A taxonomy of finite automata
minimization algorithms”

Bruce W. Watson
Faculty of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

e-mail: watson@win.tue.nl

Tel: +31 40 474319
May 18, 1994

Abstract

This paper presents a taxonomy of finite automata minimization algorithms. Brzozowski’s
elegant minimization algorithm differs from all other known minimization algorithms, and is
derived separately. All of the remaining algorithms depend upon computing an equivalence
relation on states. We define the equivalence relation, the partition that it induces, and its
complement. Additionally, some useful properties are derived. It is shown that the equivalence
relation is the greatest fixed point of an equation, providing a useful characterization of the
required computation. We derive an upperbound on the number of approximation steps
required to compute the fixed point. Algorithms computing the equivalence relation (or
the partition, or its complement) are derived systematically in the same framework. The
algorithms include Hopcroft’s, several algorithms from text-books (including Hopcroft and
Ullman’s [HU79], Wood’s [Wood87], and Aho, Sethi, and Ullman’s [ASU86]), and several new

algorithms or variants of existing algorithms.

*Reprinted with corrections.

CONTENTS 1

Contents
1 Introduction 2
2 An algorithm due to Brzozowski 5
3 Minimization by equivalence of states 6
3.1 Distinguishabilityo 7
3.2 An upperbound on the number of approximationsteps 8
3.3 Characterizing the equivalence classes of £ L. 8
4 Algorithms computing E, D, or [Q]g 9
4.1 Computing D and E by layerwise approximations. 9
4.2 Computing D, E, and [@]g by unordered approximation 10
4.3 More efficiently computing D and E by unordered approximation 10
4.4 An algorithm due to Hopcroft and Ullman 11
4.5 Hopcroft’s algorithm to compute [Q]g efficiently 12
4.6 Computing (p,q) EE .« . . . o 15
4.7 Computing £ by approximation from below 16
5 Conclusions 18
A Some basic definitions 19
Finite automata 20
B.1 Properties of finite automata00 20
B.2 Transformations on finite automata 0oL 23

References 24

1 INTRODUCTION 2

1 Introduction

The minimization of deterministic finite automata is a problem that has been studied since the late
1950’s. Simply stated, the problem is to find the unique (up to isomorphism) minimal determin-
istic finite automaton that accepts the same language as a given deterministic finite automaton.
Algorithms solving this problem are used in applications ranging from compiler construction to
hardware circuit minimization. With such a variety of applications, the number of differing pre-
sentations also grew: most text-books present their own variation, while the algorithm with the
best running time (Hopcroft’s) remains obscure and difficult to understand.

This report presents a taxonomy of finite automata minimization algorithms. The need for a
taxonomy 1s illustrated by the following:

e Most text-book authors claim that their minimization algorithm is directly derived from
those presented by Huffman [Huff54] and Moore [Moorb6]. Unfortunately, most text-books
present vastly differing algorithms (for example, compare [AU92], [ASU86], [HU79], and
[Wood87]), and only the algorithms presented by Aho and Ullman and by Wood are directly
derived from those originally presented in [Huff54, Moor56].

e While most of the algorithms rely on computing an equivalence relation on states, many
of the explanations accompanying the algorithm presentations do not explicitly mention
whether the algorithm computed the equivalence relation, the partition (of states) that it
induces, or its complement.

e Comparison of the algorithms is further hindered by the vastly differing styles of presentation
— sometimes as imperative programs, or as functional programs, but frequently only as a
descriptive paragraph.

A related taxonomy of finite automata construction algorithms appears in [Wats93].

All except one of the algorithms rely on determining the set of automaton states which are
equivalent!. The algorithm that does not make use of equivalent states is discussed in Section 2.
In Section 3 the definition and some properties of equivalence of states is given. Algorithms
that compute equivalent states are presented in Section 4. The main results of the taxonomy
are summarized in the conclusions — Section 5. Appendices A and B give the basic definitions
required for reading this paper. The definitions related to finite automata are taken from [Wats93].
The minimization algorithm relationships are shown in a “family tree” in Figure 1.

The principal computation in most minimization algorithms is the determination of equivalent
(or inequivalent) states — thus yielding an equivalence relation on states. In this paper, we
consider the following minimization algorithms:

e Brzozowski’s (possibly nondeterministic) finite automaton minimization algorithm as pre-
sented in [Brzo62]. This elegant algorithm (Section 2) was originally invented by Brzozowski,
and has since been re-invented without credit to Brzozowski. Given a (possibly nondeter-
ministic) finite automaton without e-transitions, this algorithm produces the minimal deter-
ministic finite automaton accepting the same language.

e Layerwise computation of equivalence as presented in [Wood87, Moor56, Brau88, Urba89].
This algorithm (Algorithm 4.2) is a straightforward implementation suggested by the ap-
proximation sequence arising from the fixed-point definition of equivalence of states.

e Unordered computation of equivalence. This algorithm (Algorithm 4.3, not appearing in the
literature) computes the equivalence relation; pairs of states (for consideration of equivalence)
are chosen 1n an arbitrary order.

e Unordered computation of equivalence classes as presented in [ASU86]. This algorithm
(Algorithm 4.4) is a modification of the above algorithm computing equivalence of states.

1Equivalence of states is defined later.

1 INTRODUCTION 3

® 5 ozowski (§ 2) Equivalence of states (§ 3)

equivalence relation pointwise

(§ 4.1-4.5,4.7)

(§ 4.6)

approx. from above approx. from below

imperative program

(4.10)
® (19
layerwise | unordered state pairs L
memolzation
Hopcroft-Ullman (4.7) L (pg. 16)

Improved

(4.3) (4.5)

eq. classes eq. classes
ASU (4.4) ® (16)
lists

® (ps. 13)

optimized list update

L Hopcroft (4.8)

Figure 1: The family trees of finite automata minimization algorithms. Brzozowski’s minimization
algorithm is unrelated to the others, and appears as a separate (single vertex) tree. Each algorithm
presented in this paper appears as a vertex in this tree. For each algorithm that appears explicitly
in this paper, the construction number appears in parentheses (indicating where it appears in this
paper). For algorithms that do not appear explicitly, a reference to the section or page number
is given. Edges denote a refinement of the solution (and therefore explicit relationships between
algorithms). They are labeled with the name of the refinement.

INTRODUCTION 4

e Improved unordered computation of equivalence. This algorithm (Algorithm 4.5, not ap-
pearing in the literature) also computes the equivalence relation in an arbitrary order. The
algorithm is a minor improvement over the other unordered algorithm.

e Improved unordered computation of equivalence classes. This algorithm (Algorithm 4.6, not
appearing in the literature) is a modification of the above algorithm to compute the equiv-
alence classes of states. This algorithm is used in the derivation of Hopcroft’s minimization
algorithm.

e Hopcroft and Ullman’s algorithm as presented in [HU79]. This algorithm (Algorithm 4.7)
computes the inequivalence (distinguishability) relation. Although it is based upon the
algorithms of Huffman and Moore [Huff54, Moorb6], this algorithm uses some interesting
encoding techniques.

e Hopcroft’s algorithm as presented in [Hopc71, Grie73]. This algorithm (Algorithm 4.8) is the
best known algorithm (in terms of running time analysis) for minimization. As the original
presentation by Hopcroft is difficult to understand, the presentation in this paper i1s based
upon the one given by Gries.

