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Abstract

We address the problem of person detection and tracking
in crowded video scenes. While the detection of individ-
ual objects has been improved significantly over the recent
years, crowd scenes remain particularly challenging for the
detection and tracking tasks due to heavy occlusions, high
person densities and significant variation in people’s ap-
pearance. To address these challenges, we propose to lever-
age information on the global structure of the scene and to
resolve all detections jointly. In particular, we explore con-
straints imposed by the crowd density and formulate per-
son detection as the optimization of a joint energy function
combining crowd density estimation and the localization of
individual people. We demonstrate how the optimization of
such an energy function significantly improves person de-
tection and tracking in crowds. We validate our approach
on a challenging video dataset of crowded scenes.

1. Introduction
Detecting and tracking people in crowded scenes is a cru-

cial component for a wide range of applications including
surveillance, group behavior modeling and crowd disaster
prevention. The reliable person detection and tracking in
crowds, however, is a highly challenging task due to heavy
occlusions, view variations and varying density of people
as well as the ambiguous appearance of body parts, e.g.
the head of one person could be similar to a shoulder of
a near-by person. High-density crowds, such as illustrated
in Figure 1, present particular challenges due to the diffi-
culty of isolating individual people with standard low-level
methods of background subtraction and motion segmenta-
tion typically applied in low-density surveillance scenes.

In recent years significant progress has been made in the
field of object detection and recognition [7, 11, 12]. While
standard “scanning-window” methods attempt to localize
objects independently, several recent approaches extend this
work and exploit scene context as well as relations among
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Figure 1. Individual head detections provided by state-of-the-art
object detector [12] (bottom-left; green: true positives; red: false
positives) are improved significantly by our method (bottom-right;
yellow: new true positives) using the crowd density estimate (top-
right) obtained from the original frame (top-left).

objects for improved object detection [8, 25, 29, 31]. Re-
lated ideas have been investigated for human motion anal-
ysis where incorporating scene-level and behavioral factors
effecting the spatial arrangement and movement of people
have been shown beneficial for achieving improved detec-
tion and tracking accuracy. Examples of explored cues in-
clude: the destination of a pedestrian within the scene [23],
repulsion from near-by agents due to the preservation of
personal space and social grouping behavior [4], as well as
the speed of an agent in the group [15].

We follow this line of work and extend it to the detec-
tion and tracking of people in high-density crowds. Rather
than modeling individual interactions of people, this work
exploits information at a more global level provided by the
crowd density and scene geometry. Crowd density estima-
tion has been addressed in a number of recent works which
often pose it as a regression problem [5,17,18]. Such meth-
ods avoid the hard detection task and attempt to infer per-
son counts directly from low-level image measurements,
e.g. histograms of feature responses. Such methods, hence,
provide person counts in image regions but are uncertain
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about the location of people in these regions. This infor-
mation is complementary to the output of standard person
detectors which optimize precise localization of individual
people but lack the global knowledge on the crowd struc-
ture. Our goal and contribution is to combine these two
sources of complementary information for improved person
detection and tracking. The intuition behind our method is
illustrated in Figure 1 where the constraints of person counts
in local image regions help improving the standard head de-
tector.

We formulate our method in an energy minimization
framework which combines crowd density estimates with
the strength of individual person detections. We minimize
this energy by jointly optimizing the density and the loca-
tion of individual people in the crowd. We demonstrate
how such optimization leads to significant improvements
of state-of-the-art person detection in crowded scenes with
varying densities. In addition to crowd density cues, we
explore constraints provided by scene geometry and tempo-
ral continuity of person tracks in the video and demonstrate
further improvements for person tracking in crowds. We
validate our approach on challenging crowded scenes from
multiple video datasets.

The rest of the paper is organized as follows. We put our
method in the context of related work in Section 2. Sec-
tion 3 describes our model, its individual components as
well as the optimization procedure for our objective func-
tion. Finally, the proposed model is experimentally evalu-
ated in Section 4.

