
1

Efficient visual search of videos cast as text retrieval
Josef Sivic and Andrew Zisserman

Abstract— We describe an approach to object retrieval which
searches for and localizes all the occurrences of an object in
a video, given a query image of the object. The object is
represented by a set of viewpoint invariant region descriptors
so that recognition can proceed successfully despite changes
in viewpoint, illumination and partial occlusion. The temporal
continuity of the video within a shot is used to track the regions
in order to reject those that are unstable.

Efficient retrieval is achieved by employing methods from
statistical text retrieval, including inverted file systems, and
text and document frequency weightings. This requires a visual
analogy of a word which is provided here by vector quantizing the
region descriptors. The final ranking also depends on the spatial
layout of the regions. The result is that retrieval is immediate,
returning a ranked list of shots in the manner of Google [6].

We report results for object retrieval on the full length
feature films ‘Groundhog Day’, ‘Casablanca’ and ‘Run Lola
Run’, including searches from within the movie and specified by
external images downloaded from the Internet. We investigate
retrieval performance with respect to different quantizations
of region descriptors and compare the performance of several
ranking measures. Performance is also compared to a baseline
method implementing standard frame to frame matching.

Index Terms— Object recognition, viewpoint and scale invari-
ance, text retrieval

I. INTRODUCTION

The aim of this work is to retrieve those key frames and shots
of a video containing a particular object with the ease, speed
and accuracy with which Google [6] retrieves text documents
(web pages) containing particular words. This paper investigates
whether a text retrieval approach can be successfully employed
for this task.

Identifying an (identical) object in a database of images is
now reaching some maturity. It is still a challenging problem
because an object’s visual appearance may be very different due
to viewpoint and lighting, and it may be partially occluded,
but successful methods now exist [17], [18], [20], [25], [33]–
[35], [41], [42]. Typically an object is represented by a set of
overlapping regions each represented by a vector computed from
the region’s appearance. The region extraction and descriptors
are built with a controlled degree of invariance to viewpoint
and illumination conditions. Similar descriptors are computed for
all images in the database. Recognition of a particular object
proceeds by nearest neighbour matching of the descriptor vectors,
followed by disambiguating using local spatial coherence (such as
common neighbours, or angular ordering), or global relationships
(such as epipolar geometry or a planar homography).
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We explore whether this type of approach to recognition can be
recast as text retrieval. In essence this requires a visual analogy
of a word, and here we provide this by vector quantizing the
descriptor vectors. However, it will be seen that pursuing the
analogy with text retrieval is more than a simple optimization
over different vector quantizations. There are many lessons and
rules of thumb that have been learnt and developed in the text
retrieval literature and it is worth ascertaining if these also can
be employed in visual retrieval.

The benefits of the text retrieval approach is that matches
are effectively pre-computed so that at run-time frames and
shots containing any particular object can be retrieved with no-
delay. This means that any object occurring in the video (and
conjunctions of objects) can be retrieved even though there was
no explicit interest in these objects when descriptors were built
for the video. However, we must also determine whether this
vector quantized retrieval misses any matches that would have
been obtained if the former method of nearest neighbour matching
had been used.

A. Review of text retrieval

Text retrieval systems generally employ a number of standard
steps [3]: the documents are first parsed into words, and the words
are represented by their stems, for example ‘walk’, ‘walking’ and
‘walks’ would be represented by the stem ‘walk’. A stop list is
then used to reject very common words, such as ‘the’ and ‘an’,
which occur in most documents and are therefore not discrimi-
nating for a particular document. The remaining words are then
assigned a unique identifier, and each document is represented by
a vector with components given by the frequency of occurrence of
the words the document contains. In addition the components are
weighted in various ways (such as inverse document frequency
weighting, described in more detail in section IV). All of the
above steps are carried out in advance of actual retrieval, and
the set of vectors representing all the documents in a corpus are
organized as an inverted file [45] to facilitate efficient retrieval.
An inverted file is structured like an ideal book index. It has an
entry for each word in the corpus followed by a list of all the
documents (and position in that document) in which the word
occurs.

A query text is treated in a similar manner: its vector of
weighted word frequencies is computed. Matching documents
are obtained by measuring the similarity between the query and
document vectors using the angle between the vectors. In addition
the returned documents may be ranked by the correspondence of
the word ordering and separation with the query.

B. Paper outline

In this paper we explore visual analogies of each of these
steps. Section II describes the visual descriptors used. Section III
then describes their vector quantization into visual ‘words’, and
sections IV and V show how the text retrieval techniques are
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Fig. 1. Object query example I. (a) Top row: (left) a frame from the
movie ‘Groundhog Day’ with an outlined query region and (right) a close-
up of the query region delineating the object of interest. Bottom row: (left)
all 1039 detected affine covariant regions superimposed and (right) close-up
of the query region. (b) (left) two retrieved frames with detected regions of
interest and (right) a close-up of the images with affine covariant regions
superimposed. These regions match to a subset of the regions shown in (a).
Note the significant change in foreshortening and scale between the query
image of the object, and the object in the retrieved frames. For this query
there are four correctly retrieved shots ranked 1, 2, 3 and 12. Querying all the
5,640 keyframes of the entire movie took 0.36 seconds on a 2GHz Pentium.

applied in the visual domain. Finally, in section VI, we evaluate
the proposed approach on a ground truth set of six object queries.
We investigate retrieval performance with respect to various visual
vocabularies and compare the performance of several ranking
measures. Performance is also compared to a baseline method
implementing standard frame to frame matching without vector
quantization. Object retrieval results, including searches from
within the movie and specified by external images, are shown
on feature films: ‘Groundhog Day’ [Ramis, 1993], ‘Casablanca’
[Curtiz, 1942] and ‘Run Lola Run’ [Tykwer, 1998].

Although previous work has borrowed ideas from the text
retrieval literature for image retrieval from databases (e.g. [40]
used the weighting and inverted file schemes) to the best of our
knowledge this is the first systematic application of these ideas
to object retrieval in videos. This paper is an extended version
of [39].

II. VIEWPOINT INVARIANT DESCRIPTION

The goal is to extract a description of an object from an image
which will be largely unaffected by a change in camera viewpoint,
the object’s scale and scene illumination, and also will be robust
to some amount of partial occlusion. To achieve this we employ
the technology of viewpoint invariant segmentation developed for
wide baseline matching [20], [25], [33], [41], [42], object recog-
nition [18], [25], and image/video retrieval [35], [39]. The idea is
that regions are detected in a viewpoint invariant manner – so that
for images of the same scene, the pre-image of the region covers
the same scene portion. It’s important to note that the regions are
detected independently in each frame. A comprehensive review of
viewpoint invariant (also called affine covariant) region detectors,
and a comparison of their performance can be found in [22].

In this work, two types of affine covariant regions are computed
for each frame. The first is constructed by elliptical shape adap-
tation about a Harris [12] interest point. The method involves
iteratively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of
a Laplacian, and the shape by maximizing intensity gradient
isotropy over the elliptical region [4], [16]. The implementation
details are given in [20], [33]. This region type is referred to as
Shape Adapted (SA).