¢ Pointwise computation of equivalence. This algorithm (Algorithm 4.9, not appearing in the
literature) computes the equivalence of a given pair of states. It draws upon some non-
automata related techniques, such as: structural equivalence of types and memoization of
functional programs.

e Computation of equivalence from below (with respect to refinement). This algorithm (Algo-
rithm 4.10, not appearing in the literature) computes the equivalence relation from below.
Unlike any of the other known algorithms, the intermediate result of this algorithm can be
used to construct a smaller (although not minimal) deterministic finite automaton.

2 AN ALGORITHM DUE TO BRZOZOWSKI 5

2 An algorithm due to Brzozowski

Most minimization algorithms are applied to a DFA. In the case of a nondeterministic FA, the
subset construction is applied first, followed by the minimization algorithm. In this section, we
consider the possibility of applying the subset construction (with useless state removal) after an
(as yet unknown) algorithm to yield a minimal DFA. We now construct such an algorithm. (The
algorithm described in this section can also be used to construct the minimal Complete DFA, by
replacing function subsetopt with subset.)

Let My = (Qo, V, Ty, 0, So, Fy) be the e-free FA to be minimized and My = (Q2, V, T2, 0, S2, F2)
be the minimized DFA such that Lpa(My) = Lra(Mz) (and of course Min(Mz) — see Defini-
tion B.19). (For the remainder of this section we make use of Minimal (Property B.21) as opposed
to Min.) Since we apply the subset construction last, we have some intermediate finite automa-
ton My = (Q1,V,T1,0,51, F1) such that Ms = useful, o subsetopt(My). We require that M, is
somehow obtained from My, and that Lra(Ma) = Lpa(My1) = Lra(My).

From the definition of Minimal(Ms) (Property B.21), we require

(Vpg:pEQaNqgEQaAp#q: L(p)# L(q)A Useful(Ms)

For all states ¢ € Q2 we have ¢ € P(Q1) since My = useful o subsetopt(M;). Property B.25 of
the subset construction gives

(Yp:ip€Qe: L) =(Uqg:q€Qurgep: L ()

We need a sufficient condition on M; to ensure Minimal(Ms). The following derivation gives such
a condition:

Minimal(Ms)
= { Definition of Minimal (Property B.21) }

(Vpg:p€EQNGEQa AP q: L(p)# L(q) A Useful(Mz)
= { Property B.25; M2 = useful, o subsetopt(M;) }

Vpg:pEQNGgEQ APpFq: ?(p)ﬁ?(q) =0) A Useful; (My)

= { Definition of Det’ (Property B.18) and Useful,, Useful; (Remark B.13) }
Det' (ME) A Useful ,(M{)

= { Det'(M) < Det(M) }
Det(M{E) A Useful (M)

The required condition on M; can be established by (writing reversal as a prefix function) M; =
R o useful, o subsetopt o R(Mpy).
The complete minimization algorithm (for any e-free My € FA) is

Ms = useful o subsetopt o R o useful o subsetopt o R(My)

This algorithm was originally given by Brzozowski in [Brzo62]. The origin of this algorithm was
obscured when Jan van de Snepscheut presented the algorithm in his Ph.D thesis [vdSn85]. In
this thesis, the algorithm is attributed to a private communication from Prof. Peremans of the
Eindhoven University of Technology. Peremans had originally found the algorithm in an article by
Mirkin [Mirk65]. Although Mirkin does cite a paper by Brzozowski [Brzo64], it is not clear whether
Mirkin’s work was influenced by Brzozowki’s work on minimization. Jan van de Snepscheut’s recent
book [vdSn93] describes the algorithm, but provides neither a history nor citations (other than
his thesis) for this algorithm.

3 MINIMIZATION BY EQUIVALENCE OF STATES 6

3 Minimization by equivalence of states

In this subsection, we restrict ourselves to considering minimization of Complete DFA’s. This
is strictly a notational convenience, as the minimization algorithms can be modified to work
for non-Complete DFA’s. A Complete minimized DFA will (in general) have one more state (a
sink state) than a non-Complete minimized DFA, unless the language of the DFA is V*. Let
M = (Q,V,T,0,5 F) be a Complete DFA; this particular DFA will be used throughout this
section. We also assume that all of the states of M are start-reachable, that is Useful (M). Since
M is deterministic and Complete, we will also take the transition relation to be total function
Te@RxV — Qinstead of T € Q@ x V — P(Q).

In order to minimize the DFA M, we compute an equivalence relation £ C @ x () defined as:

(pa) € E=(L(p) = L ()

Since this 1s an equivalence relation, we are really interested in unordered pairs of states. It is
notationally more convenient to use ordered pairs instead of unordered pairs.

The equivalent states are merged according to equivalence relation £ with the merge transfor-
mation.

Transformation 3.1 (Merging states): For any equivalence relation H such that H C F, the
function merge can be used to reduce the number of states in the DFA?. Function merge is defined
as:

merge((Q, V. T,0,{s}, F), H) = let T"={([plw,a[dn): (p,a,q) €T}
([Q]Ha Va T/a @, {[S]H}a [F]H)

end

The definition of merge is independent of the choice of representatives of the equivalence classes.
Function merge satisfies the property that

Lra(merge(M, H)) = Lpa(M) A |merge(M, H)| < |M| A |merge(M, H)| = {H

and 1t preserves Complete, e-free, Useful, Det, and Minimal; indeed, merge is only defined on
e-free and deterministic FA’s. O

In order to compute relation E, we need a property of function .
— —
Property 3.2 (Function £): Function £ satisfies
— — .
L(p)=Ua:aeV :{a} - L(T(p,a)))UGL (pe€ F) then {e} else § fi)
O

This allows us to give an alternate (but equivalent) characterization of equivalence of states.

Definition 3.3 (Equivalence of states): Equivalence relation F is the greatest (under refine-
ment) fixed point of the equivalence

(pq)eE=(peF=qeF)ANNa:aeV :(T(p,a), T(q,a)) € E)

O

Remark 3.4: The greatest fixed point has the least number of equivalence classes of any such
fixed point. O

Remark 3.5: Any fixed point of the equivalence in Definition 3.3 can be used. In order to
minimize the automaton, the greatest fixed point is desired. O

2When H is the identity relation on states, function merge will not reduce the number of states.

3 MINIMIZATION BY EQUIVALENCE OF STATES 7

Property 3.6 (Approximating E): We can compute this greatest fixed point with successive
approximations. The successive approximations of E are as follows (for k£ > 0):

€=, eErANMa:aeV:(T(p,a), T(q,a)) € Ey)
where Fy is defined by
(pq) EFy=(peE F=q€F)

An equivalent definition of Fy is Ey = (@ \ F')? U F'2. We also have the property that Ey1; C Ey
forall £ > 0. O

Remark 3.7: If Fj is an equivalence relation, then so is Ey41. Fo is an equivalence relation. O

Remark 3.8: An intuitive explanation of Fj 1s useful. A pair of states p, ¢ are said to be k-
equivalent (written (p,q) € Ey) if and only if there is no string w : |w| < k such that w € ?(p) 2

w e ?(q) As a consequence, p and ¢ are k-equivalent if and only if

e they are both final or both non-final, and

o foralla € V, T(p,a) and T(q, a) are (k — 1)-equivalent (by the definitions of £ and 7).
O
Remark 3.9: An important property of F is that it is also the greatest fixed point, under C
(set containment instead of refinement), of the equivalence in Definition 3.3. As the greatest fixed
point, £ can be computed with a C-descending sequence of relations, starting with ¢ x Q. Such
a sequence need not consist only of equivalence relations. There may be more steps in such an
approximating sequence than in the Fj sequence given above. Fortunately, each such step is

usually easier to compute than computing Ey41 from Fj. Some algorithms that compute these
cheaper (but longer) sequences are given in Sections 4.2-4.5 and 4.7. O

All previously known algorithms compute F by successive approximation from above (with
respect to C). A new algorithm in Section 4.7 computes £ by successive approximation from
below. In that section, the practical importance of this is explained.

