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Abstract. This paper is motivated by some results presented by Knud-
sen, Robshaw and Wagner at Crypto’99 [3], that described many attacks
of reduced versions of Skipjack, some of them being erroneous.
Differential cryptanalysis is based on distinguishers, any attack should
prove that the events that triggers the analysis has not the same proba-
bility for the cipher than for a random function. In particular, the com-
position of differential for successive parts of a cipher should be done
very carefully to lead to an attack.

This revised version of the paper includes the exact computations of
some probabilities and repairs the attack of the first half of Skipjack.

1 What is differential cryptanalysis

Chosen plaintext attacks. If we have a “black box” containing a symmetric
block cipher, we are able to encrypt anything we want. The goal of the attack
is to decrypt some given ciphertext, or even better to retrieve the key. A partial
success is obtained if we have a distinguisher, i.e. a technique that gives some
information about what is in the box (e.g. the algorithm used).

Looking at differences. In order to check the security of a block cipher under
chosen plaintext attacks, we can make statistical tests on the output when the
input is cleverly chosen. The differential cryptanalysis [2] looks at the difference
in the output of the cipher when a pair of input texts with some particular
difference (XOR) is enciphered. If the pair of input texts is randomly chosen with
their difference following some special distribution of probability, the difference
of the outputs may give some information about what is inside.

Building a distinguisher using a differential. More precisely, if we know
that, for some keys the input of two different plaintexts with a difference in
the subset A gives two ciphertexts with a difference in the subset A* with non
trivial probability p (this is called a differential of probability p, the common
notation is A —, A*), then we are able to distinguish two black boxes, one with
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the given cipher and the other with a random permutation. Formally, we fix the
key and we take probabilities over all pairs (c,c') of cleartexts (or equivalently
over all pairs (e,e') of ciphertexts, since the cipher is a permutation). Then

p=Prlede € A/cd € Al =Prlcd € Aled e € A*]%.
Regular differential cryptanalysis is looking for probability close to 1. Impossible
cryptanalysis [1] is looking for probability 0. The “trivial probability” is the
expected probability p* that the differential holds for a random permutation. It
is the probability that a random value is in A*.

In practice, a regular differential cryptanalysis encrypts n independant ran-
dom pairs of plaintexts (with % < n < ). If one of the pair of ciphertexts has
difference in A*, we recognise the cipher not being a random permutation. The
probability that the encryption of n pairs of plaintexts produces no pair with
difference in A* is less than e~ ™" and the probability that a set of n random
pairs of texts contains a pair with difference in A* is less than np*. If we need
better probability of success, we can encrypt more pairs and have a threshold
greater than one to decide if the black box is the cipher ; exact probabilities of
success can be computed with Chernoff bounds.

Finding weak keys. If the differential holds only for some subset of the keys,
the distinguisher allows to detect these keys.

Finding the key of the last rounds with reduced rounds differentials.
Most block ciphers are based on a succession of identical rounds, that differ only
by the subkey used. The first and last rounds may be different.

If we find a differential (a distinguisher) for the cipher reduced to all but
a few last rounds, we can guess with non trivial probability what is the input
difference for these few last rounds. Since we exactly know the output, we might
be able to find the subkeys used in those rounds. Part of the analysis may be
done using the structural properties of how the key bits are used in those rounds
and part of the analysis may be done by exhaustive search.

The probability of success is deduced from the gap between the probability p
of the differential and the trivial probability p*. Detailed and practical analysis
has been done e.g. in [2].

Composition of differentials. When we can split the cipher in two (ore more)
successive ciphers (this is the case with most ciphers, putting the breakpoint be-
tween two internal rounds), a very tempting tool is to combine a differential for
the first part and one for the second part. This is called a differential character-
istic and the notation will be A —- A* — A*.

The probability of the differential A — A* is greater than or equal to the
probability of the differential characteristic A — A* — A*.

Warning : the probability of the differential characteristic can be unrelated
to the probabilities of A — A* and A* — A*. The very simple example below
illustrate this fact. f : (a,b,c) — (a,b, (a&b) @ ¢). An input difference 100 to f



give an output difference of 100 with probability 1/2 and an output difference
of 101 with probability 1/2. However the differential characteristic 100 — /5
100 —y/2 100 has probability 1 and the differential characteristic 100 —; /o
100 —; /5 101 has probability 0.