The second type of region is constructed by selecting areas
from an intensity watershed image segmentation. The regions
are those for which the area is approximately stationary as the
intensity threshold is varied. The implementation details are given
in [19]. This region type is referred to as Maximally Stable (MS).

Two types of regions are employed because they detect different
image areas and thus provide complementary representations of a
frame. The SA regions tend to be centred on corner like features,
and the MS regions correspond to blobs of high contrast with
respect to their surroundings such as a dark window on a grey
wall. Both types of regions are represented by ellipses. These are
computed at twice the originally detected region size in order for
the image appearance to be more discriminating. For a 720×576

pixel video frame the number of regions computed is typically
1,200. An example is shown in Figure 1.

Each elliptical affine covariant region is represented by a 128-
dimensional vector using the SIFT descriptor developed by Lowe
[18]. In [21] this descriptor was shown to be superior to others
used in the literature, such as the response of a set of steerable
filters [20] or orthogonal filters [33], and we have also found
SIFT to be superior (by comparing scene retrieval results against
a ground truth [39]). One reason for this superior performance
is that SIFT, unlike the other descriptors, is designed to be
invariant to a shift of a few pixels in the region position, and this
localization error is one that often occurs. Combining the SIFT
descriptor with affine covariant regions gives region description
vectors which are invariant to affine transformations of the image.
Note, both region detection and the description is computed on
monochrome versions of the frames, colour information is not
currently used in this work.

To reduce noise and reject unstable regions, information is
aggregated over a sequence of frames. The regions detected in
each frame of the video are tracked using a simple constant
velocity dynamical model and correlation [34], [38]. Any region
which does not survive for more than three frames is rejected.
This ‘stability check’ significantly reduces the number of regions
to about 600 per frame.
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Fig. 2. Samples of normalized affine covariant regions from clusters
corresponding to a single visual word: (a–c) Shape Adapted regions; (d–f)
Maximally Stable regions. Note that some visual words represent generic
image structures, e.g. corners (a) or blobs (d), and some visual words are rather
specific, e.g. a letter (c) or an eye (f). Samples in each plate were generated
uniformly from all occurrences of the particular visual word in the movie
and are shown sorted (in a scan-line order) according to the Mahalanobis
distance (1) from the cluster center.

III. BUILDING A VISUAL VOCABULARY

The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval. The
vocabulary is constructed from a subpart of the movie, and its
matching accuracy and expressive power are evaluated on the
entire movie, as described in the following sections. The running
example is for the movie ‘Groundhog Day’.

The vector quantization is carried out by K-means clustering,
though other methods (K-medoids, histogram binning, mean shift,
etc) are certainly possible. Recent works have demonstrated the
advantages of using a vocabulary tree [24] or a randomized forest
of k-d trees [28] to reduce search cost in the quantization stage.

A. Implementation

Each descriptor is a 128-vector, and to simultaneously cluster
all the descriptors of the movie would be a gargantuan task.
Instead, a random subset of 474 frames is selected. Even with
this reduction there still remains around 300K descriptors that
must be clustered.

Mahalanobis distance is used as the distance function for K-
means clustering. The distance between two descriptors x1, x2,
is then given by

d(x1,x2) =

q
(x1 − x2)�Σ−1(x1 − x2). (1)

The covariance matrix Σ is determined by (i) computing covari-
ances for descriptors throughout tracks within several shots, and
(ii) assuming Σ is the same for all tracks (i.e. independent of
the region) so that covariances for tracks can be aggregated. In
this manner sufficient measurements are available to estimate
all elements of Σ. The Mahalanobis distance enables the more
noisy components of the 128–vector to be weighted down, and
also decorrelates the components. Empirically there is a small
degree of correlation. As is standard, the descriptor space is affine
transformed by the square root of Σ so that Euclidean distance
may be used.

6,000 clusters are used for Shape Adapted regions, and 10,000
clusters for Maximally Stable regions. The ratio of the number
of clusters for each type is chosen to be approximately the same
as the ratio of detected descriptors of each type. The K-means
algorithm is run several times with random initial assignments
of points as cluster centres, and the lowest cost result used. The
number of clusters was chosen empirically to maximize matching

performance on a ground truth set for scene retrieval [39].
The object retrieval performance with respect to the number of
clusters is tested on a new ground truth set for object retrieval in
section VI.

Figure 2 shows examples of the regions which belong to
particular clusters, i.e. which will be treated as the same visual
word. The clustered regions reflect the properties of the SIFT
descriptors which penalize intensity variations amongst regions
less than cross-correlation. This is because SIFT emphasizes
orientation of gradients, rather than the position of a particular
intensity within the region.

The reason that SA and MS regions are clustered separately
is that they cover different and largely independent regions of
the scene. Consequently, they may be thought of as different
vocabularies for describing the same scene, and thus should have
their own word sets. In the same way as one vocabulary might
describe architectural features and another the material quality
(e.g. defects, weathering) of a building.

IV. VISUAL INDEXING USING TEXT RETRIEVAL METHODS

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting to
the components of this vector [3], rather than use the frequency
vector directly for indexing. In the next sub-section we describe
the standard weighting that is employed, and the visual analogy of
document retrieval to frame retrieval. The following sub-sections
then describe the visual analogue of a stop list, and the method
used to rank images based on the spatial layout of their visual
words.

A. Term frequency–inverse document frequency weighting

The standard weighting [3] is known as ‘term frequency–
inverse document frequency’ (tf–idf) and is computed as follows.
Suppose there is a vocabulary of V words, then each document
is represented by a vector

vd = (t1, ..., ti, ..., tV )� (2)

of weighted word frequencies with components

ti =
nid

nd

log
N

Ni
, (3)

where nid is the number of occurrences of word i in document
d, nd is the total number of words in the document d, Ni is the
number of documents containing term i, and N is the number of
documents in the whole database. The weighting is a product of
two terms: the word frequency, nid/nd, and the inverse document
frequency, log N/Ni. The intuition is that the word frequency
weights words occurring more often in a particular document
higher (compared to word present/absent), and thus describes it
well, whilst the inverse document frequency downweights words
that appear often in the database, and therefore do not help to
discriminate between different documents.

At the retrieval stage documents are ranked by the normalized
scalar product (cosine of angle)

sim(vq ,vd) =
vq
�
vd

‖vq‖2 ‖vd‖2

(4)

between the query vector vq and all document vectors vd in the
database, where ‖v‖2 =

p
v
�
v is the L2 norm of v.
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Frame1 Frame2 

A B

Fig. 3. Illustration of spatial consistency voting. To verify a pair of matching
regions (A,B) a circular search area is defined by the k (=5 in this example)
spatial nearest neighbours in both frames. Each match which lies within the
search areas in both frames casts a vote in support of match (A,B). In this
example three supporting matches are found. Matches with no support are
rejected.