3.1 Distinguishability

It is also possible to compute E by first computing its complement D = = E. Relation D (called
the distinguishability relation on states) is defined as:

(p.q) €D =(L(p) # L(a))

Definition 3.10 (Distinguishability of states): D is the least (under C, set containment®)
fixed point of an equation

(p,e)eD=(peF#£qeF)V(3a:acV:(T(p,a),T(q,a)) € D)

O

Property 3.11 (Approximating D): As with equivalence relation F, relation D can be com-
puted by successive approximations (for k& > 0)

P €EDy1=p,) €DrV@a:aeV:(T(p,a),T(q,a)) € D)

with Dy = =Ey = (Q\ F) x F)U(F x (Q\ F)). For all £ > 0 we have Dy = = FE). We also have
the property that Diy1 O Dy for k> 0. O

3Here, C denotes normal set containment; refinement does not apply since D is not necessarily an equivalence
relation.

3 MINIMIZATION BY EQUIVALENCE OF STATES 8

Remark 3.12: As with E}, an intuitive explanation of D is useful. A pair of states p,q are
said to be k-distinguished (written (p,q) € Dy) if and only if there is a string w : |w| < k such

that w € ?(p) Zuwe ?(q) As a consequence, p and ¢ are k-distinguished (some authors say
k-distinguishable) if and only if

e one is final and the other i1s non-final, or

o there exists a € V such that T(p,a) and T(q, a) are (k — 1)-distinguished.

O

3.2 An upperbound on the number of approximation steps

We can easily place an upperbound on the number of steps in the computation of E.
Let E; be the greatest fixed point of the equation defining £. We have the sequence of
approximations (where I is the identity relation on states):

E¢DE{D---DE; DI

The indices of some of the equivalence relations in the approximation sequence are known: 1o =

|Q| and §Fy < 2. We can deduce that:
§E0 <fE1 < <{E; <flo = |Q|

In the case that §Fy = 0, we have that Fy is the greatest fixed point. In the case that §£; = 1,
either all states are final states, or all states are non-final ones; in both cases Ej is the greatest
fixed point. In the case that §£; = 2, we have i + 2 < {E;. Since j 4+ 2 < HE; < flg = |Q]| we get
J < |@] — 2. This gives an upperbound of (|Q] — 2) max 0 steps for the computation (starting at
Ey) of the greatest fixed point E; (using the approximating sequence given in Property 3.6).

A consequence of this upperbound is that £ = E(g|—2ymaxo- As we shall see later, this
can lead to some efficiency improvements to algorithms computing E. This result is also noted
by Wood [Wood87, Lemma 2.4.1]. This upperbound also holds for computing D and [Q]g by
approximation.

3.3 Characterizing the equivalence classes of ¥

It is also practical to compute [@]g: the set of equivalence classes of E. In order to characterize
partition [Q]g, we begin our derivation with Definition 3.3, the characterization of F as the largest
equivalence relation (under C) such that
Vpqg:(pQ)eE:(peF=qeF)ANa:aeV :(T(p,a),T(g,a)) € E))

{ Definition of membership in E; move a to outer quantification }
(Vpga:(pg) EENaEV:(peEF=q€F)A[T(p,a)le=[T(g,0)lE)
= {Introduce equivalence classes Qq, Q1 explicitly }

(VQo,Q1,a:Q€QeANQiLE[QIENaeV :
(VP q:pEQuAGEQo: (PEF =g €F)A(T(p,a) € QL=T(g,a) € Q1))

Definition 3.13 (Function Splittable): In order to make this quantification more concise, we

define
Splittable(Qo,Q1,a) = (A p, ¢ pEQuANqGE Qo : (T(p,a) e Q1 EZT(q,a) € Q1))

O
Using Splittable, [Q]g is the largest partition (under C) such that [Q]g C [Q]g, and
(V Qo,Q1,a:Q0 €[QleAQ1 € [Qlp Aa €V i ~Splittable(Qo, Q1,a))

This characterization will be used in the computation of [Q]g.

4 ALGORITHMS COMPUTING E, D, OR [Qlg 9

4 Algorithms computing E, D, or [Q]g

In this section, we consider several algorithms that compute D, E| or [Q]g. Some of the algorithms
are presented in general terms: computing D and E. Since only one of D or F is needed (and not
both), such a general algorithm would be modified for practical use to compute only one of the
two.

4.1 Computing D and F by layerwise approximations

The definition of Fj 41 in terms of E}, (and likewise for D) leads naturally to the following algorithm
computing D and £ (where variable k is a ghost variable, used only for specifying the invariant)

Algorithm 4.1:

G,H = DQ,E();

God, Hoa, k :=10,0Q x Q,0;

{invariant: G = Dy A H = B}

do G # Gog —
{G#Gaua NH # Hoa}
Goa, Horg =G, H;
G=Upq: (0,9 €CGuaV(Ta:aeV :(T(p,a),T(g,a)) € Gora) : {(p,)});
H=Upq¢:(pyg) €EHuyag AN a:a €V :(T(p,a),T(qg,a)) € Huq) : {(p,q)});
(G =1}
ki=k+1

od{G=DAH=E}

This algorithm is said to compute DD and E layerwise, since it computes the sequences Dy and
E%. The update of G and H in the repetition can be made with another repetition as shown in
the program now following.

Algorithm 4.2 (Layerwise computation of D and E):

G,H = DQ,E();
God, Hoa, k :=10,0Q x Q,0;
{invariant: G = Dy A H = B}
do G # Gog —
{G#Gaua NH # Hoa}
Goa, Horg =G, H;
for (p,q) : (p,q) € Hoia do
f(Fa:acV:(T(p,a),T(g,a)) € Gua) — G, H:=GU{(p,¢)}, H\ {(p,9)}
l(Va:acV : (T(pa),T(q,a)) € Huq) — skip
fi
rof;
(G =)
ki=k+1
od{G=DAH=E}

The algorithm can be split into two: one computing only D, and the other computing only E.

The algorithm computing only E is essentially the algorithm presented by Wood in [Wood87, pg.

132]. According to Wood, it is based on the work of Moore [Moor56]. Its running times is O(|Q|?).

Brauer uses some encoding techniques to provide an @(]Q|?) version of this algorithm in [Brau88],

while Urbanek improves upon the space requirements of Brauer’s version in [Urba89]. None of

these variants i1s given here. The algorithm computing only D does not appear in the literature.
With a little effort this algorithm can be modified to compute [Q]g.

