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Abstract

This paper presents a taxonomy of �nite automata minimization algorithms� Brzozowski�s
elegant minimization algorithm di�ers from all other known minimization algorithms� and is
derived separately� All of the remaining algorithms depend upon computing an equivalence
relation on states� We de�ne the equivalence relation� the partition that it induces� and its
complement� Additionally� some useful properties are derived� It is shown that the equivalence
relation is the greatest �xed point of an equation� providing a useful characterization of the
required computation� We derive an upperbound on the number of approximation steps
required to compute the �xed point� Algorithms computing the equivalence relation �or
the partition� or its complement� are derived systematically in the same framework� The
algorithms include Hopcroft�s� several algorithms from text�books �including Hopcroft and
Ullman�s 	HU
��� Wood�s 	Wood
�� and Aho� Sethi� and Ullman�s 	ASU���� and several new
algorithms or variants of existing algorithms�
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� Introduction

The minimization of deterministic �nite automata is a problem that has been studied since the late
�
���s� Simply stated� the problem is to �nd the unique �up to isomorphism� minimal determin�
istic �nite automaton that accepts the same language as a given deterministic �nite automaton�
Algorithms solving this problem are used in applications ranging from compiler construction to
hardware circuit minimization� With such a variety of applications� the number of di�ering pre�
sentations also grew� most text�books present their own variation� while the algorithm with the
best running time �Hopcroft�s� remains obscure and dicult to understand�

This report presents a taxonomy of �nite automata minimization algorithms� The need for a
taxonomy is illustrated by the following�

� Most text�book authors claim that their minimization algorithm is directly derived from
those presented by Hu�man �Hu��	� and Moore �Moor���� Unfortunately� most text�books
present vastly di�ering algorithms �for example� compare �AU
��� �ASU���� �HU�
�� and
�Wood����� and only the algorithms presented by Aho and Ullman and by Wood are directly
derived from those originally presented in �Hu��	� Moor����

� While most of the algorithms rely on computing an equivalence relation on states� many
of the explanations accompanying the algorithm presentations do not explicitly mention
whether the algorithm computed the equivalence relation� the partition �of states� that it
induces� or its complement�

� Comparison of the algorithms is further hindered by the vastly di�ering styles of presentation
� sometimes as imperative programs� or as functional programs� but frequently only as a
descriptive paragraph�

A related taxonomy of �nite automata construction algorithms appears in �Wats
���
All except one of the algorithms rely on determining the set of automaton states which are

equivalent�� The algorithm that does not make use of equivalent states is discussed in Section ��
In Section � the de�nition and some properties of equivalence of states is given� Algorithms
that compute equivalent states are presented in Section 	� The main results of the taxonomy
are summarized in the conclusions � Section �� Appendices A and B give the basic de�nitions
required for reading this paper� The de�nitions related to �nite automata are taken from �Wats
���
The minimization algorithm relationships are shown in a �family tree� in Figure ��

The principal computation in most minimization algorithms is the determination of equivalent
�or inequivalent� states � thus yielding an equivalence relation on states� In this paper� we
consider the following minimization algorithms�

� Brzozowski�s �possibly nondeterministic� �nite automaton minimization algorithm as pre�
sented in �Brzo���� This elegant algorithm �Section �� was originally invented by Brzozowski�
and has since been re�invented without credit to Brzozowski� Given a �possibly nondeter�
ministic� �nite automaton without ��transitions� this algorithm produces the minimal deter�
ministic �nite automaton accepting the same language�

� Layerwise computation of equivalence as presented in �Wood��� Moor��� Brau��� Urba�
��
This algorithm �Algorithm 	��� is a straightforward implementation suggested by the ap�
proximation sequence arising from the �xed�point de�nition of equivalence of states�

� Unordered computation of equivalence� This algorithm �Algorithm 	��� not appearing in the
literature� computes the equivalence relation� pairs of states �for consideration of equivalence�
are chosen in an arbitrary order�

� Unordered computation of equivalence classes as presented in �ASU���� This algorithm
�Algorithm 	�	� is a modi�cation of the above algorithm computing equivalence of states�

�Equivalence of states is de�ned later�
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Figure �� The family trees of �nite automata minimization algorithms� Brzozowski�s minimization
algorithm is unrelated to the others� and appears as a separate �single vertex� tree� Each algorithm
presented in this paper appears as a vertex in this tree� For each algorithm that appears explicitly
in this paper� the construction number appears in parentheses �indicating where it appears in this
paper�� For algorithms that do not appear explicitly� a reference to the section or page number
is given� Edges denote a re�nement of the solution �and therefore explicit relationships between
algorithms�� They are labeled with the name of the re�nement�
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� Improved unordered computation of equivalence� This algorithm �Algorithm 	��� not ap�
pearing in the literature� also computes the equivalence relation in an arbitrary order� The
algorithm is a minor improvement over the other unordered algorithm�

� Improved unordered computation of equivalence classes� This algorithm �Algorithm 	��� not
appearing in the literature� is a modi�cation of the above algorithm to compute the equiv�
alence classes of states� This algorithm is used in the derivation of Hopcroft�s minimization
algorithm�

� Hopcroft and Ullman�s algorithm as presented in �HU�
�� This algorithm �Algorithm 	���
computes the inequivalence �distinguishability� relation� Although it is based upon the
algorithms of Hu�man and Moore �Hu��	� Moor���� this algorithm uses some interesting
encoding techniques�

� Hopcroft�s algorithm as presented in �Hopc��� Grie���� This algorithm �Algorithm 	��� is the
best known algorithm �in terms of running time analysis� for minimization� As the original
presentation by Hopcroft is dicult to understand� the presentation in this paper is based
upon the one given by Gries�

� Pointwise computation of equivalence� This algorithm �Algorithm 	�
� not appearing in the
literature� computes the equivalence of a given pair of states� It draws upon some non�
automata related techniques� such as� structural equivalence of types and memoization of
functional programs�

� Computation of equivalence from below �with respect to re�nement�� This algorithm �Algo�
rithm 	���� not appearing in the literature� computes the equivalence relation from below�
Unlike any of the other known algorithms� the intermediate result of this algorithm can be
used to construct a smaller �although not minimal� deterministic �nite automaton�
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� An algorithm due to Brzozowski

Most minimization algorithms are applied to a DFA� In the case of a nondeterministic FA� the
subset construction is applied �rst� followed by the minimization algorithm� In this section� we
consider the possibility of applying the subset construction �with useless state removal� after an
�as yet unknown� algorithm to yield a minimal DFA� We now construct such an algorithm� �The
algorithm described in this section can also be used to construct the minimal Complete DFA� by
replacing function subsetopt with subset ��

Let M� � �Q�� V� T�� �� S�� F�� be the ��free FA to be minimized and M� � �Q�� V� T�� �� S�� F��
be the minimized DFA such that LFA�M�� � LFA�M�� �and of course Min�M�� � see De�ni�
tion B��
�� �For the remainder of this section we make use of Minimal �Property B���� as opposed
to Min�� Since we apply the subset construction last� we have some intermediate �nite automa�
ton M� � �Q�� V� T�� �� S�� F�� such that M� � usefuls � subsetopt �M��� We require that M� is
somehow obtained from M�� and that LFA�M�� � LFA�M�� � LFA�M���

From the de�nition of Minimal�M�� �Property B����� we require

�� p� q � p � Q� � q � Q� � p �� q �
�	
L �p� ��

�	
L �q�� �Useful�M��

For all states q � Q� we have q � P�Q�� since M� � usefuls � subsetopt �M��� Property B��� of
the subset construction gives

�� p � p � Q� �
�	
L �p� � �
 q � q � Q� � q � p �

�	
L �q���

We need a sucient condition on M� to ensure Minimal�M��� The following derivation gives such
a condition�

Minimal�M��

� fDe�nition of Minimal �Property B���� g

�� p� q � p � Q� � q � Q� � p �� q �
�	
L �p� ��

�	
L �q�� �Useful�M��

� fProperty B���� M� � usefuls � subsetopt�M�� g

�� p� q � p � Q� � q � Q� � p �� q �
�	
L �p� 

�	
L �q� � �� �Usefulf �M��

� fDe�nition of Det � �Property B���� and Usefuls� Usefulf �Remark B����g

Det ��MR
� � �Usefuls�M

R
� �

� fDet ��M �� Det�M � g

Det�MR
� � �Usefuls�M

R
� �

The required condition on M� can be established by �writing reversal as a pre�x function� M� �
R � usefuls � subsetopt �R�M���

The complete minimization algorithm �for any ��free M� � FA� is

M� � usefuls � subsetopt �R � usefuls � subsetopt �R�M��

This algorithm was originally given by Brzozowski in �Brzo���� The origin of this algorithm was
obscured when Jan van de Snepscheut presented the algorithm in his Ph�D thesis �vdSn���� In
this thesis� the algorithm is attributed to a private communication from Prof� Peremans of the
Eindhoven University of Technology� Peremans had originally found the algorithm in an article by
Mirkin �Mirk���� Although Mirkin does cite a paper by Brzozowski �Brzo�	�� it is not clear whether
Mirkin�s work was in�uenced by Brzozowki�s work on minimization� Jan van de Snepscheut�s recent
book �vdSn
�� describes the algorithm� but provides neither a history nor citations �other than
his thesis� for this algorithm�



� MINIMIZATION BY EQUIVALENCE OF STATES �

� Minimization by equivalence of states

In this subsection� we restrict ourselves to considering minimization of Complete DFA�s� This
is strictly a notational convenience� as the minimization algorithms can be modi�ed to work
for non�Complete DFA�s� A Complete minimized DFA will �in general� have one more state �a
sink state� than a non�Complete minimized DFA� unless the language of the DFA is V �� Let
M � �Q� V� T� �� S� F � be a Complete DFA� this particular DFA will be used throughout this
section� We also assume that all of the states of M are start�reachable� that is Usefuls�M �� Since
M is deterministic and Complete� we will also take the transition relation to be total function
T � Q� V �	 Q instead of T � Q� V �	 P�Q��

In order to minimize the DFA M � we compute an equivalence relation E � Q�Q de�ned as�

�p� q� � E � �
�	
L �p� �

�	
L �q��

Since this is an equivalence relation� we are really interested in unordered pairs of states� It is
notationally more convenient to use ordered pairs instead of unordered pairs�

The equivalent states are merged according to equivalence relation E with the merge transfor�
mation�

Transformation ��� Merging states�� For any equivalence relation H such that H � E� the
function merge can be used to reduce the number of states in the DFA�� Function merge is de�ned
as�

merge��Q� V� T� �� fsg� F ��H� � let T � � f��p�H � a� �q�H� � �p� a� q� � Tg
in

��Q�H � V� T �� �� f�s�Hg� �F �H�
end

The de�nition of merge is independent of the choice of representatives of the equivalence classes�
Function merge satis�es the property that

LFA�merge�M�H�� � LFA�M � � jmerge�M�H�j � jM j � jmerge�M�H�j � �H

and it preserves Complete� ��free� Useful � Det � and Minimal � indeed� merge is only de�ned on
��free and deterministic FA�s� �

In order to compute relation E� we need a property of function
�	
L �

Property ��� Function
�	
L �� Function

�	
L satis�es

�	
L �p� � �
 a � a � V � fag �

�	
L �T �p� a��� 
 �if �p � F � then f�g else � 
�

�

This allows us to give an alternate �but equivalent� characterization of equivalence of states�

De
nition ��� Equivalence of states�� Equivalence relation E is the greatest �under re�ne�
ment� �xed point of the equivalence

�p� q� � E � �p � F � q � F � � �� a � a � V � �T �p� a�� T �q� a�� � E�

�

Remark ���� The greatest �xed point has the least number of equivalence classes of any such
�xed point� �

Remark ���� Any �xed point of the equivalence in De�nition ��� can be used� In order to
minimize the automaton� the greatest �xed point is desired� �

�When H is the identity relation on states� function merge will not reduce the number of states�
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Property ��� Approximating E�� We can compute this greatest �xed point with successive
approximations� The successive approximations of E are as follows �for k � ���

�p� q� � Ek�� � �p� q� � Ek � �� a � a � V � �T �p� a�� T �q� a�� � Ek�

where E� is de�ned by

�p� q� � E� � �p � F � q � F �

An equivalent de�nition of E� is E� � �Q nF �� 
F �� We also have the property that Ek�� � Ek
for all k � �� �

Remark ���� If Ek is an equivalence relation� then so is Ek��� E� is an equivalence relation� �

Remark ��	� An intuitive explanation of Ek is useful� A pair of states p� q are said to be k�

equivalent �written �p� q� � Ek� if and only if there is no string w � jwj � k such that w �
�	
L �p� ��

w �
�	
L �q�� As a consequence� p and q are k�equivalent if and only if

� they are both �nal or both non��nal� and

� for all a � V � T �p� a� and T �q� a� are �k � ���equivalent �by the de�nitions of
�	
L and T ���

�

Remark ���� An important property of E is that it is also the greatest �xed point� under �
�set containment instead of re�nement�� of the equivalence in De�nition ���� As the greatest �xed
point� E can be computed with a ��descending sequence of relations� starting with Q�Q� Such
a sequence need not consist only of equivalence relations� There may be more steps in such an
approximating sequence than in the Ek sequence given above� Fortunately� each such step is
usually easier to compute than computing Ek�� from Ek� Some algorithms that compute these
cheaper �but longer� sequences are given in Sections 	���	�� and 	��� �

All previously known algorithms compute E by successive approximation from above �with
respect to ��� A new algorithm in Section 	�� computes E by successive approximation from
below� In that section� the practical importance of this is explained�

��� Distinguishability

It is also possible to compute E by �rst computing its complement D � �E� Relation D �called
the distinguishability relation on states� is de�ned as�

�p� q� � D � �
�	
L �p� ��

�	
L �q��

De
nition ���� Distinguishability of states�� D is the least �under �� set containment��
�xed point of an equation

�p� q� � D � �p � F �� q � F � � �� a � a � V � �T �p� a�� T �q� a�� � D�

�

Property ���� Approximating D�� As with equivalence relation E� relation D can be com�
puted by successive approximations �for k � ��

�p� q� � Dk�� � �p� q� � Dk � �� a � a � V � �T �p� a�� T �q� a�� � Dk�

with D� � �E� � ��Q n F �� F �
 �F � �Q nF ��� For all k � � we have Dk � �Ek� We also have
the property that Dk�� � Dk for k � �� �

�Here� � denotes normal set containment� re�nement does not apply since D is not necessarily an equivalence
relation�
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Remark ����� As with Ek� an intuitive explanation of Dk is useful� A pair of states p� q are
said to be k�distinguished �written �p� q� � Dk� if and only if there is a string w � jwj � k such

that w �
�	
L �p� �� w �

�	
L �q�� As a consequence� p and q are k�distinguished �some authors say

k�distinguishable� if and only if

� one is �nal and the other is non��nal� or

� there exists a � V such that T �p� a� and T �q� a� are �k � ���distinguished�

�

��� An upperbound on the number of approximation steps

We can easily place an upperbound on the number of steps in the computation of E�
Let Ej be the greatest �xed point of the equation de�ning E� We have the sequence of

approximations �where IQ is the identity relation on states��

E� � E� � � � � � Ej � IQ

The indices of some of the equivalence relations in the approximation sequence are known� �IQ �
jQj and �E� � �� We can deduce that�

�E� � �E� � � � � � �Ej � �IQ � jQj

In the case that �E� � �� we have that E� is the greatest �xed point� In the case that �E� � ��
either all states are �nal states� or all states are non��nal ones� in both cases E� is the greatest
�xed point� In the case that �E� � �� we have i� � � �Ei� Since j � � � �Ej � �IQ � jQj we get
j � jQj � �� This gives an upperbound of �jQj � ��max � steps for the computation �starting at
E�� of the greatest �xed point Ej �using the approximating sequence given in Property �����

A consequence of this upperbound is that E � E�jQj���max �� As we shall see later� this
can lead to some eciency improvements to algorithms computing E� This result is also noted
by Wood �Wood��� Lemma ��	���� This upperbound also holds for computing D and �Q�E by
approximation�

��� Characterizing the equivalence classes of E

It is also practical to compute �Q�E� the set of equivalence classes of E� In order to characterize
partition �Q�E� we begin our derivation with De�nition ���� the characterization of E as the largest
equivalence relation �under �� such that

�� p� q � �p� q� � E � �p � F � q � F � � �� a � a � V � �T �p� a�� T �q� a�� � E��

� fDe�nition of membership in E� move a to outer quanti�cationg

�� p� q� a � �p� q� � E � a � V � �p � F � q � F � � �T �p� a��E � �T �q� a��E�

� f Introduce equivalence classes Q�� Q� explicitlyg

�� Q�� Q�� a � Q� � �Q�E �Q� � �Q�E � a � V �

�� p� q � p � Q� � q � Q� � �p � F � q � F � � �T �p� a� � Q� � T �q� a� � Q����

De
nition ���� Function Splittable�� In order to make this quanti�cation more concise� we
de�ne

Splittable�Q�� Q�� a� � �� p� q � p � Q� � q � Q� � �T �p� a� � Q� �� T �q� a� � Q����

�

Using Splittable� �Q�E is the largest partition �under v� such that �Q�E v �Q�E�
and

�� Q�� Q�� a � Q� � �Q�E �Q� � �Q�E � a � V � �Splittable�Q�� Q�� a��

This characterization will be used in the computation of �Q�E�
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� Algorithms computing E� D� or �Q�E

In this section� we consider several algorithms that computeD� E� or �Q�E� Some of the algorithms
are presented in general terms� computing D and E� Since only one of D or E is needed �and not
both�� such a general algorithm would be modi�ed for practical use to compute only one of the
two�

��� Computing D and E by layerwise approximations

The de�nition ofEk�� in terms ofEk �and likewise forD� leads naturally to the following algorithm
computing D and E �where variable k is a ghost variable� used only for specifying the invariant�

Algorithm ����

G�H �� D�� E��
Gold�Hold� k �� �� Q�Q� ��
finvariant� G � Dk �H � Ekg
do G �� Gold �	

fG �� Gold �H �� Holdg
Gold�Hold �� G�H�
G �� �
 p� q � �p� q� � Gold � �� a � a � V � �T �p� a�� T �q� a�� � Gold� � f�p� q�g��
H �� �
 p� q � �p� q� � Hold � �� a � a � V � �T �p� a�� T �q� a�� � Hold� � f�p� q�g��
fG � �Hg
k �� k � �

odfG � D �H � Eg

This algorithm is said to compute D and E layerwise� since it computes the sequences Dk and
Ek� The update of G and H in the repetition can be made with another repetition as shown in
the program now following�

Algorithm ��� Layerwise computation of D and E��

G�H �� D�� E��
Gold�Hold� k �� �� Q�Q� ��
finvariant� G � Dk �H � Ekg
do G �� Gold �	

fG �� Gold �H �� Holdg
Gold�Hold �� G�H�
for �p� q� � �p� q� � Hold do

if �� a � a � V � �T �p� a�� T �q� a�� � Gold� �	 G�H �� G
 f�p� q�g�H n f�p� q�g
�� �� a � a � V � �T �p� a�� T �q� a�� � Hold� �	 skip



rof�
fG � �Hg
k �� k � �

odfG � D �H � Eg

The algorithm can be split into two� one computing only D� and the other computing only E�
The algorithm computing only E is essentially the algorithm presented by Wood in �Wood��� pg�
����� According to Wood� it is based on the work of Moore �Moor���� Its running times is O�jQj���
Brauer uses some encoding techniques to provide an O�jQj�� version of this algorithm in �Brau����
while Urbanek improves upon the space requirements of Brauer�s version in �Urba�
�� None of
these variants is given here� The algorithm computing only D does not appear in the literature�

With a little e�ort this algorithm can be modi�ed to compute �Q�E�
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��� Computing D� E� and �Q�E by unordered approximation