Note that if document and query vectors are pre-normalized to
have unit L2 norm, then (4) can be rewritten as

sim(vq,vd) = vq
�
vd = 1 − 1

2
‖vq − vd‖2

2. (5)

As a consequence of (5), sorting documents according to their
ascending (squared) L2 distance to the query vector produces the
same ranking as sorting using the (descending) angle score (4).

In our case the query vector is given by the frequencies of
visual words contained in a user specified sub-part of an image,
weighted by the inverse document frequencies computed on the
entire database of frames. Retrieved frames are ranked according
to the similarity of their weighted vectors to this query vector.

B. Stop list

Using a stop list analogy the most frequent visual words that
occur in almost all images are suppressed. In our case the very
common words are large clusters of over 2K points. These might
correspond to small specularities (highlights), for example, which
occur in many frames. The effect of applying a stop list is
evaluated on a set of ground truth queries in section VI.

Figure 4 shows the benefit of imposing a stop list – very
common visual words occur in many places in an image and can
be responsible for mis-matches. Most of these are removed once
the stop list is applied. The removal of the remaining mis-matches
is described next.

C. Spatial consistency

Google [6] increases the ranking for documents where the
searched for words appear close together in the retrieved texts
(measured by word order). This analogy is especially relevant
for querying objects by an image, where matched covariant
regions in the retrieved frames should have a similar spatial
arrangement [34], [35] to those of the outlined region in the query
image. The idea is implemented here by first retrieving frames
using the weighted frequency vector alone, and then re-ranking
them based on a measure of spatial consistency.

Spatial consistency can be measured quite loosely by requiring
that neighbouring matches in the query region lie in a surrounding
area in the retrieved frame. It can also be measured very strictly by
requiring that neighbouring matches have the same spatial layout
in the query region and retrieved frame. In our case the matched
regions provide the affine transformation between the query and

Fig. 4. Matching stages. Top row: (left) Query region and (right) its close-
up. Second row: Original matches based on visual words. Third row: matches
after using the stop-list. Last row: Final set of matches after filtering on spatial
consistency.

retrieved image so a point to point map is available for this strict
measure.

We have found that a good performance is obtained at the less
constrained end of this possible range of measures. A search area
is defined by the 15 nearest spatial neighbours of each match in
the query and target frames. Each region which also matches
within the search areas casts a vote for that frame. Matches
with no support are rejected. The spatial consistency voting is
illustrated in figure 3. To discount repeated structures, which we
found are responsible for many highly ranked false positives,
matches with the same visual word label are not allowed to vote
for each other, and each match can accumulate at most one vote
from one distinct visual word. The final score of the frame is
determined by summing the spatial consistency votes, and adding
the frequency score sim(vq ,vd) given by (4). Including the
frequency score (which ranges between 0 and 1) disambiguates
ranking amongst frames which receive the same number of spatial
consistency votes. The object bounding box in the retrieved frame
is determined as the rectangular bounding box of the matched
regions after the spatial consistency test. This test works well as is
demonstrated in the last row of figure 4, which shows the spatial
consistency rejection of incorrect matches. The object retrieval
examples presented in this paper employ this ranking measure
and amply demonstrate its usefulness.

Other measures which take account of the affine mapping
between images may be required in some situations, but this
involves a greater computational expense. We return to this point
in section VII.
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1) Pre-processing (off-line)

• Detect affine covariant regions in each keyframe of
the video. Represent each region by a SIFT descriptor
(section II).

• Track the regions through the video and reject unstable
regions (section II).

• Build a visual vocabulary by clustering stable regions
from a subset of the video. Assign each region de-
scriptor in each keyframe to the nearest cluster centre
(section III).

• Remove stop-listed visual words (section IV-B).

• Compute tf–idf weighted document frequency vectors
(section IV-A).

• Build the inverted file indexing structure (section V).

2) At run-time (given a user selected query region)

• Determine the set of visual words within the query
region.

• Retrieve keyframes based on visual word frequencies
(section IV-A).

• Re-rank the top Ns(= 500) retrieved keyframes using
spatial consistency (section IV-C).

Fig. 5. The Video Google object retrieval algorithm. Example retrieval results
are shown in figures 6 and 7.

V. OBJECT RETRIEVAL USING VISUAL WORDS

We first describe the off-line processing. A feature length film
typically has 100K-150K frames. To reduce complexity, roughly
one keyframe is used per second of video, which results in 4K-
6K keyframes. Descriptors are computed for stable regions in
each keyframe (stability is determined by tracking as described in
section II). The descriptors are vector quantized using the centres
clustered from the training set, i.e. each descriptor is assigned to a
visual word. The visual words over all frames are assembled into
an inverted file structure where for each word, all occurrences
and the position of the word in all frames are stored.

At run-time a user selects a query region, which specifies
a set of visual words and their spatial layout. Retrieval then
proceeds in two steps: Firstly, a short list of Ns = 500 frames are
retrieved based on their tf–idf weighted frequency vectors (the
bag of words model), and those are then re-ranked using spatial
consistency voting. The frequency based ranking is implemented
using Matlab’s sparse matrix engine and the spatial consistency
re-ranking is implemented using the inverted file structure. The
entire process is summarized in figure 5 and examples are shown
in figures 6 and 7.

It is worth examining the time complexity of this retrieval
architecture and comparing it to that of a method that does
not vector quantize the descriptors. The huge advantage of the
quantization is that all descriptors assigned to the same visual
word are considered matched. This means that the burden on the
run-time matching is substantially reduced as descriptors have
effectively been pre-matched off-line.

In detail, suppose there are N frames, a vocabulary of V visual
words, and each frame contains R regions and M distinct visual
words. M < R if some regions are represented by the same
visual word. Each frame is equivalent to a vector in R

V with M

non-zero entries. Typical values are N = 10, 000, V = 20, 000

Fig. 6. Object query example II: Groundhog Day. A screenshot of the
running object retrieval system showing results of object query 3 from the
query set of figure 8. The top part of the screenshot shows an interactive
timeline, which allows the user to browse through the retrieved results on
that page in a chronological order. The bottom part of the screenshot shows
the first seven ranked shots from the first page of retrieved shots. Each shot is
displayed by three thumbnails showing (from left to right) the first frame, the
matched keyframe with the identified region of interest shown in white, and
the last frame of the shot. The precision-recall curve for this query is shown
in figure 9.

and M = 500. At run-time, the task is to compute the score of
(4) between the query frame vector vq and each frame vector
vd in the database (another situation might be to only return
the n closest frame vectors). The current implementation exploits
sparse coding for efficient search as follows. The vectors are pre-
normalized (so that the denominator of (4) is unity), and the
computation reduces to one scalar product for each of the N

frames. Moreover, only the m ≤ M entries which are non-zero
in both vq and vd need to be examined during each scalar product
computation (and typically there are far less than R regions in vq

as only a subpart of a frame specifies the object search). In the
worst case if m = M for all documents the time complexity is
O(MN).