4 ALGORITHMS COMPUTING E, D, OR [Qlg 10

4.2 Computing D, I, and [(]r by unordered approximation

Instead of computing each Ej (computing F layerwise), we can compute F by considering pairs
of states in an arbitrary order (as outlined in Remark 3.9). This is done in the following algorithm
(which also computes D):

Algorithm 4.3:

G, H := Dy, Fy;

{invariant: G = =-H A G C D}

do (3Ip,q,a:a €V A(p,q) € H:(T(p,a),T(q,a)) € G) —
let pg:(p,g) e HAFa:acV :(T(p,a), T(q,a)) €q);
{p,9) € D}

G, H = GU{p,)}, H\{(r,9)}
od{G=DAH=FE}

This algorithm can be split into one computing only D, and one computing only E. At the end
of each iteration step, it may be that H is not an equivalence relation (that is, H # H*) —
see Remark 3.9. A slight modification to this algorithm can be made by adding the following
assignment before the od:

H:=(MAXcJ:JCHAJ=J:J);G:=-H

Addition of this assignment makes the algorithm compute the refinement sequence Ej (see Re-

mark 3.9). This assignment may improve the running time of the algorithm if a cheap method of

computing the quantified MAX is used. This algorithm does not appear in the literature.
When we convert the above algorithm to compute [@Q]g, the resulting algorithm is the following

one, given by Aho, Sethi, and Ullman in [ASU86, Alg. 3.6]:

Algorithm 4.4:

P= [Q]an
{invariant: [Q]g C P C [Q]g, }
do (3 Qo,Q1,a: Qo € PAQL € PAaeV : Splittable(Qo, Q1,a)) —
let Qo, Q1,a: Splittable(Qo, @1, a);
b ={p:p€QuAT(p,a) € Q};
{=Splittable(Qo \ @, Q1,a) A ~Splittable(Qf, Q1,a)}
Pi=P\{Qo} U{Qo\ Qp, Qu}

od
{(¥Y Qo0,Q1,a:Qo EPAQL EPANacV :=Splittable(Qo, Q1,a))}
P =1[Qlr}

This algorithm has running time O(|Q]?).

4.3 More efficiently computing D and F by unordered approximation

We present another algorithm that considers pairs of states in an arbitrary order. This algorithm
(which also computes D) consists of two nested repetitions:

4 ALGORITHMS COMPUTING E, D, OR [Qlg 11

Algorithm 4.5:

G,H = DQ,E();
{invariant: G = -H A G C D}
do (3Ip,q,a:a €V A(p,q) € H:(T(p,a),T(q,a)) € G) —
let pa:peQNraceVARq:(pg €H:(T(pa),T(qa))eG);
for ¢ : (p,q) € HAN(T(p,a),T(¢q,a)) € G do
G H:=GU{(p,o)}, H\{(p,9)}
rof

od{G=DAH=FE}

As with Algorithm 4.3, at the end of each outer iteration step, it may be that H # H™. This
can be solved with an assignment to H as can be done in Algorithm 4.3. This algorithm does not
appear in the literature. It can also be modified to compute only D or only £.

Modifying the above algorithm to compute [@]g is particularly interesting; the modified algo-
rithm will be used in Section 4.5 to derive an algorithm (by Hopcroft) which is the best known
algorithm for FA minimization. The algorithm is (where variable P4 is used only for the invari-
ant):

Algorithm 4.6:

P= [Q]an
{imvariant. [Q]p C P C [@ls,)
do (3 Qr,a: Q1 E€PAaeV (T Qo: Qo€ P: Splittable(Qo, @1, a))) —
let Q1,a:(3 Qo : Qo € P: Splittable(Qo, @1, a));
Pog = P;
{invariant: [Q]g E P C Poq}
for Qo : Qu € Pog A Splittable(Qo, Q1,a) do
Qo ={p:p€EQoNT(p,a)€Qi};
P =P\ {Qo} U{Qu\ Qp, @t}
rof

(V Qo : Qo € P :—Splittable(Qo, @1, a))}
od
{(VQr,a:QreEPAaeV (¥ Qo: Qo€ P:Splittable(Qo, Q1,0a)))}
1P =1Qle}

The inner repetition “splits” each eligible equivalence class @y with respect to pair (@1, a). (In
actuality, some particular Q¢ will not be split by (Q1, a) if =Splittable(Qo, @1, a).)

4.4 An algorithm due to Hopcroft and Ullman

From the definition of D, we see that a pair (p,q) is in D if and only if p € F' # ¢ € F or there
is some a € V such that (T(p,a),T(q,a)) € D. This forms that basis of the algorithm considered
in this subsection. With each pair of states (p, ¢) we associate a set of pairs of states L(p, q) such
that

(r,5) € L(p,q) = ((p,q) € D = (r,5) € D)

For each pair (p, ¢) (such that (p,q) € Dy — p and ¢ are not already known to be distinguished)
we do the following:

o If there is an a € V such that we know that (T'(p, a), T(q,a)) € D then (p,q) € D. We add
(p, q) to our approximation of D, along with L(p, ¢), and for each (r,s) € L(p, ¢) add L(r, s),
and for each (¢, u) € L(r,s) add L(t, u), etc.

4 ALGORITHMS COMPUTING E, D, OR [Qlg 12

o If there is no a € V such that T'((p,a),T(¢,a)) € D is known to be true, then for all b € V
we put (p, q) in the set L(T(p,b),T(g,b)) since (T'(p,b),T(q,b)) € D = (p,q) € D. If later it
turns out that for some b € V., (T'(p, b), T(q, b)) € D, then we will also put L(T'(p, b), T(q, b))
(including (p, q)) in D.

In our presentation of the algorithm, the invariants given are not sufficient to prove the correctness
of the algorithm, but are used to illustrate the method in which the algorithm works. The algorithm
is:

Algorithm 4.7:

for (p,q): (p,q) € (@ x Q) do
L(p,q) =0

rof;
G = Do;
{invariant: G C DAV p,q:(p,q) € Do: (VY r,s:(r,s) € L(p,q): (p,g) €D = (r,s) €D)) }
for (p,q) : (p,q) € Do do
if(Ja:acV:(T(pa),T(qa)eCG) —
A, B = {(p, 1)}, 0;
{invariant: ACDABCGAANB=0
NAUB = (Up,q:(p.q) € B:L(p,q))}
do A#0—
let (r,5) : (r,5) € 4;
G:=GU {(7“, 5)}5
A, B = A\ {(r,s)},BU{(r,5)};
A:=AU(L(r,s)\ B)
od
l(Va:acV : (T(pa),T(q,a)dCG) —
for ae V :T(p,a)# T(q,a) do
{(T(p,a),T(q,a)) € D = (p,q) € D}
) L(T(p,a), T(q,a)) == L(T(p,a),T(q,a)) U{(p,q)}
fi
rof{G = D}

This algorithm has running time Q(]@|?) and is given by Hopcroft and Ullman [HU79, Fig. 3.8].
In [HU79] it is attributed to Huffman [Huff54] and Moore [Moor56]. In their description, Hopcroft
and Ullman describe L as mapping each pair of states to a list of pairs of states. The list data-type
1s not required here, and a set is used instead.

It is possible to modify the above algorithm to compute E. Such an algorithm does not appear
in the literature.

4.5 Hopcroft’s algorithm to compute [(Q)]; efficiently

We now derive an efficient algorithm due to Hopcroft [Hopc71]. This algorithm has also been
derived by Gries [Grie73]. This algorithm presently has the best known running time analysis of
all DFA minimization algorithms.