Instead of computing each Ek �computing E layerwise�� we can compute E by considering pairs
of states in an arbitrary order �as outlined in Remark ��
�� This is done in the following algorithm
�which also computes D��

Algorithm ����

G�H �� D�� E��
finvariant� G � �H �G � Dg
do �� p� q� a � a � V � �p� q� � H � �T �p� a�� T �q� a�� � G� �	

let p� q � �p� q� � H � �� a � a � V � �T �p� a�� T �q� a�� � G��
f�p� q� � Dg
G�H �� G 
 f�p� q�g�H n f�p� q�g

odfG � D �H � Eg

This algorithm can be split into one computing only D� and one computing only E� At the end
of each iteration step� it may be that H is not an equivalence relation �that is� H �� H�� �
see Remark ��
� A slight modi�cation to this algorithm can be made by adding the following
assignment before the od�

H �� �MAX� J � J � H � J � J� � J��G �� �H

Addition of this assignment makes the algorithm compute the re�nement sequence Ek �see Re�
mark ��
�� This assignment may improve the running time of the algorithm if a cheap method of
computing the quanti�ed MAX is used� This algorithm does not appear in the literature�

When we convert the above algorithm to compute �Q�E� the resulting algorithm is the following
one� given by Aho� Sethi� and Ullman in �ASU��� Alg� �����

Algorithm ����

P �� �Q�E�
�

finvariant� �Q�E v P v �Q�E�
g

do �� Q�� Q�� a � Q� � P �Q� � P � a � V � Splittable�Q�� Q�� a�� �	
let Q�� Q�� a � Splittable�Q�� Q�� a��
Q�
� �� fp � p � Q� � T �p� a� � Q�g�

f�Splittable�Q� nQ�
�� Q�� a� � �Splittable�Q�

�� Q�� a�g
P �� P n fQ�g 
 fQ� nQ�

�� Q
�
�g

od
f�� Q�� Q�� a � Q� � P �Q� � P � a � V � �Splittable�Q�� Q�� a��g
fP � �Q�Eg

This algorithm has running time O�jQj���

��� More e�ciently computing D and E by unordered approximation

We present another algorithm that considers pairs of states in an arbitrary order� This algorithm
�which also computes D� consists of two nested repetitions�
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Algorithm ����

G�H �� D�� E��
finvariant� G � �H �G � Dg
do �� p� q� a � a � V � �p� q� � H � �T �p� a�� T �q� a�� � G� �	

let p� a � p � Q � a � V � �� q � �p� q� � H � �T �p� a�� T �q� a�� � G��
for q � �p� q� � H � �T �p� a�� T �q� a�� � G do

G�H �� G 
 f�p� q�g�H n f�p� q�g
rof

odfG � D �H � Eg

As with Algorithm 	��� at the end of each outer iteration step� it may be that H �� H�� This
can be solved with an assignment to H as can be done in Algorithm 	��� This algorithm does not
appear in the literature� It can also be modi�ed to compute only D or only E�

Modifying the above algorithm to compute �Q�E is particularly interesting� the modi�ed algo�
rithm will be used in Section 	�� to derive an algorithm �by Hopcroft� which is the best known
algorithm for FA minimization� The algorithm is �where variable Pold is used only for the invari�
ant��

Algorithm ����

P �� �Q�E�
�

finvariant� �Q�E v P v �Q�E�
g

do �� Q�� a � Q� � P � a � V � �� Q� � Q� � P � Splittable�Q�� Q�� a��� �	
let Q�� a � �� Q� � Q� � P � Splittable�Q�� Q�� a���
Pold �� P �
finvariant� �Q�E v P v Poldg
for Q� � Q� � Pold � Splittable�Q�� Q�� a� do

Q�
� �� fp � p � Q� � T �p� a� � Q�g�

P �� P n fQ�g 
 fQ� nQ
�
�� Q

�
�g

rof
�� Q� � Q� � P � �Splittable�Q�� Q�� a��g

od
f�� Q�� a � Q� � P � a � V � �� Q� � Q� � P � �Splittable�Q�� Q�� a���g
fP � �Q�Eg

The inner repetition �splits� each eligible equivalence class Q� with respect to pair �Q�� a�� �In
actuality� some particular Q� will not be split by �Q�� a� if �Splittable�Q�� Q�� a���

��� An algorithm due to Hopcroft and Ullman

From the de�nition of D� we see that a pair �p� q� is in D if and only if p � F �� q � F or there
is some a � V such that �T �p� a�� T �q� a�� � D� This forms that basis of the algorithm considered
in this subsection� With each pair of states �p� q� we associate a set of pairs of states L�p� q� such
that

�r� s� � L�p� q�� ��p� q� � D � �r� s� � D�

For each pair �p� q� �such that �p� q� �� D� � p and q are not already known to be distinguished�
we do the following�

� If there is an a � V such that we know that �T �p� a�� T �q� a�� � D then �p� q� � D� We add
�p� q� to our approximation of D� along with L�p� q�� and for each �r� s� � L�p� q� add L�r� s��
and for each �t� u� � L�r� s� add L�t� u�� etc�
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� If there is no a � V such that T ��p� a�� T �q� a�� � D is known to be true� then for all b � V

we put �p� q� in the set L�T �p� b�� T �q� b�� since �T �p� b�� T �q� b�� � D � �p� q� � D� If later it
turns out that for some b � V � �T �p� b�� T �q� b�� � D� then we will also put L�T �p� b�� T �q� b��
�including �p� q�� in D�

In our presentation of the algorithm� the invariants given are not sucient to prove the correctness
of the algorithm� but are used to illustrate the method in which the algorithmworks� The algorithm
is�

Algorithm ����

for �p� q� � �p� q� � �Q�Q� do
L�p� q� �� �

rof�
G �� D��
finvariant� G � D � �� p� q � �p� q� �� D� � �� r� s � �r� s� � L�p� q� � �p� q� � D � �r� s� � D�� g
for �p� q� � �p� q� �� D� do

if �� a � a � V � �T �p� a�� T �q� a�� � G� �	
A�B �� f�p� q�g� ��
finvariant� A � D �B � G �A B � �

�A 
B � �
 p� q � �p� q� � B � L�p� q��g
do A �� � �	

let �r� s� � �r� s� � A�
G �� G 
 f�r� s�g�
A�B �� A n f�r� s�g� B 
 f�r� s�g�
A �� A 
 �L�r� s� nB�

od
�� �� a � a � V � �T �p� a�� T �q� a�� �� G� �	

for a � V � T �p� a� �� T �q� a� do
f�T �p� a�� T �q� a�� � D � �p� q� � Dg
L�T �p� a�� T �q� a�� �� L�T �p� a�� T �q� a��
 f�p� q�g

rof



roffG � Dg

This algorithm has running time O�jQj�� and is given by Hopcroft and Ullman �HU�
� Fig� �����
In �HU�
� it is attributed to Hu�man �Hu��	� and Moore �Moor���� In their description� Hopcroft
and Ullman describe L as mapping each pair of states to a list of pairs of states� The list data�type
is not required here� and a set is used instead�

It is possible to modify the above algorithm to compute E� Such an algorithm does not appear
in the literature�

��� Hopcroft	s algorithm to compute �Q�E e�ciently

We now derive an ecient algorithm due to Hopcroft �Hopc���� This algorithm has also been
derived by Gries �Grie���� This algorithm presently has the best known running time analysis of
all DFA minimization algorithms�

We begin with Algorithm 	��� Recall that the inner repetition �splits� each equivalence class
Q� with respect to pair �Q�� a�� An observation �due to Hopcroft� is that once all equivalence
classes have been split with respect to a particular �Q�� a�� no equivalence classes need to be split
with respect to the same �Q�� a� on any subsequent iteration step of the outer repetition �Hopc���
pp� �
���
��� �Grie��� Lemma ��� The observation is simple to prove� the equivalence classes
never grown in size� and we need only prove that �for all equivalence classes �Q��

�Splittable� �Q�Q�� a�� �� Q�
� � Q

�
� � �Q � �Splittable� �Q�Q�� a��
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We can use this fact to maintain a set L of such �equivalence class� alphabet symbol� pairs� We
will then split the equivalence classes with respect to elements of L� In the original presentations
of this algorithm �Hopc��� Grie���� L is a list� As this is not necessary� we retain L�s type as a set�

P �� �Q�E�
�

L �� P � V �
finvariant� �Q�E v P v �Q�E�

� L � �P � V �
� L � f�Q�� a� � �Q�� a� � �P � V � � �� Q� � Q� � P � Splittable�Q�� Q�� a��g
� �� Q�� Q�� a � Q� � Q � �Q�� a� � L � �Splittable�Q�� Q�� a��� �P � �Q�E�g

do L �� � �	
let Q�� a � �Q�� a� � L�
Pold �� P �
L �� L n f�Q�� a�g�
finvariant� �Q�E v P v Poldg
for Q� � Q� � Pold � Splittable�Q�� Q�� a� do

Q�
� �� fp � p � Q� � T �p� a� � Q�g�

P �� P n fQ�g 
 fQ� nQ
�
�� Q

�
�g�

for b � b � V do
if �Q�� b� � L �	 L �� L n f�Q�� b�g 
 f�Q

�
�� b�� �Q� nQ

�
�� b�g

�� �Q�� b� �� L �	 L �� L 
 f�Q�
�� b�� �Q� nQ�

�� b�g



rof
rof
f�� Q� � Q� � P � �Splittable�Q�� Q�� a��g

odfP � �Q�Eg

The innermost update of L is intentionally clumsy and will be used to arrive at the algorithm
given by Hopcroft and Gries� In the update of set L� if �Q�� b� � L �for some b � V � and Q� has
been split into Q� nQ�

� and Q�
� then �Q�� b� is replaced �in L� by �Q� nQ�

�� b� and �Q�
�� b��

Another observation due to Hopcroft is that splitting an equivalence class with respect to any
two of �Q�� b�� �Q�

�� b�� and �Q� nQ�
�� b� is the same as splitting the equivalence class with respect

to all three �Hopc��� pp� �
���
��� �Grie��� Lemma ��� This is shown in the following intermezzo�

We only prove that� if an equivalence class �Q has been split with respect to �Q�� b� and �Q�

�� b�� then
it need not be split with respect to �Q� nQ

�

�� b�� The two remaining cases can be proven analogously�

�Splittable� �Q�Q�� b� � �Splittable� �Q�Q�

�� b�

� fDe Morgan g

��Splittable� �Q�Q�� b� � Splittable� �Q�Q�

�� b��

� fDe�nition of Splittable g

���� p� q � p� q � �Q � T �p� b� � Q� �� T �q� b� � Q��

� �� p� q � p� q � �Q � T �p� b� � Q�

� �� T �q� b� � Q�

���

� fCombine existential quanti�ers g

��� p� q � p� q � �Q � �T �p� b� � Q� �� T �q� b� � Q�� � �T �p� b� � Q�

� �� T �q� b� � Q�

���

� fQ�

� 	 Q� g

��� p� q � p� q � �Q � T �p� b� � Q� nQ
�

� �� T �q� b� � Q� n Q
�

��

� fDe�nition of Splittable g

�Splittable� �Q�Q� nQ
�

�� b�

The two remaining cases can be proven analogously�
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For eciency reasons we therefore choose the smallest two of the three �comparing jQ�j� jQ
�
�j� and

jQ� nQ
�
�j� in the update of set L� If �Q�� b� �� L� then splitting has already been done with respect

to �Q�� b� and we add either �Q�
�� b� or �Q� n Q

�
�� b� �whichever is smallest� to L� On the other

hand� if �Q�� b� � L� then splitting has not yet been done and we remove �Q�� b� from L and add
�Q�

�� b� and �Q� nQ�
�� b� instead�

Lastly� we observe that by starting with P � �Q�E�
� fQ n F� Fg we have already split Q� As

a result� we need only split with respect to either �Q n F� b� or �F� b� �for all b � V � �Hopc��� pp�
�
���
��� �Grie��� Lemma ���

This gives the algorithm��

Algorithm ��	 Hopcroft��

P �� �Q�E�
�

L �� �if �jF j � jQ n F j� then fFg else fQ n Fg 
�� V �
finvariant� �Q�E v P v �Q�E�

� L � �P � V �
� �� Q�� Q�� a � Q� � Q � �Q�� a� � L � �Splittable�Q�� Q�� a��� �P � �Q�E�g

do L �� � �	
let Q�� a � �Q�� a� � L�
Pold �� P �
L �� L n f�Q�� a�g�
finvariant� �Q�E v P v Poldg
for Q� � Q� � Pold � Splittable�Q�� Q�� a� do

Q�
� �� fp � p � Q� � T �p� a� � Q�g�

P �� P n fQ�g 
 fQ� nQ
�
�� Q

�
�g�

for b � b � V do
if �Q�� b� � L �	 L �� L n f�Q�� b�g 
 f�Q

�
�� b�� �Q� nQ

�
�� b�g

�� �Q�� b� �� L �	
L �� L 
 �if �jQ�

�j � jQ� nQ
�
�j� then f�Q�

�� b�g else f�Q� nQ
�
�� b�g 
�



rof

rof
f�� Q� � Q� � P � �Splittable�Q�� Q�� a��g

odfP � �Q�Eg

Unfortunately� the running time analysis of this algorithm is complicated and is not discussed
here� It is shown by both Hopcroft and Gries that it is O�jQj log jQj�� �Grie��� Hopc����

�Part of the invariant has been omitted� being rather complicated to derive�
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��
 Computing �p� q� � E

From the problem of deciding the structural equivalence of two types� it is known that equivalence
of two states can be computed recursively by turning the �xed point de�nition ofE into a functional
program� If the �unmodi�ed� de�nition were to be used directly as a functional program� there is
the possibility of non�termination� In order for the functional program to work� it takes a third
parameter along with the two states�

The following program� similar to the one presented in �t�Ei
��� computes relation E pointwise�
an invocation equiv �p� q� �� determines whether states p and q are equivalent� It assumes that two
states are equivalent �by placing the pair of states in S� the third parameter� until shown otherwise�

function equiv �p� q� S� is
if fp� qg � S �	 eq �� true

�� fp� qg �� S �	
eq �� �p � F � q � F ��
eq �� eq � �� a � a � V � equiv�T �p� a�� T �q� a�� S 
 ffp� qgg��


�
return eq

The � quanti�cation can be implemented using a repetition

function equiv �p� q� S� is
if fp� qg � S �	 eq �� true

�� fp� qg �� S �	
eq �� �p � F � q � F ��
for a � a � V do

eq �� eq � equiv �T �p� a�� T �q� a�� S 
 ffp� qgg�
rof


�
return eq

The correctness of this program is shown in �t�Ei
��� Naturally� the guard eq can be used in
the repetition �to terminate the repetition when eq � false� in a practical implementation� This
optimization is omitted here for clarity�

There are a number of methods for making this program more ecient� From Section ���
recall that E � E�jQj���max �� We add a parameter k to function equiv such that an invocation
equiv �p� q� �� k� returns �p� q� � Ek as its result� The recursion depth is bounded by �jQj���max ��
The new function is

function equiv �p� q� S� k� is
if k � � �	 eq �� �p � F � q � F �
�� k �� � � fp� qg � S �	 eq �� true

�� k �� � � fp� qg �� S �	
eq �� �p � F � q � F ��
for a � a � V do

eq �� eq � equiv �T �p� a�� T �q� a�� S 
 ffp� qgg� k� ��
rof


�
return eq
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The third parameter S is made a global variable� improving the eciency of this algorithm in
practice� As a result� equiv is no longer a functional program in the sense that it now makes use
of a global variable� The correctness of this transformation is shown in �t�Ei
��� We assume that
S is initialized to �� When S � �� an invocation equiv�p� q� �jQj � ��max �� returns �p� q� � E�
after such an invocation S � ��

Algorithm ��� Pointwise computation of E��

function equiv �p� q� k� is
if k � � �	 eq �� �p � F � q � F �
�� k �� � � fp� qg � S �	 eq �� true

�� k �� � � fp� qg �� S �	
eq �� �p � F � q � F ��
S �� S 
 ffp� qgg�
for a � a � V do

eq �� eq � equiv �T �p� a�� T �q� a�� k� ��
rof�
S �� S n ffp� qgg


�
return eq

The procedure equiv can be memoized to further improve the running time in practice�
This algorithm does not appear in the literature�

��� Computing E by approximation from below

This latest version of function equiv can be used to compute E and D �assuming IQ is the identity
relation on states� and S is the global variable used in Algorithm 	�
��

Algorithm ���� Computing E from below��

S�G�H �� �� �� IQ�
finvariant� �G 
H� � �Q �Q� �G � D �H � Eg
do �G 
H� �� Q�Q �	

let p� q � �p� q� � ��Q� Q� n �G 
H���
if equiv�p� q� �jQj � ��max �� �	 H �� H 
 f�p� q�g
�� �equiv�p� q� �jQj � ��max �� �	 G �� G 
 f�p� q�g



odfG � D �H � Eg

Further eciency improvements can be made as follows�

� We change the initialization of G to G �� ��Q n F �� F � 
 �F � �Q n F ���

� We make use of the fact that E � E�� obviously E is symmetrical� halving the required
amount of computation� H can be updated at each iteration step by H �� H� �provided the
data�structures in the implementation are such that ��closure is easily implemented��

� Make use of the facts that

�p� q� �� E � �� r� s � r � Q � s � Q

� �� w � w � V � � T ��r� w� � p � T ��s� w� � q� � ��r� s� �� E�
�p� q� � E � �� w � w � V � � �T ��p� w�� T ��q� w�� � E�

The �rst �respectively second� implication states that if p� q are two distinguished �respec�
tively equivalent� states� and r� s are two states such that there is w � V � and T �r� w� �
p � T �s� w� � q �respectively T �p� w� � r � T �q� w� � s�� then r� s are also distinguished
�respectively equivalent��
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This algorithmhas worse running time than the O�jQj log jQj� of Hopcroft�s algorithm �Hopc���
Grie���� This algorithm has a signi�cant advantage over all of the known algorithms� although
function equiv computesE pointwise from above �with respect to�� re�nement�� the main program
computes E from below �with respect to �� normal set inclusion	�� As such� any intermediate
result H in the computation of E is usable in �at least partially� reducing the size of an automaton�
all of the other algorithms presented have unusable intermediate results� This property has use in
reducing the size of automata when the running time of the minimization algorithm is restricted
for some reason �for example� in real�time applications��

�This is set inclusion� as opposed to re�nement� since the intermediate result H may not be an equivalence
relation during the computation�
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� Conclusions

The conclusions about minimization algorithms are�

� A derivation of Brzozowski�s minimization algorithm was presented� This derivation proved
to be easier to understand than either the original derivation �by Brzozowski�� or the deriva�
tion given by van de Snepscheut� A brief history of the minimizationalgorithmwas presented�
hopefully resolving some misattributions of its discovery�

� The de�nition of equivalence �relation E� and distinguishability �relation D� as �xed points
of certain equations proved easier to understand than many text�book presentations�

� The �xed point characterization of E made it particularly easy to calculate an upperbound
on the number of approximation steps required to compute E �or D�� This upperbound
later proved useful in determining the running time of some of the algorithms� and also in
making eciency improvements to the pointwise algorithm�

� The de�nition of E as a greatest �xed point helped to identify the fact that all of the
�previously� known algorithm computed E from above �with respect to re�nement�� As
such� all of these algorithms have intermediate results that are not usable in minimizing the
�nite automaton�

� We successfully presented all of the well�known text�book algorithms in the same frame�
work� Most of them were shown to be essentially the same� with minor di�erences in their
loop structures� One exception was Hopcroft and Ullman�s algorithm �HU�
�� which has a
distinctly di�erent loop structure� The presentation of that algorithm �with invariants� in
this paper is arguably easier to understand than the original presentation� Our presentation
highlights the fact that the main data�structure in the algorithm need not be a list � a set
suces�

� Hopcroft�s minimization algorithm �Hopc��� was originally presented in a style that is not
very understandable� As with Gries�s paper �Grie���� we strive to derive this algorithm
in a clear and precise manner� The presentation in this paper highlights two important
facts� the beginning point for the derivation of this algorithm is one of the easily understood
straightforward algorithms� and� the use of a list data�structure in both Hopcroft�s and
Gries�s presentation of this algorithm is not necessary � a set can be used instead�

� This paper presented several new minimization algorithms� many of which were variations
on the well�known algorithms� Two of the new algorithms �presented in Sections 	�� and
	��� are not derived from any of the well�known algorithms� and are signi�cant in their own
right�

� An algorithm was presented that computes the relation E in a pointwise manner� This
algorithm was re�ned from an algorithm used to determine the structural equivalence
of types� Several techniques played important roles in the re�nement�

� the upperbound on the number of steps required to compute E was used to improve
the algorithm by limiting the number of pairs of states that need to be considered
in computing E pointwise�

� memoization of the functional�program portion of the algorithmwas used to reduce
the amount of redundant computation�

� A new algorithm was presented� that computes E from below� This algorithm makes
use of the pointwise computation of E to construct and re�ne an approximation of
E� Since the computation is from below� the intermediate results of this algorithm
are usable in �at least partially� reducing the size of the DFA� This can be useful in
applications where the amount of time available for minimization of the DFA is limited
�as in real�time applications�� In contrast� all of the �previously� known algorithms
have unusable intermediate results�
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A Some basic de�nitions

Convention A�� Powerset�� For any set A we use P�A� to denote the set of all subsets of A�
P�A� is called the powerset of A� it is sometimes written �A� �

Convention A�� Sets of functions�� For sets A and B� A �	 B denotes the set of all total
functions from A to B� while A ��	 B denotes the set of all partial functions from A to B� �

Remark A��� For sets A�B and relation C � A�B we can interpret C as a function C � A �	
P�B�� �

Convention A�� Tuple projection�� For an n�tuple t � �x�� x�� � � � � xn� we use the notation
�i�t� �� � i � n� to denote tuple element xi� we use the notation  �i�t� �� � i � n� to denote the
�n� ���tuple �x�� � � � � xi��� xi��� � � �xn�� Both � and  � extend naturally to sets of tuples� �

Convention A�� Relation composition�� Given sets A�B�C �not necessarily di�erent� and
two relations� E � A� B and F � B �C� we de�ne relation composition �in�x operator �� as�

E � F � f�a� c� � �� b � b � B � �a� b� � E � �b� c� � F �g

�

Convention A�� Equivalence classes of an equivalence relation�� For any equivalence
relation E on set A we denote the set of equivalence classes of E by �A�E� that is

�A�E � f�a�E � a � Ag

Set �A�E is also called the partition of A induced by E� �

De
nition A�� Index of an equivalence class�� For equivalence relation E on set A� de�ne
�E � j�A�Ej� �E is called the index of E� �

De
nition A�	 Alphabet�� An alphabet is a non�empty set of �nite size� �

De
nition A�� Re
nement of an equivalence relation�� For equivalence relations E and
E� �on set A�� E is a re�nement of E� if and only if E � E�� �

De
nition A��� Re
nement v� relation on partitions�� For equivalence relations E and
E� �on set A�� �A�E is said to be a re�nement of �A�E� �written �A�E v �A�E�� if and only if E � E��
An equivalent statement is that �A�E v �A�E� if and only if every equivalence class �of A� under
E is entirely contained in some equivalence class �of A� under E�� �

De
nition A��� Tuple and relation reversal�� For an n�tuple �x�� x�� � � � � xn� de�ne reversal
as �post�x and superscript� function R�

�x�� x�� � � � � xn�
R � �xn� � � � � x�� x��

Given a set A of tuples� we de�ne AR � fxR � x � Ag� �
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B Finite automata

In this section we de�ne �nite automata� some of their properties� and some transformations on
�nite automata� Most of these de�nitions are taken directly from �Wats
���

De
nition B�� Finite automaton�� A �nite automaton �an FA� is a ��tuple �Q� V� T�E� S� F �
where

� Q is a �nite set of states�

� V is an alphabet�

� T � P�Q� V � Q� is a transition relation�

� E � P�Q� Q� is an ��transition relation

� S � Q is a set of start states� and

� F � Q is a set of �nal states�

The de�nitions of an alphabet and function P are in De�nition A�� and Convention A�� respec�
tively� �

Remark B��� We will take some liberty in our interpretation of the signatures of the transition
relations� For example� we also use the signatures T � V �	 P�Q � Q�� T � Q � Q �	 P�V ��
T � Q� V �	 P�Q�� T � Q �	 P�V �Q�� and E � Q �	 P�Q�� In each case� the order of the
Q�s from left to right will be preserved� for example� the function T � Q �	 P�V �Q� is de�ned
as T �p� � f�a� q� � �p� a� q� � Tg� The signature that is used will be clear from the context� See
Remark A��� The de�nition of �	 appears in Convention A��� �

Since we only consider �nite automata in this paper� we will frequently simply use the term
automata�

B�� Properties of �nite automata

In this subsection we de�ne some properties of �nite automata� To make these de�nitions more con�
cise� we introduce particular �nite automataM � �Q� V� T�E� S� F ��M� � �Q�� V�� T�� E�� S�� F���
and M� � �Q�� V�� T�� E�� S�� F���

De
nition B�� Size of an FA�� De�ne the size of an FA as jM j � jQj� �

De
nition B�� Isomorphism ��� of FA�s�� We de�ne isomorphism ���� as an equivalence
relation on FA�s� M� and M� are isomorphic �written M�

�� M�� if and only if V� � V� and there
exists a bijection g � Q� �	 Q� such that

� T� � f�g�p�� a� g�q�� � �p� a� q� � T�g�

� E� � f�g�p�� g�q�� � �p� q� � E�g�

� S� � fg�s� � s � S�g� and

� F� � fg�f� � f � F�g�

�

De
nition B�� Extending the transition relation T �� We extend transition relation T �
V �	 P�Q �Q� to T � � V � �	 P�Q �Q� as follows�

T ���� � E�
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and �for a � V�w � V ��

T ��aw� � E� � T �a� � T ��w�

Operator � �composition� is de�ned in Convention A��� This de�nition could also have been
presented symmetrically� �

Remark B��� We also sometimes use the signature T � � Q� Q �	 P�V ��� �

De
nition B�� Left and right languages�� The left language of a state �in M � is given by

function
��
LM � Q �	 P�V ��� where

��
LM �q� � �
 s � s � S � T ��s� q��

The right language of a state �in M � is given by function
�	
LM � Q �	 P�V ��� where