If vector quantization is not used, then two alternative archi-
tectures are possible. In the first, the query frame is matched to
each frame in turn. In the second, descriptors over all frames
are combined into a single search space. As SIFT is used, the
dimension, D, of the search space will be 128. In the first case
the object search requires finding matches for each of the R

descriptors of the query frame, and there are R regions in each
frame, so there are R searches through R points of dimension D

for N frames, a worst case cost of O(NR2D). In the second case,
over all frames there are NR descriptors. Again, to search for
the object requires finding matches for each of the R descriptors
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(a)

(b)

Fig. 7. Object query example III: Casablanca. (a) Keyframe with user
specified query region (lamp). (b) Screenshot showing the first eight ranked
shots. Each shot is displayed by three thumbnails showing (from left to right)
the first frame, the matched keyframe with the identified region of interest
shown in white, and the last frame of the shot.

in the query image, i.e. R searches through NR points, again
resulting in time complexity O(NR2D).

Consequently, even in the worst case, the vector quantizing
architecture is a factor of RD times faster than not quantizing.
These worst case complexity results can be improved by using
efficient nearest neighbour or approximate nearest neighbour
search [18], [28], [36].

Processing requirements: The region detection, description
and visual word assignment takes about 20 seconds per frame
(720×576 pixels) in this implementation but this is done off-line.
Optimized implementations currently run at 5Hz [24]. In terms of
memory requirements, the inverted file for the movie ‘Groundhog
Day’ takes about 66MB and stores about 2 million visual word
occurrences (this is with the 10% most frequent words removed).

For each visual word occurrence we store: (i) the frame number,
(ii) the x and y position in the frame and (iii) the distance to the
15th nearest neighbour in the image to define the radius of the
search region for spatial consistency re-ranking. For comparison,
storing 128-dimensional descriptors in double precision (8 bytes)
for two million regions would take about 2GB.

VI. EXPERIMENTS

Here we evaluate the object retrieval performance over the
entire movie on a ground truth test set of six object queries.
First, in sections VI-A and VI-B, we introduce the ground truth
queries and compare performance and retrieval times with a
baseline method implementing standard frame to frame matching
(without quantization). In part this retrieval performance assesses
the expressiveness of the visual vocabulary, since only about 12%
of ground truth keyframes (and the invariant descriptors they
contain) were included when clustering to form the vocabulary.
In section VI-C we discuss typical failure modes and give a
qualitative assessment of retrieval performance. Finally, we study
the object retrieval performance with respect to different visual
vocabularies (section VI-D), and investigate in depth various
frequency ranking and weighting methods (section VI-E).

A. Retrieval performance against a baseline

The performance is compared to a baseline method implement-
ing standard frame to frame matching. The goal is to evaluate the
potential loss of performance due to the descriptor quantization.
In the baseline method, the same detected regions and descriptors
(after the stability check) in each keyframe are used. The detected
affine covariant regions within the query area in the query
keyframe are sequentially matched to all 5,640 keyframes in
the movie. For each keyframe, matches are obtained based on
the descriptor values using nearest neighbour matching with a
threshold ε on the distance. This results in a single or no match
between each query descriptor and each keyframe. Euclidean
distance is used here. Keyframes are ranked by the number of
matches, and shots are ranked by their best scoring keyframes.
Note that the baseline method is essentially equivalent to pooling
all descriptors from all 5,640 keyframes into a single database
and performing an ‘ε-nearest neighbour search’ for each query
descriptor. In more detail, the ε-nearest neighbour search amounts
to finding all points in the database within (Euclidean) distance ε

of the query descriptor with an additional uniqueness constraint
that only the best matching descriptor from each keyframe is
retained. This is a type of descriptor matching method used by
Schmid and Mohr [35] and later by Lowe [18].

The performance of the proposed method is evaluated on six
object queries in the movie Groundhog Day. Figure 8 shows
the query frames and corresponding query regions. Ground truth
occurrences were manually labelled in all the 5,640 keyframes
(752 shots). Retrieval is performed on keyframes as outlined in
section IV and each shot of the video is scored by its best scoring
keyframe. Performance is measured using a precision-recall plot
for each query. Precision is the number of retrieved ground truth
shots relative to the total number of shots retrieved. Recall is
the number of retrieved ground truth shots relative to the total
number of ground truth shots in the movie. Precision-recall plots
are shown in figure 9. The results are summarized using the
Average Precision (AP) in figure 9. Average Precision is a scalar
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(1) (2) (3)

(4) (5) (6)

Object # of kfrms # of shots # of regions
1 Red clock 138 15 31
2 Black clock 120 13 29
3 Frames sign 92 14 123
4 Digital clock 208 23 97
5 Phil sign 153 29 26
6 Microphone 118 15 19

Fig. 8. Query frames with outlined query regions for the six test queries
with manually obtained ground truth occurrences in the movie Groundhog
Day. The table shows the number of ground truth occurrences (keyframes
and shots) and the number of affine covariant regions lying within the query
rectangle for each query.

valued measure computed as the area under the precision-recall
graph and reflects performance over all recall levels. An ideal
precision-recall curve has precision 1 over all recall levels, which
corresponds to Average Precision of 1. Note that a precision-recall
curve does not have to be monotonically decreasing. To illustrate
this, say there are 3 correct shots out of the first 4 retrieved, which
corresponds to precision 3/4 = 0.75. Then, if the next retrieved
shot is correct the precision increases to 4/5 = 0.8.

It is evident that for all queries the average precision of the
proposed method exceeds that of using frequency vectors alone –
showing the benefits of using the spatial consistency to improve
the ranking. On average (across all queries), the tf–idf frequency
ranking method performs comparably to the baseline method.
This demonstrates that using visual word matching does not
result in a significant loss in performance against the standard
frame to frame matching. Further examining the precision-recall
curves in figure 9 we note that the performance is biased towards
high precision at lower recall levels. In practice, this might be
acceptable for some applications: for example a visual search of
videos/images on the Internet, where the first few correctly re-
trieved videos/images (and their corresponding web-pages) might
contain the relevant information. We note, however, that for some
other applications, where finding all instances of an object is
important (e.g. surveillance), higher precision at higher recall
levels might be preferable.

Figures 1, 6, 10 and 11 show example retrieval results for four
object queries for the movie ‘Groundhog Day’, figure 7 shows
a retrieval example for the black and white film ‘Casablanca’
and figure 12 shows a retrieval example for the movie ‘Run Lola
Run’. Movies ‘Casablanca’ and ‘Run Lola Run’ are represented
by 5,749 and 3,768 keyframes, respectively, and a new visual
vocabulary was built for each of the two movies, as described in
section III.