We begin with Algorithm 4.6. Recall that the inner repetition “splits” each equivalence class
Qo with respect to pair (Q1,a). An observation (due to Hopcroft) is that once all equivalence
classes have been split with respect to a particular (@1, @), no equivalence classes need to be split
with respect to the same (@1, @) on any subsequent iteration step of the outer repetition [Hopc71,
pp. 190-191], [Grie73, Lemma 5]. The observation is simple to prove: the equivalence classes
never grown in size, and we need only prove that (for all equivalence classes Q)

- Splittable(Q, Q1,a) = (VY Qb : Qfy C Q : ~Splittable(Q, Q1, a))

4 ALGORITHMS COMPUTING E, D, OR [Qlg 13

We can use this fact to maintain a set L of such (equivalence class, alphabet symbol) pairs. We
will then split the equivalence classes with respect to elements of L. In the original presentations
of this algorithm [Hopc71, Grie73], L is a list. As this is not necessary, we retain L’s type as a set.

P = [Qle.;
L:=PxV,;
{invariant: [Qle C PC [Qlg, AL C (P x V)
ALD{(Q1,a): (Q1,a) € (PXxV)A(I Qo: Qo € P: Splittable(Qo, Q1,a))}
AN Qo,RQ1,a: Qo € QA(Q1,a) € L : —Splittable(Qo, Q1,a)) = (P = [Qlr)}
doL#0—
let Q1,a:(Q1,a) € L;
Pog = P;
L= 1\ (@10
{invariant: [Q]g E P C Poq}
for Qo : Qu € Pog A Splittable(Qo, Q1,a) do
Qo ={p:p€QoAT(p,a)€Q};
PU= P\ Qo) U1@0\ @ Q))
forb: b€V do
i (Qo,b) € L — L= L\ {(Qo, b))} UL(Qh), (Qo\ @ b))
[(Qo.b) & L — L= LU{(@,1),(Qs\ Qh.0))
fi
rof
rof

{(V Qo : Qo € P:—Splittable(Qo, @1, a))}
od{P = [Q]r}

The innermost update of L is intentionally clumsy and will be used to arrive at the algorithm
given by Hopcroft and Gries. In the update of set L, if (Qo,b) € L (for some b € V) and Qg has
been split into Qg \ @} and @ then (Qo, b) is replaced (in L) by (Qo \ @},) and (QFf, b).
Another observation due to Hopcroft is that splitting an equivalence class with respect to any
two of (Qo, d), (Qf,), and (Qo \ Qf, b) is the same as splitting the equivalence class with respect
to all three [Hopc71, pp. 190-191], [Grie73, Lemma 6]. This is shown in the following intermezzo.

We only prove that: if an equivalence class @ has been split with respect to (Qo,b) and (Q4,b), then
it need not be split with respect to (Qo\ @g,b). The two remaining cases can be proven analogously.

- Splittable(Q, Qo, b) A —Splittable(Q, Qf, b)
{De Morgan }
—(Splittable(Q, Qo, b) V Splittable(Q, Qb, b))
{ Definition of Splittable }
~((3p.q:pg€Q:T(pb) € Qo #T(g,b) € Qo)
VEpa:pa€Q:T(pb) € Qo ZT(g,b) €Qp))
{ Combine existential quantifiers }
=3 p,q:p,q€Q:(T(p,b) € Qo ZT(g,b) € Qo) v (T(p,b) € Qy # T(q,b) € Qp))
= {Qo CQo}
=(3p,q:p,q €Q:T(p,b) € Qo \ Qb ZT(g,b) € Qo \ Qf)
= { Definition of Splittable }
- Splittable(Q, Qo \ Qb, b)

The two remaining cases can be proven analogously.

4 ALGORITHMS COMPUTING E, D, OR [Qlg 14

For efficiency reasons we therefore choose the smallest two of the three (comparing |Qol, |Q5], and
|Qo\ Q%) in the update of set L. If (Qo, b) & L, then splitting has already been done with respect
to (Qo, b) and we add either (Qf,0) or (Qo \ @), b) (whichever is smallest) to L. On the other
hand, if (Qo, b) € L, then splitting has not yet been done and we remove (Qg, b) from L and add
(Qp,) and (Qo \ @), b) instead.

Lastly, we observe that by starting with P = [@Q]g, = {@ \ I, F'} we have already split Q. As
a result, we need only split with respect to either (Q \ F,b) or (F,b) (for all b € V) [HopcT71, pp.
190-191], [Grie73, Lemma 7].

This gives the algorithm*:

Algorithm 4.8 (Hopcroft):

P= [Q]an
L:=0Gf (|F| <@\ F|) then {F} else {Q\ F'} fi) x V;
{invariant: [Qle C PC [Qlg, AL C (P x V)
AV Qo,Q1,a: Qo € QAN (Q1,a) € L : ~Splittable(Qo, Q1,a)) = (P = [Qlr)}
doL#0—
let Qlaa : (Qlaa) € La
Pog = P;
L=\ (@)
{invariant: [Q]g E P C Poq}
for Qo : Qu € Pog A Splittable(Qo, Q1,a) do
Qo ={p:p€EQoNT(pa)€Qi};
P=P\{Qo} U{Qo\ Qo Qo};
forb: b€V do
if (Qo,b) € L — L := L\ {(Qo, b)} U{(Q0,), (Qo \ @0,)}
I] (Qoab) ¢ L —
L:=LU(if (|Q| < |Qo\ Qo) then {(Q,0)} else {(Qo\ @5,)} fi)
fi
rof
rof

{(V Qo : Qo € P:—Splittable(Qo, @1, a))}
od{P = [Q]e}

Unfortunately, the running time analysis of this algorithm is complicated and is not discussed

here. Tt is shown by both Hopcroft and Gries that it is O(|Q]log|@)|), [Grie73, HopeT1].

4Part of the invariant has been omitted, being rather complicated to derive.

4 ALGORITHMS COMPUTING E, D, OR [Qlg 15

4.6 Computing (p,q) € F

From the problem of deciding the structural equivalence of two types, it is known that equivalence
of two states can be computed recursively by turning the fixed point definition of £ into a functional
program. If the (unmodified) definition were to be used directly as a functional program, there is
the possibility of non-termination. In order for the functional program to work, it takes a third
parameter along with the two states.

The following program, similar to the one presented in [t-Ei91], computes relation E pointwise;
an invocation equiv(p, ¢,) determines whether states p and ¢ are equivalent. It assumes that two
states are equivalent (by placing the pair of states in S, the third parameter) until shown otherwise.

function equiv(p, ¢, S) is
if {p,q} €5 — eq:= true
[{p.a} &5 —
eq:=(peF=qeF);
. eq:=eqAN(Va:aeV:equiv(T(pa),T(¢g,a),SU{{p,q}}))
return eq

The V quantification can be implemented using a repetition

function equiv(p, ¢, S) is
if {p,q} €5 — eq:= true
eq:=(peF=qeF);
fora:a eV do
eq = eq A equiv(T(p,a),T(q,a), SU{{p,q}})
rof
fi;
return eq

The correctness of this program is shown in [t-Ei91]. Naturally, the guard eq can be used in
the repetition (to terminate the repetition when eq = false) in a practical implementation. This
optimization 1s omitted here for clarity.

