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Abstract

Consider the mean field limit of a model for multiple HTTP sources multiplexed through
a drop-tail router. The limit may exhibit two stationary regimes. In the fluid regime
the flows are independent, there are no packet losses and the average throughput is high.
In the turbulent regime the flows are synchronized, there are periodic congestion epochs
with packet losses and the average throughput is reduced.

In the prelimit with a finite number of sources the above regimes become metastable
in the sense that we observe periodic fluctuations between the fluid and turbulent regimes.
This paper outlines a general framework for describing these metastable regimes.
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1 Introduction

There have been many recent developments on the emerging science of spontaneous order,
[5]. Spontaneous order or ”synch” may occur among a collection of (stochastic) dynamical
systems or particles due to a ”coupling” between any one particle and the ensemble. This
phenomenon of ”synch” is quite common when observing multiple TCP/IP connections
(each connection is a dynamical system) routed through a common tail-drop bottleneck
router. The coupling is provided by the spurt of packet losses and the resulting rate re-
ductions caused when the total transmission rate exceeds the link rate (i.e. the ensemble
average exceeds a threshhold). Each connection suffering a loss reduces its transmission
rate by half thereby synchronizing a number of connections with a relatively low trans-
mission rate. These connections then increase their transmission rates together according
to the rules of TCP (i.e. linearly) until the next spurt of losses. After a while the total
transmission rate looks like the familiar saw-tooth rising up to the link rate and then
falling abruptly with many connections having synchronized transmission rates.

In [1] we studied HTTP connections routed through a bottleneck router tail-drop
router at some popular web site. In contrast to a long lived TCP connection transmitting
a large file, HTTP connections tend to be alternate between busy and silent periods. Once
a connection to a remote web site is established, the user may click on a link which causes
a busy period while a page is transmitted through the bottleneck router. The silent period
follows while the user reads the page. When the user is finished with the page he might
click on another link to restart the busy period.
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The transmission rate of each connection may be described as a dynamical system
which increases linearly until they are reset to zero at random times. We may therefore
describe N stationary dynamical systems which evolve independently as long as the total
transmission rate never exceeds the link rate L. Denote the mean transmission rate of a
stationary HTTP connection by α.

If the link rate is exceeded then there will be a spurt of packet losses and a resulting
synchronization of the transmission rates. Nevertheless it seems intuitive that if we scale
up the link rate so L = CN as N → ∞ and α < C then the average transmission rate
will converge to α. Hence the link rate would not be exceeded. All the connections would
then evolve independently and there will be no packet losses except for rare fluctuations.
We call this the fluid regime and it corresponds to a fixed point for the limiting mean
field system.

On the other hand it is equally intuitive that if α > C then we are back in the saw-
tooth or turbulent regime because on average the link rate will be exceeded resulting in
packet loss and synchronization. We have shown this corresponds to a limit cycle for the
limiting mean field system.

Surprisingly if α is roughly 90% of C both regimes are possible. In other words there is
both a fixed point and a limit cycle for the limiting mean field system. For a finite but large
number of connections this means that there will be rare fluctuations when the system
tunnels between these two regimes. This has the practical effect that the transmission
rate will fluctuate between a high throughput regime where there are no losses and the
sources are independent and a low throughput regime where there are packet losses and
and the sources are synchronized.

In order to understand the basic mechanism behind the the HTTP example and ulti-
mately to calculate the mean time to tunnel between different regimes we have begun to
study a simpler system. We consider a system of N irreducible Markov chains each evolv-
ing on a finite state space. The only way the particles interact is through the common
transition kernel K(µ) that depends on the occupation measure µ of the N particles. We
can find Markov chains whose dynamics are analogous to the different regimes of TCP
and HTTP described above. We show that occupation measure is a Markov chain which
satisfies the conditions of [7] and we use those results to calculate the mean tunneling
time between the different regimes.

2 Model

We consider a finite state space: S = {1, 2, . . . , S}. Let M be the set of all probability
measures on S. We denote by K the mapping that to any µ ∈M associates a stochastic
matrix (Ki,j(µ))(i,j)∈S2 . We define the map F : M→M such that

F (µ) = µK(µ) ⇔ ∀i, F (µ)i =
S∑

l=1

µlKl,i(µ).