Figure 13 shows an example of a search by an image from
outside the ‘closed world’ of the film. The image was prepro-
cessed as outlined in section II. Searching for images from other
sources opens up the possibility for product placement queries,
or searching movies for company logos, or particular buildings
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obj 1 obj 2 obj 3 obj 4 obj 5 obj 6 avg
(a) 0.70 0.81 0.93 0.48 0.77 0.62 0.72
(b) 0.55 0.49 0.86 0.43 0.73 0.41 0.58
(c) 0.44 0.62 0.72 0.20 0.76 0.62 0.56

Average precision (AP) for the six object queries: (a) frequency and
spatial ranking, (b) frequency ranking only, (c) baseline

Fig. 9. Precision-recall graphs (at the shot level) for the six ground
truth queries on the movie Groundhog Day. Each graph shows three curves
corresponding to (a) frequency ranking (tf–idf) followed by spatial consistency
re-ranking (circles), (b) frequency ranking (tf–idf) only (squares), and (c) the
baseline method implementing standard frame to frame matching (stars). Note
the significantly improved precision at lower recalls after spatial consistency
re-ranking (a) is applied to the frequency based ranking (b). The table shows
average precision (AP) for each ground truth object query for the three
different methods. The last column shows mean average precision over all
six queries.

or types of vehicles.

B. Retrieval time

The average query time for the six ground truth queries on
the database of 5,640 keyframes is 0.82 seconds with a Matlab
implementation on a 2GHz Pentium. This includes the frequency
ranking and spatial consistency re-ranking. The spatial consis-
tency re-ranking is applied only to the top Ns = 500 keyframes
ranked by the frequency based score. This restriction results in no
loss of performance (measured on the set of ground truth queries).

The query time of the baseline matching method on the same
database of 5,640 keyframes is about 500 seconds. This timing
includes only the nearest neighbour matching performed using
linear search. The region detection and description is also done
off-line. Note that on this set of queries our proposed method has
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 10. Object query example IV: Groundhog Day. (a) Keyframe with user specified query region (Phil sign), (b) close-up of the query region and (c)
close-up with affine covariant regions superimposed. (d-g) (first row) keyframes from the 1st, 4th, 10th, and 19th retrieved shots with the identified region of
interest, (second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions superimposed. The first false positive
is ranked 21st. The precision-recall graph for this query is shown in figure 9 (object 5). Querying 5,640 keyframes took 0.64 seconds on a 2GHz Pentium.

(a) Query (b) (c)

Fig. 13. Searching for a location in the movie ‘Run Lola Run’ using an
external image downloaded from the Internet. (a) A query frame. (b),(c)
Frames from two shots, ranked 3 and 7, correctly retrieved from the movie.
All three images show the same building – a museum in Berlin, which was
redesigned to look like a bank in the movie. In the first 20 retrieved shots
there are 3 correct matches (ranked 3, 7 and 11).

achieved about 600-fold speed-up compared to the baseline linear
search.

C. Qualitative assessment of performance

Examples of frames from low ranked shots are shown in
figure 14. Appearance changes due to extreme viewing angles,
large scale changes and significant motion blur affect the process
of extracting and matching affine covariant regions. The examples
shown represent a significant challenge to the current object
matching method.

Currently, the search is biased towards (lightly) textured regions
which are repeatably detected by the applied affine covariant
region detectors [22]. Examples of challenging object searches

(1,2) (4)

Fig. 14. Examples of missed (low ranked) detections for objects 1, 2 and 4
from figure 8. In the left image the two clocks (objects 1 and 2) are imaged
from an extreme viewing angle and are barely visible – the red clock (object
2) is partially out of view. In the right image the digital clock (object 4) is
imaged at a small scale and significantly motion blurred. Examples shown
here were also low ranked by the baseline method.

are shown in figure 15.
Typical failure modes include the following cases: (i) no

regions are detected on the query object (e.g. object ‘A’ in
figure 15). Such queries return no results. (ii) Extracted affine
regions (and descriptors) generalize only over a very limited range
of viewpoint and lighting variations. This typically happens when
affine regions are extracted on object boundaries (with depth
discontinuities) and therefore include other objects or background,
or when affine regions are detected on image structures arising
from lighting effects such as specular reflections or shadows. An
example is shown in figure 15, object ‘B’ (coffee pot). Other
examples include textureless (bottles, mugs) or thin and wiry
objects (bicycles, chairs). (iii) Extracted affine regions are highly
unstable (e.g. change/disappear over time). Examples include
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 11. Object query example V: Groundhog Day. (a) Keyframe with user specified query region (tie), (b) close-up of the query region and (c) close-up
with affine covariant regions superimposed. (d-g) (first row) keyframes from the 1st, 2nd, 4th, and 19th retrieved shots with the identified region of interest,
(second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions superimposed. The first false positive is ranked
25th. Querying 5,640 keyframes took 0.38 seconds on a 2GHz Pentium.

highly deformable objects such as people’s clothing (see object
‘C’ in figure 15) or unstructured non-rigid objects such as running
water or leaves moving in the wind.

The range of searchable objects can be extended by adding
other covariant regions (they will define an extended visual vo-
cabulary), for example those of [42]. Including shape and contour
based descriptors [5], [23] might enable matching textureless or
wiry [7] objects. Finally, an interesting direction is developing
specialized visual vocabularies for retrieving instances of object
classes, such as a face-specific visual vocabulary for retrieving
faces of a particular person in a video [37].

D. Vocabulary investigation

In the following experiments, we vary the parameters of the
object retrieval system such as the number of words in the visual
vocabulary, the size of the stop-list and the size of the retrieval
database.

1) Varying the number of words of the visual vocabulary: The
goal here is to evaluate the performance of the proposed object
retrieval system for different cardinalities of the visual vocabulary.
The visual vocabulary is built as described in section III, and
retrieval is performed as outlined in section IV, using both the
frequency ranking and spatial consistency re-ranking steps. The
top 10% most frequent visual words are stopped. The proportion
of SA to MS regions is kept constant (=3/5) throughout the
experiments. The results are summarized in figure 16. The best
performance is obtained for a visual vocabulary size of 16,000.

The size of the visual vocabulary is clearly an important
parameter which affects the retrieval performance. When the
number of clusters is too small, the resulting visual words are non-
discriminative generating many false positive matches. On the
other hand, when the number of clusters is too large, descriptors
from the same object/scene region in different images can be
assigned (due to e.g. noise) to different clusters generating false
negative (missed) matches.

Recently, Nister and Stewenius [24] proposed a visual vocab-
ulary organized in a tree together with a hierarchical scoring
scheme, which seems to overcome the difficulty of choosing a
particular number of cluster centres.

2) Effect of the stop list: Table I evaluates the effect of varying
the size of the stop list on the performance of the proposed
object retrieval system (after the spatial consistency re-ranking).
The best performance (mean Average Precision 0.72) is obtained
when 10% of the most frequent visual words are stopped. This
amounts to stopping 1,600 most frequent visual words out of the
vocabulary of 16,000. Note that stopping the 1,600 most frequent
visual words removes about 1.25 million visual word occurrences
(out of the total of about 3.2 million) appearing in the 5,640
keyframes of the movie ‘Groundhog Day’.