There are a number of methods for making this program more efficient. From Section 3.2
recall that ' = F(|g|—2)maxo- We add a parameter k to function equiv such that an invocation
equiv(p, q,0, k) returns (p, ¢) € Fy, as its result. The recursion depth is bounded by (|@|—2) max 0.
The new function is

function equiv(p, ¢, S, k) 1is
ithk=0—eq:=(peF=qeF)
[k£Z0A{p,q} €S — eq:= true
[k#0A{p,qt ¢S —
eq:=(peF=qeF);
fora:a eV do
eq := eq A equiv(T(p,a), T(q,a), SU{{p,q}} k- 1)
rof
fi;
return eq

4 ALGORITHMS COMPUTING E, D, OR [Qlg 16

The third parameter S' is made a global variable, improving the efficiency of this algorithm in
practice. As a result, equiv is no longer a functional program in the sense that it now makes use
of a global variable. The correctness of this transformation is shown in [t-Ei91]. We assume that
S is initialized to . When S = §, an invocation equiv(p, ¢, (|Q| — 2) max 0) returns (p, q) € F;
after such an invocation S = §.

Algorithm 4.9 (Pointwise computation of F):

function equiv(p,q, k) is

ifk=0—ecq:=(pEF=q€EF)
[k#0A{p,q} €5 — eq = true
[k#0A{p.at ¢S —

e =(peF=qel)

S:=SU{{p atk;

for a:a €V do

eq :=eq A\ equiv(T(p, a);T(Qaa)ak_ 1)

rof;
S=5\{{r,¢}}
fi;
return eq

The procedure equiv can be memoized to further improve the running time in practice.
This algorithm does not appear in the literature.

4.7 Computing F by approximation from below

This latest version of function equiv can be used to compute E and D (assuming I is the identity
relation on states, and S is the global variable used in Algorithm 4.9):

Algorithm 4.10 (Computing F from below):

S, G, H =100, Io;

{invariant: (GUH) C(Q xQANGCDANHCUE}

do (GUH) £ Q % Q —
let p,g:(p,q) € (@ x Q)\ (GU H));
if equiv(p, ¢, (|Q| — 2)max0) — H := HU{(p,¢)}
| —equiv(p, ¢, (|Q] — 2) max 0) — G := G U {(p,q)}
fi

od{G=DAH=E}

Further efficiency improvements can be made as follows:
e We change the initialization of G to G := ((Q\ F) x F)U(F x (Q\ F)).

e We make use of the fact that £ = E*; obviously E is symmetrical, halving the required
amount of computation. H can be updated at each iteration step by H := H* (provided the
data-structures in the implementation are such that x-closure is easily implemented).

o Make use of the facts that

)¢ F = (Vrs:reQAseq
ANFw:weV* T (r,u)=pAT*(s,w) =q): ((r,s) & E)
(p,g)EE = (NVw:weV*:(T*(p,w),T*(q,w)) € E)

The first (respectively second) implication states that if p, ¢ are two distinguished (respec-
tively equivalent) states, and r, s are two states such that there is w € V* and T'(r,w) =
p AT(s,w) = ¢ (respectively T'(p,w) = r A T(q,w) = s), then r s are also distinguished
(respectively equivalent).

4 ALGORITHMS COMPUTING E, D, OR [Qlg 17

This algorithm has worse running time than the O(|Q|log |Q|) of Hopcroft’s algorithm [Hopc71,
Grie73]. This algorithm has a significant advantage over all of the known algorithms: although
function equiv computes F pointwise from above (with respect to C, refinement), the main program
computes E from below (with respect to C, normal set inclusion®). As such, any intermediate
result 7 in the computation of F is usable in (at least partially) reducing the size of an automaton;
all of the other algorithms presented have unusable intermediate results. This property has use in
reducing the size of automata when the running time of the minimization algorithm is restricted
for some reason (for example, in real-time applications).

5This is set inclusion, as opposed to refinement, since the intermediate result H may not be an equivalence
relation during the computation.

5 CONCLUSIONS 18

5 Conclusions

The conclusions about minimization algorithms are:

e A derivation of Brzozowski’s minimization algorithm was presented. This derivation proved
to be easier to understand than either the original derivation (by Brzozowski), or the deriva-
tion given by van de Snepscheut. A brief history of the minimization algorithm was presented,
hopefully resolving some misattributions of its discovery.

e The definition of equivalence (relation F) and distinguishability (relation D) as fixed points
of certain equations proved easier to understand than many text-book presentations.

e The fixed point characterization of E' made it particularly easy to calculate an upperbound
on the number of approximation steps required to compute E (or D). This upperbound
later proved useful in determining the running time of some of the algorithms, and also in
making efficiency improvements to the pointwise algorithm.

e The definition of E as a greatest fixed point helped to identify the fact that all of the
(previously) known algorithm computed E from above (with respect to refinement). As
such, all of these algorithms have intermediate results that are not usable in minimizing the
finite automaton.

o We successfully presented all of the well-known text-book algorithms in the same frame-
work. Most of them were shown to be essentially the same, with minor differences in their
loop structures. One exception was Hopcroft and Ullman’s algorithm [HU79], which has a
distinctly different loop structure. The presentation of that algorithm (with invariants) in
this paper is arguably easier to understand than the original presentation. Our presentation
highlights the fact that the main data-structure in the algorithm need not be a list — a set
suffices.

e Hopcroft’s minimization algorithm [Hopc71] was originally presented in a style that is not
very understandable. As with Gries’s paper [Grie73], we strive to derive this algorithm
in a clear and precise manner. The presentation in this paper highlights two important
facts: the beginning point for the derivation of this algorithm is one of the easily understood
straightforward algorithms; and, the use of a list data-structure in both Hopcroft’s and
Gries’s presentation of this algorithm is not necessary — a set can be used instead.

e This paper presented several new minimization algorithms, many of which were variations
on the well-known algorithms. Two of the new algorithms (presented in Sections 4.6 and
4.7) are not derived from any of the well-known algorithms, and are significant in their own
right.

— An algorithm was presented that computes the relation £ in a pointwise manner. This
algorithm was refined from an algorithm used to determine the structural equivalence
of types. Several techniques played important roles in the refinement:

* the upperbound on the number of steps required to compute E was used to improve
the algorithm by limiting the number of pairs of states that need to be considered
in computing E pointwise;

* memoization of the functional-program portion of the algorithm was used to reduce
the amount of redundant computation.

— A new algorithm was presented, that computes F from below. This algorithm makes
use of the pointwise computation of £ to construct and refine an approximation of
E. Since the computation i1s from below, the intermediate results of this algorithm
are usable in (at least partially) reducing the size of the DFA. This can be useful in
applications where the amount of time available for minimization of the DFA is limited
(as in real-time applications). In contrast, all of the (previously) known algorithms
have unusable intermediate results.