2. Related work
Object recognition and localization has been studied ex-

tensively in computer vision and substantial progress has
been achieved over the last decade [7,11,12]. Recent studies
demonstrate that the explicit modeling of scene-level infor-
mation can aid performance of individual object-level de-
tectors. For example, [29] uses scene priming to constrain
locations of objects in the image, [3, 30] seek detections
that explain a set of detected parts, whereas [8, 25] model
spatial and co-occurence interactions between objects in the
scene while [31] attempts to explore relations between hu-
man poses and manipulated objects. Our detection method
relates to this previous work and extends it by exploring the
new scene-level constraint provided by the crowd density.

In the area of tracking, [4, 16, 22, 23] demonstrate how
the tracking accuracy can be improved by the joint model-
ing of motion of multiple people in the scene. For exam-
ple, [22] tracks football players and explores the roles of
players to resolve tracking ambiguity. Others study track-
ing in crowded scenes containing, for example, groups of
ants [16] or biological cells [19]. Given the difficulty of
tracking individuals in crowds, several approaches lever-
age common motion patterns as constraints for the track-

ing problem. In [2] global motion patterns are learned and
participants of the crowd are assumed to behave in a simi-
lar manner. Overlapping motion patterns have been studied
in [26] as a means of coping with multi-modal crowd be-
haviors and [27] uses a large database of crowds as a data-
driven prior for tracking. Our method is complementary to
this prior work and can benefit from its sophisticated motion
models. Differently to the prior work on high-density crowd
tracking, our method builds on the tracking-by-detection
framework in [10] and does not require manual initializa-
tion.

The problem of determining the density of objects in a
scene has been also studied extensively. Several density es-
timation methods are based on aggregating counts obtained
from local object detectors. These methods typically as-
sume that image regions of target objects have distinct mo-
tion and/or appearance [9, 24]. While this assumption may
be applicable to low- and medium-density crowds, it usu-
ally does not hold for high-density scenes. An alternative
commonly used density estimation approach is based on re-
gression. These methods [5,6,17,18,20] typically forego the
challenges of detecting individual agents and instead focus
on learning a mapping between density and a set of feature
responses. In our work we apply the regression-style crowd
density estimation approach and use it to improve localiza-
tion of individual people.

3. Crowd Model

This section presents our method for detecting and track-
ing people in crowds. Section 3.1 formulates the new model
for density-informed person detection. The components of
this model, i.e. person detection and crowd density estima-
tion are described in Sections 3.2 and 3.3 respectively. Sec-
tion 3.4 describes our tracking framework.

3.1. Energy formulation

We formulate the density-informed person detection as
follows. We assume to have a confidence score s(p) of a
person detector for each location pi, i = 1...N in an image.
In addition, we assume we are given a person density, i.e.
the number of people per pixel, D(pi) estimated in a win-
dow of size σ at each location pi. Our goal is to identify
locations of people in the image such that the sum of detec-
tor confidence scores at those locations is maximized while
respecting the density of people given by D and preventing
significantly overlapping detections, i.e. detections with the
area overlap greater than a certain threshold. Using similar
notation as in [8], we encode detections in the entire image
by a single N -vector x ∈ {0, 1}N , where xi = 1 if the
detection at pi is ”switched on” and 0 otherwise. The detec-
tion problem can be then formulated as a minimization of
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Figure 2. Illustration of the energy term ED of (1). Minimizing
ED implies reducing the difference in person density estimates
obtained by the estimator D(p) (blue color coding) and by local
counting person detections (red color coding).

the following cost function

min
x∈{0,1}N

− s>x︸︷︷︸
ES

+x>Wx︸ ︷︷ ︸
EP

+α‖D −Ax‖22︸ ︷︷ ︸
ED

. (1)

Minimizing the first term, ES , in (1) ensures the high con-
fidence values of the person detector at locations of de-
tected people (indicated by xi = 1). The second, pair-
wise, term EP ensures that only valid configurations of
non-overlapping detections are selected. This is achieved
by setting Wij = ∞, if detections at locations pi and pj

have significant area overlap ratio, and 0 otherwise. The
first two terms of the cost function are similar in spirit to
the formulation used in [8] and implement a variation of the
standard non-maximum suppression. In addition, we intro-
duce a new term, ED, that models the crowd density con-
straints by penalizing the differences between the density
values (i) measured with a regression-based density estima-
tor D and (ii) obtained by counting the “switched on” (or
active) detections in x. The evaluation of the density of ac-
tive detections in x is performed by matrix multiplication
Ax, where A is a N ×N matrix with rows Ai