3) Evaluating generalization performance of the visual vo-
cabulary: To test the generalization performance of the visual
vocabulary we evaluate the object retrieval performance on the
5,640 keyframes of ‘Groundhog Day’ with different visual vo-
cabularies. The results are shown in table II. Visual vocabularies
(a) from ‘Groundhog Day’, and (b) from ‘Casablanca’, were built
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 12. Object query example VI: Run Lola Run. (a) Keyframe with user specified query region (a logo on a hat), (b) close-up of the query region
and (c) close-up with affine covariant regions superimposed. (d-g) (first row) keyframes from the 3rd, 9th, 10th, and 11th retrieved shots with the identified
region of interest, (second row) a close-up of the image, and (third row) a close-up of the image with matched elliptical regions superimposed. The first false
positive is ranked 12th. Querying 3,768 keyframes took 0.36 seconds on a 2GHz Pentium.

Visual Vocab. kfrms K Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Average
(a) Ghd. 474 16,000 0.70 0.78 0.94 0.46 0.78 0.62 0.71
(b) Casa. 483 16,000 0.25 0.31 0.47 0.20 0.48 0.15 0.31
(c) Casa.+Ghd. 474, 483 32,000 0.58 0.92 0.93 0.51 0.69 0.53 0.69

TABLE II

Generalization performance. PERFORMANCE FOR OBJECT RETRIEVAL ON 5,640 KEYFRAMES OF ‘GROUNDHOG DAY’ WITH RESPECT TO DIFFERENT

VISUAL VOCABULARIES. (A) VISUAL VOCABULARY OF 16,000 VISUAL WORDS BUILT FROM 474 KEYFRAMES OF ‘GROUNDHOG DAY’. (B) VISUAL

VOCABULARY OF 16,000 VISUAL WORDS BUILT FROM 483 KEYFRAMES OF ‘CASABLANCA’. (C) VISUAL VOCABULARY OF 32,000 VISUAL WORDS

OBTAINED BY CONCATENATING VISUAL VOCABULARIES (A) AND (B). PERFORMANCE IS MEASURED BY AVERAGE PRECISION ON THE SIX GROUND

TRUTH QUERIES FROM ‘GROUNDHOG DAY’ SHOWN IN FIGURE 8.

Size of stop list (%) mean Average Precision
0 0.66
1 0.66
5 0.71
10 0.72
20 0.65

TABLE I

Effect of the stop list. MEAN AVERAGE PRECISION OF THE PROPOSED

OBJECT RETRIEVAL METHOD WITH THE VARYING SIZE OF STOP LIST. THE

MEAN AVERAGE PRECISION IS COMPUTED OVER THE SIX GROUND TRUTH

OBJECT QUERIES FROM FIGURE 8. THE VOCABULARY SIZE IS 16,000

VISUAL WORDS.

as outlined in section III, i.e. vector quantization was performed
only within frames of one movie. Visual vocabulary (c) was
obtained by concatenating visual vocabularies (a) and (b). Using

the visual vocabulary built from ‘Casablanca’ (b) for retrieval in
‘Groundhog Day’ results in a performance drop in comparison to
the performance of the ‘Groundhog Day’ vocabulary (a). On the
other hand, case (c), simple concatenation of vocabularies (a) and
(b), brings the performance almost to the original level (a). Note
that in all three cases, (a)-(c), the top 5% most frequent visual
words are stopped. Using the 10% stop-list lowers the perfor-
mance (measured by the mean average precision) of vocabulary
(b) and (c). This might be attributed to higher importance of more
general (and more common) visual words in this case.

4) Increasing the database size: Here we test the retrieval
performance on a larger database composed of 11,389 keyframes
from the two movies ‘Groundhog Day’ (5,640 keyframes) and
‘Casablanca’ (5,749 keyframes). The same ground truth set of
queries from the movie ‘Groundhog Day’ (figure 8) is used here
but the additional keyframes from ‘Casablanca’ act as distractors
potentially lowering the precision/recall of the retrieved results.
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A

C

B

(a) (b)

(c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 15. Examples of challenging object searches. (a) Keyframe from the movie ‘Groundhog Day’ with three query regions (denoted A,B,C). (b) The same
keyframe with affine covariant regions superimposed. (c,e,g) Query region close-ups. (d,f,h) Query close-ups with affine covariant regions superimposed. (i-l)
Example retrievals for object B (i-j) and object C (k-l). Each column shows (top) a keyframe from the retrieved shot with the identified region of interest,
(middle) a close-up of the image, and (bottom) a close-up of the image with matched affine regions superimposed. Query analysis: Query A (plain wall)
does not contain any visual words and hence returns no results. Query B (coffee pot) retrieves two shots taken from very similar viewpoints (the 2nd ranked
is shown in (i)). Other shots are not retrieved as affine regions extracted on the object either include background or cover specular reflections, which change
with viewpoint and lighting conditions. The first false positive (ranked 3rd) is shown in (j). Query C (the white shirt) retrieves three correct shots (the 2nd
ranked is shown in (k)) but most of the matches are on the background object. This is because affine regions on the shirt are detected on creases, which
change as the person moves. The first false positive (ranked 4th) is shown in (l).

Visual Vocab. kfrms K Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Average
(a) Ghd. 474+0 16,000 0.62 0.61 0.92 0.35 0.71 0.54 0.63
(b) Ghd.+Casa. 474+483 16,000 0.49 0.56 0.85 0.37 0.68 0.48 0.56
(c) Ghd.+Casa. 474+483 24,000 0.63 0.50 0.76 0.39 0.73 0.51 0.59
(d) Ghd.+Casa. 474+483 32,000 0.61 0.65 0.84 0.52 0.80 0.54 0.66
(e) Ghd.+Casa. 474+483 40,000 0.68 0.59 0.78 0.51 0.79 0.49 0.64

TABLE III

Increasing the database size. PERFORMANCE FOR OBJECT RETRIEVAL ON A DATABASE OF 11,389 KEYFRAMES FROM TWO MOVIES (‘GROUNDHOG DAY’

AND ‘CASABLANCA’) WITH RESPECT TO DIFFERENT VISUAL VOCABULARIES. SEE TEXT. PERFORMANCE IS MEASURED BY AVERAGE PRECISION ON THE

SIX GROUND TRUTH QUERIES FROM ‘GROUNDHOG DAY’ SHOWN IN FIGURE 8.