�	
LM �q� � �
 f � f � F � T ��q� f��

The subscript M is usually dropped when no ambiguity can arise� �

De
nition B�	 Language of an FA�� The language of a �nite automaton �with alphabet V �
is given by the function LFA � FA �	 P�V �� de�ned as�

LFA�M � � �
 s� f � s � S � f � F � T ��s� f��

�

De
nition B�� Complete�� A Complete �nite automaton is one satisfying the following�

Complete�M � � �� q� a � q � Q � a � V � T �q� a� �� ��

�

De
nition B��� ��free�� Automaton M is ��free if and only if E � �� �

De
nition B��� Start�useful automaton�� A Usefuls �nite automaton is de�ned as follows�

Usefuls�M � � �� q � q � Q �
��
L �q� �� ��

�

De
nition B��� Final�useful automaton�� A Usefulf �nite automaton is de�ned as�

Usefulf �M � � �� q � q � Q �
�	
L �q� �� ��

�

Remark B���� Usefuls and Usefulf are closely related by FA reversal �to be presented in Trans�

formation B����� For all M � FA we have Usefulf �M � � Usefuls�M
R�� �

De
nition B��� Useful automaton�� A Useful �nite automaton is one with only reachable
states�

Useful�M � � Usefuls�M � �Usefulf �M �

�

Property B��� Deterministic 
nite automaton�� A �nite automaton M is deterministic if
and only if
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� it does not have multiple start states�

� it is ��free� and

� transition function T � Q� V �	 P�Q� does not map pairs in Q� V to multiple states�

Formally�

Det�M � � �jSj � � � ��free�E� � �� q� a � q � Q � a � V � jT �q� a�j � ���

�

De
nition B��� Deterministic FA�s�� DFA denotes the set of all deterministic �nite au�
tomata� We call FA nDFA the set of nondeterministic �nite automata� �

Convention B��� Transition function of a DFA�� For �Q� V� T� �� S� F � � DFA we can con�
sider the transition function to have signature T � Q � V ��	 Q� �A de�nition of ��	 appears in
Convention A���� The transition function is total if and only if the DFA is Complete� �

Property B��	 Weakly deterministic automaton�� Some authors use a de�nition of a
deterministic automaton that is weaker than Det � it uses left languages and is de�ned as follows�

Det ��M � � �� q�� q� � q� � Q � q� � Q � q� �� q� �
��
L �q�� 

��
L �q�� � ��

Det�M �� Det ��M � is easily proved� �

De
nition B��� Minimality of a DFA�� An M � DFA is minimal as follows�

Min�M � � �� M � �M � � DFA � LFA�M � � LFA�M
�� � jM j � jM �j�

Predicate Min is de�ned only on DFA�s� Some de�nitions are simpler if we de�ne a minimal� but
still Complete� DFA as follows�

MinC�M � � �� M � �M � � DFA �Complete�M �� � LFA�M � � LFA�M
�� � jM j � jM �j�

Predicate MinC is de�ned only on Complete DFA�s� �

Property B��� Minimality of a DFA�� An M � such that Min�M �� is the unique �modulo
��� minimal DFA� due to the Myhill�Nerode theorem� Introductory presentations of the theorem
appear in �HU�
� Wats
��� �

Property B��� An alternate de
nition of minimality of a DFA�� For the purposes of
minimizing a DFA� we use the de�nition �de�ned only on DFA�s��

Minimal�Q� V� T� �� S� F � � �� q�� q� � q� � Q � q� � Q � q� �� q� �
�	
L �q�� ��

�	
L �q���

�Useful�Q� V� T� �� S� F �

We have the property that �for all M � DFA� Minimal�M � � Min�M �� It is easy to prove that
Min�M ��Minimal�M �� The reverse direction follows from the Myhill�Nerode theorem�

A similar de�nition that relates to MinC is �also de�ned only on DFA�s��

MinimalC�Q� V� T� �� S� F � � �� q�� q� � q� � Q � q� � Q � q� �� q� �
�	
L �q�� ��

�	
L �q���

�Usefuls�Q� V� T� �� S� F �

We have the property that �for allM � DFA such that Complete�M ��MinimalC�M � �MinC�M ��
The contrapositive of MinC�M �� MinimalC�M � is easily proved� and the reverse direction also
follows from the Myhill�Nerode theorem� �
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B�� Transformations on �nite automata

Transformation B��� FA reversal�� FA reversal is given by post�x �superscript� function
R � FA �	 FA� de�ned as�

�Q� V� T�E� S� F �R � �Q� V� TR� ER� F� S�

Function R satis�es

�� M �M � FA � �LFA�M ��R � LFA�M
R���

�

TransformationB��� Removing start state unreachable states�� Transformationuseful s �
FA �	 FA removes those states that are not start�reachable�

usefuls�Q� V� T�E� S� F � � let U � SReachable�Q� V� T�E� S� F �
in

�U� V� T  �U � V � U �� E  �U � U �� S  U�F  U �
end

Function usefuls satis�es

�� M �M � FA � Usefuls�usefuls�M �� � LFA�usefuls�M �� � LFA�M ��

�

Transformation B��� Subset construction�� The function subset transforms an ��free FA

into a DFA �in the let clause T � � P�Q� � V �	 P�P�Q���

subset�Q� V� T� �� S� F � � let T ��U� a� � f�
 q � q � U � T �q� a��g
F � � fU � U � P�Q� � U  F �� �g

in
�P�Q�� V� T �� �� fSg� F ��

end

In addition to the obvious property that �for all M � FA� LFA�subset �M �� � LFA�M �� function
subset satis�es

�� M �M � FA � ��free�M � � Det�subset �M �� � Complete�subset�M ���

It is also known as the �powerset� construction� �

Property B��� Subset construction�� Let M� � �Q�� V� T�� �� S�� F�� and M� � subset�M��
be �nite automata� By the subset construction� the state set of M� is P�Q��� We have the
following property�

�� p � p � P�Q�� �
�	
LM�

�p� � �
 q � q � p �
�	
LM�

�q���

�

De
nition B��� Optimized subset construction�� The function subsetopt transforms an
��free FA into a DFA� This function is an optimized version of subset �

subsetopt�Q� V� T� �� S� F � � let T ��U� a� � f�
 q � q � U � T �q� a��g
Q� � P�Q� n f�g
F � � fU � U � P�Q� � U  F �� �g

in
�Q�� V� T �  �Q� � V �Q��� �� fSg� F ��

end

In addition to the property that �for all M � FA� LFA�subsetopt �M �� � LFA�M �� function
subsetopt satis�es

�� M �M � FA � ��free�M � � Det�subsetopt �M ���

�
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