Ai(qj) =
1

2πσ2
exp

(
− ‖pi − qj‖2

2σ2

)
(2)

corresponding to Gaussian windows of size σ centered at
positions pi. The idea of minimizing the term ED is illus-
trated in Figure 2. Intuitively, optimizing the cost (1) in-
cluding the third, density, term ED enables improving per-
son detection by penalizing confident detections in low per-
son density image regions while promoting low-confidence
detections in high person density regions.

In the simplest form, when σ is equal to the width of the
entire image, the density term ED reduces (up to a multi-
plicative constant) to penalizing the difference between the
total number of switched on detections in x and the total
number of people in the image obtained by the density esti-
mator D.

Note that results of the optimization will be naturally
dependent on the quality of the used detector s and den-
sity estimator D. Moreover, the quality of D is expected
to decrease for small window sizes σ, since if the density
estimates D were reliable for arbitrary small σ, having D
would solve the detection problem. To balance the contri-
butions of person detection and density estimation, we in-
troduce in (1) a weighting parameter α, which we set man-
ually during training. We also select appropriate window
size σ resulting in reasonable density estimates as will be
explained in Section 3.3.

Optimization. Optimizing (1) with respect to a discrete
vector x is a NP-hard problem in general. As the cost func-
tion (1) has a quadratic form, one could attempt optimizing
it using quadratic programming by relaxing the binary val-
ues of x to x ∈ [0, 1]N . As the quadratic form is not convex
(because of theEP term), there is no real gain in the compu-
tational complexity to solve the relaxed problem. We thus
follow a different approach and optimize (1) using a greedy
search procedure similar to [8]. We initialize x̂ = 0, then at
each new iteration we update x̂ with xi = 1 by activating a
detection at pi for iwhich decreases the cost function by the
largest amount. We continue iterations until the cost in (1)
cannot be decreased further by activating more detections.
Similar to [8], we found this minimization strategy to work
well in practice.

3.2. Person detection

In this section we describe the multi-scale person detec-
tor, which provides the dense detection score map s(p) used
in the cost function (1). Person detection is a widely stud-
ied problem with many methods and evaluation benchmarks
available [7, 11, 12]. Most of the methods consider full-
body (pedestrians) or upper-body detection as these views
are typical for streetview scenes, movies and consumer pho-
tographs. In dense crowd scenes, however, the body of the
person does not provide reliable cues due to frequent oc-
clusions by other people. In this work we use the state-
of-the-art object detector [12] and train it on extended head
regions obtained by manual annotation of head rectangles in
our training images of crowds. To improve discrimination,
we sample negatives from the same images by allowing a
small overlap with positive samples. Once trained, the de-
tector is applied to all positions and scales in the image to
provide a dense score map s(p). To localize individual peo-
ple a non-maximum suppression procedure is usually ap-
plied to s(p) [12]. In our work we use s(p) in combination
with density estimation D(p) in (1). Results of person de-
tections in crowds are illustrated in Figures 1 and 4, and are
quantitatively evaluated in Section 4.

Geometric consistency. Footage of crowd scenes typi-
cally involves people moving on a ground plane filmed with
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Figure 3. Estimating approximate camera-scene geometry from
head detections. Assuming known average head size in the scene,
the camera height and tilt (parametrized by the location of the hori-
zon line) can be computed from imaged positions and scales of two
head detections in the image. See text for more details.

an overhead camera (see Figure 3). This imposes strong
prior on the plausible positions and sizes of people in the
frame.