We assume throughout that F is continuous for the topology generated by the total
variation norm || · ||. We will consider the associated dynamical system on M:

(D)
{

µt+1 = F (µt),
µ0.

We consider now a system constituted by N interacting particles evolving on the finite
state space S. Denote the N interacting particles by XN (t) = (XN

1 (t), . . . , XN
N (t)). De-

note the corresponding occupation measure by MN
t ∈MN where MN denote occupation
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measures obtainable from N particles:

MN
t (A) =

1
N

N∑

k=1

χ{XN
k (t) ∈ A}.

If at time t, the occupation measure of the system is MN
t then each particle which is in

state i (if any), will jump at time t + 1 independently of everything else in state j with
probability Ki,j(MN

t ). Hence the coupling between the particles only occurs thanks to
MN

t . We just defined a random map GN : MN →MN by GN (MN
t ) = MN

t+1.
Given a probability measure µ ∈M, we define µN ∈MN as follows

∀i ≤ S, N(µ(1) + · · ·+ µ(i)) ≤ N(µN (1) + · · ·+ µN (i)) < N(µ(1) + · · ·+ µ(i)) + 1.(2.1)

With these definitions, we can introduce the random dynamical system on M:

(S)
{

MN
t+1 = GN (MN

t ),
MN

0 = µN
0 .

We are interested in the above defined family of Markov chains MN
t , N > 0, t ≥ 0 on

the space M and its comportment when N →∞. We will take the following notation for
its transition probabilities PN (µ, .), µ ∈MN .

We can see the dynamical system (D) as a degenerated Markov chain with transition
“probabilities” given by:

P∞(µ, dη) = χ{η = F (µ)}.
Proposition 1 For any continuous function f on M, the following limit holds uniformly
in µ ∈M

E[f(MN
1 )|MN

0 = µN ] N→∞−−−−→
∫

M
P∞(µ, dy)f(y) = f(F (µ)). (2.2)

Proof
Since M is compact, we have only to prove (2.2) for a fixed µ ∈M. Consider µ ∈M and
define Y i

k to be i.i.d. in k for i fixed, such that P (Y i
1 = j) = Ki,j(µN ). We have,

GN (µN )(j) =
1
N

∑

i∈S

NµN (i)∑

k=1

11{Y i
k =j}.

Note that E
[
GN (µN )(j)

]
= F (µN )(j) so the variance

∑

j∈S
E

[
(MN

t+1(j)− F (µN )(j))2|MN
t = µN )

]
=

∑

j∈S
E

(
GN (µN )(j)− F (µN )(j)

)2

=
1

N2

∑

i∈S

∑

j∈S
NµN (i)Ki,j(µN )(1−Ki,j(µN ))

≤ 1
N

.

Hence thanks to Chebyshev’s inequality, we have

P
(‖MN

1 − F (µN )‖ > ε|MN
0 = µN

) ≤ E
[‖MN

1 − F (µN )‖2|MN
0 = µN

]

ε2

≤ S

∑
j∈S E

[
(MN

1 (j)− F (µN )(j))2|MN
0 = µN

]

ε2

≤ S

Nε2
.
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Now thanks to the continuity of F , we have, for N sufficiently large, that ‖F (µN ) −
F (µ)‖ < ε/2 so

‖MN
1 − F (µ)‖ ≤ ‖MN

1 − F (µN )‖+ ε/2,

Hence we proved that as N →∞,

P
(‖MN

1 − F (µ)‖ > ε|MN
0 = µN

) → 0.

In other words, if we take B(F (µ), ε) = {η ∈M, ‖η − F (µ)‖ ≤ ε}, we proved that

PN (µN , B(F (µ), ε)c) → P∞(µ, B(F (µ), ε)c) = 0,

and the proposition follows

This convergence implies directly a first result:

Proposition 2 For any compact C ⊂ IR+, we have convergence in distribution (and in
probability) of the process {MN

t }t∈C to the process {µt}t∈C as N →∞.

Proof
First, since the limit is deterministic, convergence in distribution and in probability

are equivalent. Hence we have to show that for any fixed t, MN
t → µt as N →∞ where

the convergence is in distribution.
For t = 0 the result is clear since, we have convergence almost surely. Now assume

that MN
t

D−→ µt. Thanks to the limit (2.2) which is uniform over M, we have for any
continuous function f ,

sup
µ∈M

∣∣E[f(MN
t+1)|MN

t = µN ]− f(F (µ))
∣∣ → 0,

hence thanks to MN
t

D−→ µt, we have as N →∞,

E[f(MN
t+1)] → f(F (µt)) = f(µt+1),

and the proposition follows by induction.