A SOME BASIC DEFINITIONS 19

A Some basic definitions

Convention A.1 (Powerset): For any set A we use P(A4) to denote the set of all subsets of A.
P(A) is called the powerset of A; it is sometimes written 24. O

Convention A.2 (Sets of functions): For sets A and B, A — B denotes the set of all total
functions from A to B, while A—/~ B denotes the set of all partial functions from A to B. O

Remark A.3: For sets A, B and relation C' C A x B we can interpret C' as a function ' € A —
P(B). O

Convention A.4 (Tuple projection): For an n-tuple ¢t = (21, 22,...,2,) we use the notation
mi(t) (1 < i< n)to denote tuple element z;; we use the notation #;(¢) (1 <7 < n) to denote the
(n — 1)-tuple (#1,...,2i_1, %41, ...25). Both # and 7 extend naturally to sets of tuples. O

Convention A.5 (Relation composition): Given sets A, B, C' (not necessarily different) and
two relations, £ C A x B and F' C B x C, we define relation composition (infix operator o) as:

FEolF ={(a,e):(3b:beB:(a,b)ec EA(bye) € F)}
O

Convention A.6 (Equivalence classes of an equivalence relation): For any equivalence
relation E on set A we denote the set of equivalence classes of E by [A]g; that is

[Ale = {lde - a € A}
Set [A]g is also called the partition of A induced by E. D

Definition A.7 (Index of an equivalence class): For equivalence relation E on set A, define

f1F = |[A]g|. tF is called the index of F. O
Definition A.8 (Alphabet): An alphabel is a non-empty set of finite size. O

Definition A.9 (Refinement of an equivalence relation): For equivalence relations E and
E' (onset A), E is a refinement of E' if and only if £ C E/. D

Definition A.10 (Refinement (C) relation on partitions): For equivalence relations F and
E' (on set A), [A]g is said to be a refinement of [A]g (written [A]g C [A]g/) if and only if £ C E.
An equivalent statement is that [A]g C [A]g: if and only if every equivalence class (of A) under
F is entirely contained in some equivalence class (of A) under E'. O

Definition A.11 (Tuple and relation reversal): For an n-tuple (21, 22, ..., zy,) define reversal
as (postfix and superscript) function R:

R

(1,22, .., 20)" = (Xn, ..., T2, 21)

Given a set A of tuples, we define A® = {z®: 2z € A}. O

B FINITE AUTOMATA 20

B Finite automata

In this section we define finite automata, some of their properties, and some transformations on
finite automata. Most of these definitions are taken directly from [Wats93].

Definition B.1 (Finite automaton): A finite automaton (an FA) is a 6-tuple (Q, V, T, E, S, F)
where

e () is a finite set of states,

e V is an alphabet,

TeP(Q xV x Q) is a transition relation,

FE € P(Q x Q) is an e-transition relation
e 5 C (@ 1s a set of start states, and
e F1C (@ 1s a set of final states.

The definitions of an alphabet and function P are in Definition A.8 and Convention A.l respec-
tively. O

Remark B.2: We will take some liberty in our interpretation of the signatures of the transition
relations. For example, we also use the signatures T € V — P(Q x Q), T € @ x @ — P(V),
TeRxV —PQR),TeQ —PV xQ),and F € Q — P(Q). In each case, the order of the
Q’s from left to right will be preserved; for example, the function T € @ — P(V x Q) is defined
as T'(p) = {(a,q) : (p,a,q) € T}. The signature that is used will be clear from the context. See
Remark A.3. The definition of — appears in Convention A.2. O

Since we only consider finite automata in this paper, we will frequently simply use the term
automata.

B.1 Properties of finite automata

In this subsection we define some properties of finite automata. To make these definitions more con-
cise, we introduce particular finite automata M = (Q,V, T, E, S, F), My = (Qo, Vo, Tv, Ev, Su, Fu),
a'nd Ml = (Qla Vla Tla Ela Sla Fl)

Definition B.3 (Size of an FA): Define the size of an FA as |M|=|Q]. O

Definition B.4 (Isomorphism (=) of FA’s): We define isomorphism (%) as an equivalence
relation on FA’s. My and M, are isomorphic (written My =2 M) if and only if V; = V4 and there
exists a bijection ¢ € Qg — 1 such that

o T = {(9(p), @, 9(q)) : (p,a,q) € T},
o E1 ={(9(p),9(q) : (p,q) € Eo},

o S ={g(s):s €5y}, and

o I ={g(f): f € Fo}.

O

Definition B.5 (Extending the transition relation 7'): We extend transition relation 7' €

V—P@QxQ)toT" € V" — P(Q x Q) as follows:
T (e) = F*

B FINITE AUTOMATA 21

and (for a € V,w € V*)
T (aw) = E* o T(a) o T"(w)

Operator o (composition) is defined in Convention A.5. This definition could also have been
presented symmetrically. O

Remark B.6: We also sometimes use the signature 7% € Q x Q@ — P(V*). O

Definition B.7 (Left and right languages): The left language of a state (in M) is given by
function £ y € Q — P(V*), where

—
Lu(lg)=Us:s€S5:T(s,q))

The right language of a state (in M) is given by function ?M € Q — P(V*), where
- *
Lu(@)=Uf:feF T(qf))

The subscript M is usually dropped when no ambiguity can arise. O

Definition B.8 (Language of an FA): The language of a finite automaton (with alphabet V)
is given by the function Lpy € FA — P(V™) defined as:

LraM)=(Us,f:seSAfeF T(sf))

O

Definition B.9 (Complete): A Complete finite automaton is one satisfying the following:
Complete(M)=(V q,a:q€QANa€V :T(q,a)#0)

O

Definition B.10 (e-free): Automaton M is e-free if and only if E = §. O

Definition B.11 (Start-useful automaton): A Useful, finite automaton is defined as follows:

Useful (M) = (¥ q:q €Q: L (q) # 0)

O

Definition B.12 (Final-useful automaton): A Useful; finite automaton is defined as:

Useful (M) = (V q:q€Q: ?(q) #0)

O

Remark B.13: Useful, and Useful; are closely related by FA reversal (to be presented in Trans-
formation B.22). For all M € FA we have Useful;(M) = Useful (M%), O

Definition B.14 (Useful automaton): A Useful finite automaton is one with only reachable
states:

Useful(M) = Useful (M) N Useful (M)

O

Property B.15 (Deterministic finite automaton): A finite automaton M is deterministic if
and only 1f

B FINITE AUTOMATA 22

e it does not have multiple start states,
e it 1s e-free, and
e transition function 7' € @ x V — P(Q) does not map pairs in ¢ x V' to multiple states.
Formally,
Det(M)=(|S| < 1Aefree(EYANNY qa:q€QNaeV :|T(g,a)] <1))
O

Definition B.16 (Deterministic FA’s): DFA denotes the set of all deterministic finite au-
tomata. We call FA\ DFA the set of nondeterministic finite automata. O

Convention B.17 (Transition function of a DFA): For (Q,V,T,0,S, F) € DFA we can con-
sider the transition function to have signature T € @ x V—— Q. (A definition of -~ appears in
Convention A.2.) The transition function is total if and only if the DFA is Complete. D

Property B.18 (Weakly deterministic automaton): Some authors use a definition of a
deterministic automaton that is weaker than Det; it uses left languages and is defined as follows:

Det!(M)=(V qo0,q1: 90 €EQANQ EQANqo # q1: f(qo)ﬂf(ql) =0)
Det(M) = Det’ (M) is easily proved. O
Definition B.19 (Minimality of a DFA): An M € DFA is minimal as follows:
Min(M)= (N M': M € DFANLpa(M) = Lra(M') : [M| < |M'])