We use this prior to improve results of the basic per-
son detector described above. For this purpose, we seek to
roughly estimate the camera viewpoint, which in turn will
give us constraints on person sizes observed across the im-
age. We follow the approximation of scene-camera geome-
try developed in [14] and [13] for generic object detection
and adapt it to constrain head detection in crowd videos.
We assume people stand on the ground plane, and further
assume that (bottom tip of) their heads lie in a single “head
plane”, parallel with the ground plane. The camera posi-
tion with respect to the scene is parameterized by two vari-
ables: the height of the camera, yc, and the camera tilt, pa-
rameterized by the position of the horizon in the image v0.
We assume there is no horizontal or in-plane rotation of the
camera. Given this simplified model, the 3D head size yi

of a person i is related to its measured image height hi at
vertical image co-ordinate vi as

yi =
hiyc

vi − v0
. (3)

Assuming known 3D head size, equal to the average person
head (22.6cm [21]), we can estimate the two unknown cam-
era parameters (yc, v0)from positions and heights of two
detections in the image. In our experiments, we estimate
the camera parameters using least squares fit from the top
m head detection hypothesis with the highest confidences
(see figure 4). While the scene-camera geometry model
is only approximate, we show that the resulting geometric
constraints can significantly improve the performance of the
detector in Section 4.

Having obtained an estimate for the camera parameters,
we can in turn use them to prune head detection hypotheses
which are not consistent with the geometry of the scene. In
particular, given the combined detection score map obtained

(a) (b)
Figure 4. (a) The top most confident head detections (shown in red)
used to estimate the camera parameters (height and tilt). The cam-
era parameters are in turn used to constrain the heights of detected
heads in the scene. (b) Visualization of the metric rectification of
a frame of a crowd video using the estimated scene geometry.

over a set of geometrically plausible scales, a detection hy-
pothesis for a given location in the frame is compared the
reported height of the head detection in real-world coordi-
nates to that of the average person head. When the abso-
lute difference between the head heights of the detection
hypothesis and the average head size is too large, the detec-
tion hypothesis is suppressed.

3.3. Crowd density estimation

Here we outline the density estimator D(p) used to drive
the density-informed detection given by cost function (1).
Crowd density estimation has been addressed in a number
of works [5,6,18,20,24]. While some of this work is based
on counting detected people, here we seek an alternative
approach to complement our person detector. We therefore
resort to regression-based density estimation and follow the
recent method of [18]. We assume a set of training im-
ages with dense feature map φ(p) ∈ Rm at each pixel p
and ground-truth annotations of head positions ξi. We de-
fine ground truth density F 0(p) as a kernel density estimate
based on positions of annotated points as

F0(p) =
1

2πτ2

∑
i

exp
(
− ‖ξi − p‖

2

2τ2

)
,

where we use a 2D Gaussian kernel with a small bandwidth
τ = 4 corresponding to the size of heads in our feature
map φ. Following [18], we learn a linear transformation of
feature responses that approximates the density function at
each pixel F (p|w) = w>φ(p) where w ∈ Rm is a weight
vector. We learn w from k training samples by minimizing
the regularized MESA distance D introduced in [18] as

ŵ = argmin
w∈Rm

(
w>w + λ

∑
k

D(F 0
k (·), Fk(·|w))

)
. (4)

The density estimator above can be used with different
types of feature maps φ. In this paper we define φ us-
ing the dense scores s(p) of the person detector described
in Section 3.2. In particular, we define the feature map
φi(p), i = 1...m by smoothing detector scores s(p) that are



obtained from a range of geometrically plausible scales with
m Gaussian filters G(·; ti) of different size ti.

While F (p) provides per-pixel estimate of the density
function, here we aggregate it in Gaussian windows of size
σ and define D(p) in (1) as D(p) = F (p) ∗ G(·; σ). As
mentioned earlier, σ is an important parameter related to
the quality of the density estimator, small values of σ result
in stronger density prior in our framework, but also have
less reliable results of density estimation. To balance this
trade-off, we choose σ by cross-validation and fix its value
to 90 pixels in our experiments. We note that adapting the
value of σ to the estimated size of people in the image may
provide further improvements.