Indeed thanks to Proposition 3.2 of [7], we have that any weak limit as N → ∞ of
invariant measures of Markov chain MN

t is an invariant measure of the Markov chain with
transition P∞(µ, .).

Let mN be a measure on M. It is an invariant measure for the Markov chain MN
t if

∫

M
dmN (µ)PN (µ, Γ) = mN (Γ).

If mNi
w−→ m, then m is an invariant (probability) measure of the map F :

m(F−1Γ) = m(Γ).

Theorem 3.1 of [7] gives the support of such invariant measure.
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3 Examples

We will now construct three examples which mimic the different limiting regimes observed
with TCP and HTTP traffic.

We consider S = {0, 1}. The state 0 represents an off state and 1 represents an on
state. For simplicity, for any µ ∈ M, we will write µ(1) = µ, i.e. the proportion of on’s.
We define the two matrices:

Ka =
(

1/4 3/4
1/2 1/2

)
,

Kb =
(

1 0
2/3 1/3

)
.

Denote the fixed point of Ka by πa = (2/5, 3/5).
We define the mapping K as follows: if µ < C − ε/2, then K(µ) = Ka and if µ >

C + ε/2, then K(µ) = Kb. In the interval (C − ε/2, C + ε/2) we define K as follows in
order to obtain a continuous mapping:

K(µ) =
(C + ε/2− µ)

ε
Ka +

(µ− (C − ε/2)
ε

Kb for C − ε/2 ≤ µ ≤ C + ε/2.

This N particle system is irreducible and has a unique steady state.

• [Fluid HTTP Case] Suppose C > 9/13 then µ0 = (2/5, 3/5) is stationary for the
infinite particle system; i.e. F (µ0) = µ0, µ0(1) < C.

• [Sawtooth Case] Suppose 3/13 < C < 3/5 then if µ0 = (10/13, 3/13) then F (µ0) =
µ1 = (4/13, 9/13) and µ2 = F (µ1) = µ0. In other words we have a limit cycle.

• [Bistable HTTP Case] If 3/5 < C < 9/13 then the initial distribution µ0 = (2/5, 3/5)
is stationary for the infinite particle system; i.e. F (µ0) = µ0, µ0(1) < C. However
if µ0 = (10/13, 3/13) then µ1 = (4/13, 9/13) and µ2 = F (µ1) = µ0. In other words
we also have a limit cycle.

• [Longer cycles] Other more complicated cycles are possible. If 3/37 < C < 9/37 and
µ0 = (10/37, 27/37) then µ1 = (28/37, 9/37), µ2 = (34/37, 3/37) and µ3 = µ0.

4 Large deviation results

It is of some interest to determine the domain of attraction of the above fixed point and
limit cycle and then to determine the mean time the N particle system takes to tunnel from
one domain of attraction to another. Hence we are interested in the asymptotics as N →
∞ of the time spent by the Markov chain in each domain of attraction. These questions
are known in the literature as problems of exit from a domain (Freidlin-Wentzell [6],
Kifer [7]).

Suppose that µ ∈ Kµ∗ , where Kµ∗ is some compact set containing only one attractor
µ∗. Define

τµ,N = inf{n > 0, MN
t /∈ Kµ∗ , MN

0 = µN ∈ Kµ∗}.
The transition probabilities PN (·, dη) is well-defined on MN and we extend it to µ ∈M
by P (µ, dη) = PN (µN , dη). We can apply the results in [7] if we can check (1.1) there.
We do this in the following Lemma whose proof is given in [2].

Proposition 3 For any open set U ⊂M, we have

lim
N→∞

sup
µ∈M

∣∣∣∣
1
N

log PN (µ,U) + inf
η∈U

ρ(µ, η)
∣∣∣∣ = 0,
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where ρ(µ, η) ≥ 0 is a continuous function on M×M given by:

ρ(µ, η) = inf
π=µ,π=η

∑

i,j

π(i, j) log
(

π(i, j)
µ(i)Ki,j(µ)

)
,

and where we denote by π and π the two marginals of the distribution π on S2; i.e.