Predicate Min is defined only on DFA’s. Some definitions are simpler if we define a minimal, but
still Complete, DFA as follows:

Minc(M)= (Y M': M' € DFA A Complete(M'Y AN Lpa(M) = Lpa(M') : | M| < |[M'])
Predicate Min¢ is defined only on Complete DFA’s. O

Property B.20 (Minimality of a DFA): An M, such that Min(M), is the unique (modulo

~

=) minimal DFA, due to the Myhill-Nerode theorem. Introductory presentations of the theorem
appear in [HUT9, Wats93]. O

Property B.21 (An alternate definition of minimality of a DFA): For the purposes of
minimizing a DFA, we use the definition (defined only on DFA’s):

L. — —
Minimal(Q,V,T,0,5,F) = (Vqo,q1:0€QAN01 €QANq# q1: L(q0) # L(q1))
A Useful(Q,V,T,0,5, F)
We have the property that (for all M € DFA) Minimal(M) = Min(M). Tt is easy to prove that

Min(M) = Minimal(M). The reverse direction follows from the Myhill-Nerode theorem.
A similar definition that relates to Min¢ is (also defined only on DFA’s):

Minimalc(Q,V,T,0,5,F) = (Vqu,q1: 0 €ERANQEQNw £ q1: ?(qo) + ?(ql))
A Useful (Q,V,T,0,5,F)
We have the property that (for all M € DFA such that Complete(M)) Minimalc (M) = Minc(M).

The contrapositive of Minc (M) = Minimalc(M) is easily proved, and the reverse direction also
follows from the Myhill-Nerode theorem. O

B FINITE AUTOMATA 23

B.2 Transformations on finite automata

Transformation B.22 (FA reversal): FA reversal is given by postfix (superscript) function
R e FA — FA, defined as:
(Q.V,T,E,S,) =(Q,V,T? E® F,S)
Function R satisfies
(V M : M € FA: (Lra(M))F = Lpa(MT)).
O

Transformation B.23 (Removing start state unreachable states): Transformation useful, €
FA — FA removes those states that are not start-reachable:

useful ((Q,V,T,E,S,F) = let U = SReachable(Q,V,T,E,S F)
in
UV, TNUxVxU),ENU xU),SNU, FNU)
end
Function useful, satisfies
(VM : M e FA : Useful (useful ,(M)) A Lra(useful (M)) = Lpa(M))
O

Transformation B.24 (Subset construction): The function subsel transforms an ¢-free FA
into a DFA (in the let clause 7" € P(Q) x V — P(P(Q)))
subset(Q,V,T,0,5,F) = let T'(U,a)={(Uq:q€U :T(q,a))}
Fr={U:UeP@QANUNF#0}
in
(P(Q),V,T",0,{S}, F")
end

In addition to the obvious property that (for all M € FA) Lpa(subset(M)) = Lpa(M), function
subset satisfies

(VM : M € FANe-free(M) : Det(subset(M)) A Complete(subset(M)))

It is also known as the “powerset” construction. O

Property B.25 (Subset construction): Let My = (Qo, V, To, 0, So, Fo) and M = subset(My)
be finite automata. By the subset construction, the state set of M; is P(Qp). We have the
following property:

Vp:pePQo): Lan(p)=(Uq:q€p: L ()
O

Definition B.26 (Optimized subset construction): The function subsetopt transforms an
e-free FA into a DFA. This function is an optimized version of subset.
subsetopt(Q,V,T,0,S,F) = let T'(Ua)={(Uq:qeU:T(q,a))}
Q' =P@)\{0}
Fr={U:UeP@QAUNF #£0}
in
(@ V., T"N(Q xV xQ),0,{}, ')
end
In addition to the property that (for all M € FA) Lpa(subsetopt(M)) = Lpa(M), function
subsetopt satisfies

(VM : M € FANe-free(M) : Det(subsetopt(M)))

REFERENCES 24

References

[ASU86] Ano, A.V., R. SETHI, AND J.D. ULLMAN. Compilers: Principles, Techniques, and
Tools, Addison-Wesley Publishing Co., Reading, M.A., 1988.

[AU92] AHo, AV. AND J.D. ULLMAN. Foundations of Computer Science, Computer Science
Press, New York, N.Y. 1992.

[Brau88] BRAUER, W. “On minimizing finite automata,” EATCS Bulletin 35, June 1988.

[Brzo62] Brzozowskl, J.A. “Canonical regular expressions and minimal state graphs for def-
inite events,” in Mathematical theory of Automata, Vol. 12 of MRI Symposia Series,
pp- 529-561, Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y., 1962.

[Brzo64] BRzoZOWsKI, J.A. “Derivatives of regular expressions,” J. ACM 11(4): 481-494,
1964.

[Dijk76] DuksTRA, E.W. A discipline of programming, Prentice-Hall Inc., N.J., 1976.

[t-Ei91] TEN EIKELDER, H.M.M. “Some algorithms to decide the equivalence of recursive
types,” Computing Science Note 91/31, Eindhoven University of Technology, The
Netherlands, 1991.

[Grie73] GRIES, D. “Describing an algorithm by Hopcroft,” Acta Inf. 2: 97-109, 1973.
[HU79] HopcrorT, J.E. AND J.D. ULLMAN. Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley Publishing Co., Reading, M.A., 1979.

[Hope71l] HopcrorT, J.E. “An nlogn algorithm for minimizing the states in a finite automa-
ton,” in The Theory of Machines and Computations (Z. Kohavi, ed.), pp. 189-196,
Academic Press, New York, 1971.

[Huff54] HurrMAN, D.A. “The synthesis of sequential switching circuits,” J. Franklin Institute,
257(3): 161-190 and 257(4): 275-303, 1954.

[Mirk65] MIRKIN, B.G. “On dual automata,” Kibernetika 2(1): 7-10, 1966.

[Moorb6] Moork, E.F. “Gedanken-experiments on sequential machines,” in Automata Stud-
ies, (C.E.Shannon and J. McCarthy, eds.), pp. 129-153, Princeton University Press,
Princeton, N.J., 1956.

[Myhi57] MyHILL, J. “Finite automata and the representation of events,” WADD TR-57-624,
pp- 112-137, Wright Patterson AFB, Ohio, 1957.

[Nerob8] NERODE, A. “Linear automaton transformations,” Proc. AMS 9: 541-544, 1958.

[RS59] RABIN, M.O AND D. ScoTT. “Finite automata and their decision problems,” IBM
J. Res. 3(2): 115-125, 1959.

[vdSn85] vAN DE SNEPSCHEUT, J.L.A. “Trace theory and VLSI design,” PhD Thesis, Faculty
of Mathematics and Computing Science, Eindhoven University of Technology, The
Netherlands, 1985. Also available as Lecture Notes in Computer Science 200, Springer-
Verlag, Berlin, 1985.

[vdSn93] vAN DE SNEPSCHEUT, J.L.A. What computing is all aboul, Springer-Verlag, New
York, N.Y., 1993.

[Urba89] URBANEK, F. “On minimizing finite automata,” EATCS Bulletin 39, Oct. 1989.

[Wats93] Warson, B.W. “A taxonomy of finite automata constructions,” Computing Science

[Wood87]

Note 93/43, Eindhoven University of Technology, The Netherlands, 1993.
Woob, D. Theory of Computation, Harper & Row, Publishers; New York, N.Y., 1987.