3.4. Tracking detections

In this section we describe how the person detections,
obtained in individual frames by minimizing the density-
aware cost function (1), are associated into person-tracks
over multiple video frames. The objective here is to to as-
sociate head detections in individual frames into a set of
head tracks corresponding to the same person within the
crowd across time, thereby generating tracks of individu-
als that conform to the crowd. We follow the tracking by
detection approach of [10], which demonstrated excellent
performance in tracking faces in TV footage, but here ap-
ply it to track heads in crowded video scenes. The method
uses local point tracks throughout the video to associate de-
tections of the same person obtained in individual frames.
For each crowd video sequence, we obtain point tracks us-
ing the Kanade-Lucas-Tomasi tracker [28]. The point tracks
are used to establish correspondence between pairs of heads
that have been detected within the crowd.

For a given pair of head detections in different frames,
the number of point tracks which pass through both heads
is counted, and if this number is large relative to the num-
ber of point tracks which are not in common to both heads,
a match is declared. We use a single-link agglomerative
grouping strategy as in [10] which gradually merges head
detections into larger groups starting from the closest (most
connected) detections.

This simple tracking procedure is extremely robust and
can establish matches between head detections where the
head has not been continuously detected due to pose vari-
ation or partial occlusions due to other members of the
crowd. In Section 4 we demonstrate the improvement in
detection performance using this type of tracking by asso-
ciation: missing detection below detection threshold can be
filled-in, and short tracks corresponding to false positive de-
tections can be discarded.

4. Evaluation
This section evaluates results of our method on the task

of detecting and tracking people in crowded video scenes.
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Figure 6. Evaluation of person detection performance. Precision-
recall curves for the (a) baseline detector, (b) after geometric fil-
tering, (c) tracking by agglomerative clustering and (d) using the
proposed density-aware person detector. Note the significant im-
provement in detection performance obtained by the density-aware
detector. For comparison, the plot also shows performance of the
density-aware detector using the ground truth density, obtained by
smoothing ground truth detections by a Gaussian with different
sigmas. Note the improvement in performance for smaller sig-
mas. In this case, for sigma approaching zero, the density would
approach the ground truth and hence the perfect performance.

Dataset. For the training and testing we have collected
videos of crowd scenes from the Internet and recorded our
own set of videos with scenes of political rally. These
videos contain considerable variation in terms of viewing
angle, scale, crowd motion and crowd density. The cam-
era remained static in all the videos. For the training and
evaluation of detection accuracy, we have annotated heads
of all visible people in randomly selected frames. All the
videos were divided into three subsets. The first subset with
1200 annotated head bounding boxes was used to train a
person detector [12] (Section 3.2). The second subset with
all people annotated in 60 frames was used to train a density
estimator [18] (Section 3.3). The last test subset with 1009
annotated head bounding boxes was deployed to evaluate
the performance of the detection.

In order to evaluate the task of tracking, we employed a
subset of 13 video clips captured at a large political rally.
Examples of the video frames from this tracking testing set
are depicted in Figures 1 and 8. On average, each video clip
is roughly two minutes long with a frame size of 720×480.
As can be seen, this collection of crowd video clips spans
a wide range of densities, viewpoints and zoom levels. We
have annotated 122 person tracks to evaluate the tracking
performance on videos from the test subset. This data is
available on the project website [1].

Detection. To test and compare the detection perfor-
mance, we follow PASCAL VOC evaluation protocol [11].
A predicted bounding box is considered correct if it over-
laps more than 50% with a ground-truth bounding box, only
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Figure 5. Tracking RMS error (in pixels) for different tracks with and without using the proposed density-aware detector. The error is
measured with respect to manually labelled tracks. Note that in many cases the error is significantly reduced using the proposed method.

one detection overlapping with ground-truth bounding box
is considered correct, other overlapping detections are de-
clared as false positives. The Performance is measured in
terms of precision-recall and average precision (AP) values.
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Figure 7. Person detection performance, measured by average pre-
cision (y-axis) for different person densities (x-axis). Note that
proposed density-aware detector outperforms the baseline detec-
tor across almost all density-levels, and specially medium-level
densities of 2-7 people in 2x2 meters.

