostly negative results in theory, both for Aloha and Ethernet,
yet...
...In practice, Ethernet and Wi-Fi’s 802.11x protocols perform well

Finite number of stations helps

Time to instability could be huge (“metastable” behavior)

Only small fraction of channel time used for random access
collision resolution:
Once station “wins” channel access, others wait till its
transmission is over

→ Alternative protocols based on ternary feedback have not been
used
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Takeaway messages

Markov chain theory: framework for system and algorithm
performance analysis

Ergodicity (stability) analysis:
→ Determines for what demands system stabilizes into steady
state
→ A “first order” performance index (know when delays
remain stable, not their magnitude)

Foster-Lyapunov criteria to prove ergodicity

Simple questions on performance of Random Access yet
unsolved, and results more negative than positive

Still, analysis of Aloha has led to new insights and new
designs such as Ethernet
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Laurent Massoulié Markov chains – Random access protocols



Takeaway messages

Markov chain theory: framework for system and algorithm
performance analysis

Ergodicity (stability) analysis:
→ Determines for what demands system stabilizes into steady
state
→ A “first order” performance index (know when delays
remain stable, not their magnitude)

Foster-Lyapunov criteria to prove ergodicity

Simple questions on performance of Random Access yet
unsolved, and results more negative than positive

Still, analysis of Aloha has led to new insights and new
designs such as Ethernet
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