The test was performed with five different visual vocabularies:
(a) the original vocabulary of 16,000 visual words computed
from ‘Groundhog Day’; (b)–(e) vocabularies clustered from 474
‘Groundhog Day’ keyframes and 483 ‘Casablanca’ keyframes into

different vocabulary sizes, varying between 16,000 – 40,000 vi-
sual words. Results are summarized in table III. In all cases the top
10% most frequent visual words were stopped. Examining results
for the vocabulary (a), we observe that increasing the database
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Fig. 16. Changing the vocabulary size. Performance for object retrieval on
5,640 keyframes of ‘Groundhog Day’ with respect to vocabularies of different
sizes. The graph and table show the mean Average Precision computed over
the six ground truth object queries from figure 8.

size by adding the extra distractor keyframes from ‘Casablanca’
lowers the mean Average Precision from 0.72 to 0.63 (cf figure 9,
method (a)). The best performance on the extended database
(mean Average Precision 0.66) is achieved for vocabulary (d),
where descriptors from ‘Groundhog Day’ and ‘Casablanca’ are
pooled together and jointly clustered into 32,000 visual words.
This suggests that including descriptors from ‘Casablanca’ in
the vocabulary building step is beneficial and reduces confusion
between ‘Groundhog Day’ and ‘Casablanca’ objects. Again, note
that the number of visual words is an important parameter,
which significantly influences the final performance. Similar
‘quantization’ effects were observed on the database composed
of only ‘Groundhog Day’ keyframes (figure 16) but with the best
performance at 16,000 visual words.

E. Comparison of term frequency weighting and ranking methods

In this section, we describe alternative term frequency weight-
ing and ranking schemes and compare their performance with
the standard tf–idf weighting (described in section IV-A). Perfor-
mance is evaluated on the ground truth set of queries of figure 8.
Spatial consistency is not applied.

1) Freq-L2: In this method document vectors are formed using
only absolute term frequencies,

ti = nid, (6)

and query and document vectors are normalized to have unit L2

norm. Note that starting from relative term frequencies,

ti =
nid

nd

, (7)

gives the same document vector as starting from absolute term
frequencies (6), as the L2 normalization cancels the nd term in the
denominator of (7). Similarity is computed using the normalized
scalar product (4). The reason for including this method is to
compare the term frequency weighting with the tf–idf weighting
and assess the contribution of the inverse document frequency
term.

2) Freq-L1: In this method document vectors are formed using
term frequencies (6) but are normalized to have unit L1 norm
(instead of L2), ‖vq‖1 = 1, ‖vd‖1 = 1, where ‖v‖1 =

PV
i=1

|ti|.
Using L1 normalization is equivalent to using relative term fre-
quencies (7). The similarity score is computed using L1 distance
as

1 − 1

2
‖vq − vd‖1. (8)

The goal here is to compare the L1 and L2 based normalization
and similarity score.

3) Freq-χ2: Here document vectors are treated as normalized
histograms (probability distributions) over terms [13], [15], [27],
[43], [44], i.e. relative word frequencies (7) are used (vectors
are normalized to sum to one). Similarity between two vectors
(normalized histograms) is computed using the χ2 distance [15],
[30], [43] as

1 − 1

2
χ2(vq ,vd), (9)

where

χ2(vq,vd) =
VX

i=1

(tqi − tdi)
2

(tqi + tdi)
. (10)

4) Freq-KL: As in the ‘Freq-χ2’ method above, document
vectors are treated as probability distributions over terms, but the
dissimilarity score between the query vector and document vec-
tors is computed using the Kullback–Leibler (KL) divergence [13],
[27], [44]

DKL(vq‖vd) =
VX

i=1

tqi log
tqi

tdi

. (11)

Note that the Kullback–Leibler divergence is not symmetric,
DKL(vq‖vd) �= DKL(vd‖vq). In particular, note that document
terms which are not present in the query have limited effect on
the DKL(vq‖vd) as the corresponding tqi are zero. This is an
important difference from the χ2 distance based ranking (9) as the
χ2 distance is symmetric and penalizes terms which are present
in the document vector vd and missing in the query vector vq .

5) tf-idf-KL: In this method document vectors are formed
using the tf–idf weighted visual word frequencies (3). Document
vectors are then normalized to sum to one and the dissimilarity
score between the query vector and document vectors is computed
using the KL divergence (11). The goal is to compare performance
of this method with the ‘Freq-KL’ method above and evaluate
the contribution of the idf weights.

6) Freq-Bhattacharyya: As above, document vectors are
treated as probability distributions over terms, i.e. visual word
frequencies (6) are used and query and document vectors are
normalized to have unit L1 norm, ‖vq‖1 = 1, ‖vd‖1 = 1. The
similarity score between the query vector and document vectors
is measured using the Bhattacharyya coefficient [2], [9],

B(vq ,vd) =

VX
i=1

p
tqi tdi. (12)

The Bhattacharyya coefficient can be geometrically inter-
preted [2], [9] as a cosine of the angle between vectors uq =

(
p

tq1, . . . ,
p

tqV )� and ud = (
√

td1, . . . ,
√

tdV )�. Note that
both uq and ud have unit L2 norm since vq and vd have unit L1

norm.
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7) tf-idf-Bhattacharyya: Here document vectors are formed
using the tf–idf weighted visual word frequencies (3). Document
vectors are then normalized to sum to one and the similarity score
between the query vector and document vectors is computed using
the Bhattacharyya coefficient (12). The goal is to compare per-
formance of this method with the ‘Freq-Bhattacharyya’ method
above and evaluate the contribution of the idf weights.

8) Binary: Here document vectors are binary, i.e. ti = 1 if the
word i is present in the document and zero otherwise. Similarity is
measured using the (unnormalized) scalar product vq

�
vd. This

similarity score simply counts the number of distinct terms in
common between the query and the retrieved document. Note
that this method can be also viewed as an intersection of binary
(un-normalized) histograms, vq and vd.

In addition to the binary vector method described above we
introduce four other binary vector based methods: Binary-L2,
Binary-L1, Binary-χ2 and Binary-KL. These methods are anal-
ogous to methods described above, i.e. the same normalization
and similarity score is used. The only difference is that the
initial document vectors (before normalization) are binary rather
than based on term frequencies (6). The reason for including
the ‘binary’ methods is to assess the importance of using term
frequencies. Note that the Binary-Bhattacharyya method is not
included as it produces the same document ranking as the Binary-
L2 method.

9) Performance comparison: Precision-recall plots for the dif-
ferent term frequency ranking methods are shown in figure 17.
Results are summarized using Average Precision (AP) in the table
in figure 17.

The best average performance over all queries (mean AP
0.61) is achieved by the ‘tf-idf-Bhattacharyya’ frequency ranking
method (a), which combines the ‘tf–idf’ term weighting with the
Bhattacharyya ranking score. Relatively high performance (mean
AP 0.58–0.60) is also achieved by Kullback-Leibler divergence
methods (b,c,d) and the standard ‘tf–idf’ method (e), described
in section IV-A. Considerably worse results (mean AP 0.26–0.40)
are obtained using χ2 (j,k) and L1 (l,m) distance based methods.

The L1 (l,m) and χ2 (j,k) methods perform poorly on queries 1–
2 and 5–6. By close inspection of the results we found that this is
due to highly ranked false positive images with small total number
(10–50) of visual words and only 1–2 visual words common with
the query.