To demonstrate the advantage of our method on the de-
tection task, we have compared it to three alternative de-
tectors. Our first baseline detector is [12] trained on our
training data. The second detector integrates the baseline
detector with geometric filtering imposing the prior on the
size of detections as described in Section 3.2. The third
detector futher integrates temporal consistency constraints
using agglomerative clustering described in Section 3.4. Fi-
nally, our density-aware detector optimizes the introduced
cost function (1) and integrates geometric filtering and tem-
poral consistency constraints as in the case of other detec-
tors. The comparative evaluation is shown in Figure 6. As
can be observed, the density-aware detector (red curve) out-
performs all three other detectors by a large margin. Quali-
tative detection results are illustrated in Figure 8.

To gain understanding of the density prior introduced
in this work, Figure 6 also shows detection results for the
density-aware detector using ground truth density estimates

obtained by smoothing ground truth person detections with
Gaussians of varying σ (green curves). Interestingly, the
detection performance increases significantly in this case,
suggesting that our detector can further benefit from future
better performing density estimation methods. As expected,
the performance of the detector increases for better local-
ized ground truth density estimators with smaller values of
σ.

We finally illustrate detection results over scene regions
with different person densities in Figure 7. We observe
that the density-aware detector (red bars) obtains highest
gain for the medium range of density values (2-7 people
per 4m2). This can be explained by the increasing error of
the density estimator for low-density scenes, and decreasing
performance of the person detector for the very high density
scenes.

Tracking. The objective of this set of experiments is to
assess the improvement that can be attained in tracking ac-
curacy using the proposed density-aware crowd model in
the presence of a range of crowd densities.

Quantitative analysis of the proposed tracking algorithm
was performed by generating ground-truth trajectories for
122 people, which were selected randomly from the set of
all people in the crowd. The ground-truth was generated
by manually tracking the centroid of each selected person
across the video. In our experiments we evaluate tracks in-
dependently, by measuring tracking error (measured in pix-
els) which is achieved by comparing the tracker position
at each frame with respect to the position indicated by the
ground truth. When our system does not detect a person
that has been labeled in the ground truth, this correspond-
ing track is considered lost. In total, our system was able to
detect and track 89 out of the 122 labelled individuals.

A set of trajectories generated by our tracking algorithm
is shown in Figure 8. The average tracking error for the
annotated heads that were detected obtained using the pro-
posed model was 52.61 pixels (Figure 5). In order to as-
sess the contribution of density estimation in tracking accu-
racy, a baseline tracking procedure consisting of detection,
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Figure 8. Examples of detection and tracking results for different crowded scenes and levels of person density. For detection (top), true
positives are shown in green, false positives are shown in red. The additional true positives detected by the proposed density-aware detector
(compared to the baseline with geometric filtering and tracking) are shown in yellow. False positives removed by the proposed method
are shown by red dashed line. For tracking results (bottom), head detections are depicted with green bounding boxes along with their
associated tracks over 100 frames. Additional results and videos are available on the project web page [1].



geometric filtering and agglomerative clustering was eval-
uated. The mean tracking error of this baseline algorithm
was 64.64 pixels. This increase in tracking accuracy can
be attributed to the fact the association of individual head
detections into tracks contains fewer false positives.

We further evaluated the ability to track people over a
span of frames by measuring the difference in the length of
the generated tracks in relation to the manually annotated
tracks. The mean absolute difference between the length of
the ground truth tracks and the tracks generated by our sys-
tem was 18.31 frames, whereas the baseline (which does not
incorporate density information) resulted in a mean differ-
ence of 30.48 frames. It can be observed from these results
that our tracking was very accurate, in most cases, and able
to maintain correct track labels over time.

5. Conclusion
We have shown that automatically obtained person den-

sity estimates can be used to improve person localization
and tracking performance in crowded scenes. We have for-
mulated the person detection task as a minimization of a
joint energy function incorporating scores of individual de-
tections, pair-wise non-overlap constraints, and constraints
imposed by the estimated person density over the scene. We
have demonstrated significant gains in detection and track-
ing performance on challenging videos of crowded scenes
with varying density. Currently, video frames are processed
individually and obtained detections are tracked in post-
processing. Next, we plan to extend the proposed cost func-
tion to spatio-temporal video volume to jointly detect and
track people in multiple frames.
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