π(i) =
∑S

j=1 π(i, j) = µ(i),
π(j) =

∑S
i=1 π(i, j) = η(j).

Let AN be a function on MN defined for Ξ = (ξ0, . . . , ξN−1) ∈ MN , ξi ∈ M, i =
0, . . . , N − 1 by the formula

AN (Ξ) =
N−2∑

i=0

ρ(ξi, ξi+1) for N > 1 and A1 = 0.

For any pair of points µ, η ∈M put

B(µ, η) = inf{An(Ξ) : n ≥ 1, Ξ = (ξ0, . . . , ξn−1), ξ0 = µ, ξn−1 = η}.

Set B = infµ/∈Kµ∗ B(µ∗, µ), then if this quantity is finite, we have for any δ > 0,

P
(
exp(N(B − δ)) ≤ τµ,N ≤ exp(N(B + δ))

) N→∞−−−−→ 1.

5 Applications

We can apply the above theorem to our two state example. We will assume the ε used in
the definition of K is so small that we can approximate the domain of attraction of the
fixed point by Da = {µ|4(C − 1/2) < µ(1) < C} (as if ε = 0). To calculate ρ(α, β) for
α, β ∈ Da we must find a matrix

π =
(

α(0) 0
0 α(1)

)(
x 1− x
y 1− y

)

such that α(0)(1− x) + α(1)(1− y) = β(1) which minimizes

V α,β(x, y) = α(0)x log(
x

1/4
) + α(0)(1− x) log(

(1− x)
3/4

)

+α(1)y log(
y

1/2
) + α(1)(1− y) log(

(1− y)
1/2

).

V α,β(x, y) is a convex function with an unconstrained minimum at x = 1/4, y = 1/2.
Using a Lagrange multiplier λ we must find the extremals of

V α,β(x, y)− λ(α(0)x + α(1)y − (1− β(1))).

This yields, 3x
1−x = y

1−y subject to α(0)x + α(1)y = (1− β(1)).
We have found numerically that if πa(1) ≤ α(1) < γ(1) < β(1) or if β(1) < γ(1) <

α(1) ≤ πa(1) then
ρ(α, β) ≤ ρ(α, γ) + ρ(γ, β).

This means the minimization used to define B(α, β) is obtained with n = 1. Hence, under
the above conditions on α and β, B(α, β) = ρ(α, β).
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• [Fluid HTTP Case] There is only one ρ-attractor at πa = (2/5, 3/5). Suppose
we want to calculate the asymptotics of the mean time for the Mt to exceed the
threshold C = 10/13 at which time packets are lost. We apply Theorem 4.2 in [7]
where B = ρ(π, π) and where π = (2/5, 3/5) and π = (3/13, 10/13). Calculation
shows that

π =
(

2/5 0
0 3/5

)(
.125 .875
.301 .699

)

and B = .0689. Define τµ0,N to be the mean time to escape Kπa = {µ : µ(1) ≤ C}
starting from µ0 in the domain of attraction of πa. Then

lim
N→∞

1
N

log Eµ0(τ
µ0,N ) = B.

• [Sawtooth Case] There is no fixed point and one limit cycle. The theory predicts a
convergence to the limit cycle as N →∞.

• [Bistable HTTP Case] If 3/5 < C < 9/13 it is of some interest to calculate the
asymptotics of the mean time to tunnel from near the stationary state πa to the limit
cycle alternating between (10/13, 3/13) and (4/13, 9/13). Suppose C = 8/13 then
the entrance states to the domain of attraction of the limit cycle are u = (5/13, 8/13)
and d = (6/13, 7/13).
Since B(u, β) = 0 we calculate ρ(πa, u) so π = πa and π = u. Calculation shows
that

π =
(

2/5 0
0 3/5

)(
.237 .763
.483 .517

)

and B(πa, u) = ρ(πa, u) = .0005
Since B(d, β) = 0 we calculate ρ(πa, β) so π = πa and π = d. Calculation shows
that

π =
(

2/5 0
0 3/5

)(
.304 .696
.567 .433

)

and B(πa, d) = ρ(πa, d) = .008
If we make this argument rigorous by a series of approximations as ε → 0 we could
conclude

lim
N→∞

1
N

log Eµ0(τ
µ0,N ) = B = 0.008.
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