Note also the superior performance (measured by the mean
Average Precision) of the KL divergence method (c) to the χ2

method (j). This can be attributed to the asymmetry of the KL

divergence as discussed above.
By comparing each frequency method with its corresponding

binary method we also note that using term frequencies seems
to produce slightly better ((j,k) and (l,m)) or equal ((g,h) and
(c,d)) results, measured by the mean Average Precision. The
superior performance (measured by the mean AP) of the tf–idf
methods (a,b,e) compared with their frequency based counterparts
(f,c,g) may be attributed to the positive contribution of the inverse
document frequency weighting.

In all the above experiments the top 5% most frequent visual
words were stopped. If the 10% stop-list is used, the performance
of method (b) goes down slightly to mean average precision
0.59. The performance of methods (a,e) remains the same. Note
that methods (a,b,e) use the tf–idf weighting. More interestingly,
performance of the other methods (c,d,f–m), which do not use

the tf–idf weighting, slightly increases (by on average 0.035).
For example, the mean average precision of methods (f) and (g)
increases from 0.56 and 0.54 to 0.59 and 0.57, respectively, which
makes them comparable to their tf–idf counterparts (a) and (e).
This suggests that applying a stop-list has a similar effect to using
tf–idf weights. In other words, the inverse document frequency
(idf) weighting component might be viewed as a ‘soft’ stop-
list, down-weighting very common visual words. Applying the
stop-list, however, has the additional benefit of discarding mis-
matches (as was illustrated in figure 4), which helps in the spatial
consistency re-ranking stage (cf table I), and is also useful for
localizing objects in images.

10) Discussion: The proposed object retrieval system uses the
normalized scalar product (method (e)) for initial visual word
frequency based ranking of video frames, but methods based on
Kullback-Leibler divergence and Bhattacharyya coefficient seem
to produce similar (or slightly better) results on our ground truth
set of test queries. As observed in the text retrieval literature [3],
inverse document frequency (idf) weighting consistently improves
retrieval performance. Interestingly, the L1 distance based ranking
(method (l)) performs very poorly on our data, which is in contrast
with experiments performed by Nister and Stewenius [24] on their
dataset. We think this might be attributed to: (i) different statistics
of extracted (quantized) visual descriptors and/or (ii) different
statistics of the dataset used for experiments. Our dataset contains
queries for small objects in highly cluttered and possibly changing
background, whereas Nister and Stewenius query mostly by entire
images (with some change of camera viewpoint).

VII. DISCUSSION AND CONCLUSIONS

We have demonstrated a scalable object retrieval architecture,
which utilizes a visual vocabulary based on vector-quantized
viewpoint invariant descriptors. The vector quantization does not
appear to introduce a significant loss in retrieval performance
(precision or recall) compared to nearest neighbour matching.

Currently, descriptors are assigned to the nearest cluster centre
using linear search. Recently however, efficient search methods
using hierarchical tree structured vocabulary [24], vocabulary
indexed by randomized trees [28], or descriptor indexing by
decision trees [14], [26] have been used. Hierarchical vocabu-
laries [11], [24] can also reduce descriptor quantization effects
and can, to some extent, overcome the difficulty with choosing
the number of cluster centres.

The spatial consistency re-ranking was shown to be very
effective in improving the precision and removing false positive
matches. However, the precision could be further improved by
a more thorough (and more expensive) verification, based on a
stricter measure of spatial similarity (e.g. angular ordering of
regions [35], region overlap [10], deformable mesh matching [29],
or common affine geometric transformation [18], [28]). Unless the
system is being designed solely to retrieve rigid objects, care must
be taken not to remove true positive matches on deformable ob-
jects, such as people’s clothing, by using measures that apply only
to rigid geometry. To reduce the computational cost, verification
can be implemented as a sequence of progressively more thorough
(and more expensive) filtering stages. Spatially verified returns
can be used to automatically expand the initial user-given query
with additional visual words leading to a significantly improved
retrieval performance [8].
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Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Average
(a) tf-idf-Bhatta 0.54 0.58 0.91 0.53 0.71 0.37 0.61
(b) tf-idf-KL 0.67 0.59 0.72 0.24 0.78 0.57 0.60
(c) frq-KL 0.66 0.61 0.67 0.24 0.77 0.56 0.59
(d) bin-KL 0.66 0.61 0.67 0.24 0.76 0.57 0.59
(e) frq-tf-idf 0.55 0.49 0.86 0.43 0.73 0.41 0.58
(f) frq-Bhatta 0.50 0.57 0.86 0.44 0.68 0.33 0.56
(g) frq-L2 0.57 0.49 0.77 0.39 0.70 0.31 0.54
(h) bin-L2 0.45 0.60 0.87 0.38 0.63 0.30 0.54
(i) bin 0.51 0.59 0.63 0.23 0.74 0.49 0.53
(j) frq-χ2 0.16 0.38 0.86 0.44 0.49 0.09 0.40
(k) bin-χ2 0.17 0.27 0.82 0.43 0.47 0.09 0.37
(l) frq-L1 0.09 0.16 0.71 0.43 0.30 0.05 0.29
(m) bin-L1 0.11 0.10 0.61 0.39 0.29 0.05 0.26

Average precision (AP) for the six object queries.
Fig. 17. Comparison of frequency ranking methods. Precision-recall graphs (at the shot level) for the six ground truth queries on the movie Groundhog
Day comparing performance of different term frequency ranking methods. The table shows average precision (AP) for each ground truth object query. The
last column shows mean average precision over all six queries. Note that precision–recall graphs are shown only for methods (a), (e), (i), (j) and (l) from the
table, so that the curves are visible.

The method in this paper allows retrieval for a particular visual
aspect of an object. However, temporal information within a shot
may be used to group visual aspects, and enable object level
retrieval [32], [38].

It’s worth noting some differences between document retrieval
using a bag-of-words, and frame retrieval using a bag-of-visual-
words: (i) because visual features overlap in the image, some
spatial information is implicitly preserved (i.e. randomly shuffling
bits of the image around will almost certainly change the bag-of-
visual-words description). This is in contrast to the bag-of-words
representation of text, where all spatial information between
words (e.g. the word order or proximity) is discarded. (ii) An
image query typically contains many more visual words than
a text query – as can be seen in figure 8 a query region of a
reasonable size may contain 30-100 visual words. However, since
the visual words are a result of (imperfect) detection and also
might be occluded in other views, only a proportion of the visual
words may be expected to match between the query region and
target image. This differs from the web-search case where a query
is treated as a conjunction, and all words should match in order to
retrieve a document/web-page. (iii) Internet search engines exploit

cues such as the link structure of the Web [6] and web-page
popularity (the number of visitors over some period of time) to
compute a static rank [31] of web-pages. This query independent
rank provides a general indicator of a quality of a web-page and
enables more efficient and in some cases more accurate retrieval.
For example, the inverted file index can be ordered by the static
rank allowing the retrieval algorithm to access the high quality
documents first. An interesting research question would be to
develop an analogue to static ranking for video collections.

A live demonstration of the ‘Video Google’ system on two
publicly available movies (‘Charade’ [Donen, 1963] and ‘Dressed
to Kill’ [Neill, 1946]) is available on-line at [1].
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