Markov ciphers [4] have the property that the probability of the differential
characteristic A - A* — A* is equal to the product of the probabilities of
A — A* and A* — A*.

Finding the key of the first rounds : filtering and counting. Of course,
finding the key of the last rounds with a chosen plaintext attack is similar to
finding the key of the first rounds with a chosen ciphertext attack. But we limit
ourself to the chosen plaintext attacks.

If we have a differential A* — A* for the cipher reduced to all but some
first rounds, and another differential A — A* for those rounds, then we use the
differential characteristic A - A* — A* to make an attack as follows.

The cryptanalysis will use (random) pairs of cleartexts having difference in
A. The filtering selects all pairs of cleartexts such that the ciphertexts have
difference in A*. Let p be the probability of A* — A*, ¢ the probability of A —
A* | p* the probability of A — A*. and ¢* the probability of A — AX — A*.
If ¢* /q is substantially greater than p*, the filtering will increase the probability
that a pair of cleartexts have their difference in A* after the first rounds. For
a Markov cipher ¢* = pq and the condition rewrites to p > p*. We name it the
filtering condition. If p = p*, then the highest counter has no reason to be
related to the value of the key. The probability of the second differential should
not be trivial.

To find the key used in the first part of the cipher, we build a table of counters
indexed by all the possible values of this key. For each filtered pair (following
A — A*), we increase the counters corresponding to all the values that lead to
a difference in A* after the first rounds. The attack works because the highest
counter after looking at all pairs should correspond to the value of the key. This
is the counting hypothesis. It is not implied by the filtering condition.

2 Example: Truncated Differentials and Skipjack

Overview. Knudsen, Robshaw and Wagner presented at Crypto’99 [3] a paper
that looks for differentials in Skipjack. They are interested in differentials for
the general structure of the algorithm without looking at the details of the “G-
boxes” and how the key is used. They propose five attacks of reduced variants
of Skipjack:

— Section 4.1 attacks the first 16 round with a composition of a 4-rounds
differential and a 12-rounds differential. The differential is used to find the
key of the first round.

— Section 4.2 attacks the middle 16 rounds with a distinguisher for the first 12
of them (reduced rounds attack).



— Section 4.3 attacks the last 28 rounds with a composition of a 4-rounds
differential and a 24-rounds differential (which is obtained by combining
three 8-rounds differentials). The differential is used to find the key of the
first round.

— Section 5.1 attacks the middle 24 rounds with a boomerang attack meeting
in the middle.

— Section 5.2 is a variant of the previous one, for the middle 25 rounds.

Both attacks of sections 4.1 and 4.3 have the same flaw : the key found by
the highest counter is not related to the key of the first round, due to the use of
a differential with trivial probability. Then we will look at the boomerang attack
of section 5.1, and show that it has a similar flaw.

Notations. We take the notations of [3]. The two different types of rounds of
Skipjack are noted 74 and 7g. Skipjack is working on blocks of 64 bits splitted
in four 16-bits words. The notation for some subset A will be (0,a,a,b) for
example, indicating that the difference in the first 16-bits word is zero, that the
differences in the second and third 16-bits words are equal and non-zero and
that the difference in the fourth 16-bits word is non-zero.

Section 4.1. The authors consider the following 16 rounds differential :
((I, b7 0, C) ﬂ)2_32 (07 d) 0, 0) ml (6, f7 9 0)5

which is the composition of two differentials and has probability at least 2732.
But we can notice that the differential for the first four rounds is built with the
composition (a,b,0,c) —2,-16 (0, ¢, b,0) iTimfm (0,d,0,0).

To attack the key of the first round, they use the filtering and counting attack
we described before, with the differential :

((l, b7 07 C) l>2_16 (07 c, b: 0) M)Q*w (67 f7 g, 0)

This attack does not work, because the second differential has trivial prob-
ability. The attack could be used to find simultaneously the subkeys of the
first four rounds, but they use all the key. It might be corrected by looking at
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the G-boxes and computing more precisely the probability of (0, ¢, b, 0)
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(e, f,9,0) and (a,b,0,c) ——= (e, f,9,0). This is done in the annex.

Section 4.3. The authors consider the following 28-rounds differential :
ary 87 874 87
(a,b,O,c)—)2_16 (dve7070)—>2—16 (f,g,O,h)—>2_32 (i,i,o,o)—>1(j,k,l,0),

which is the composition of four differentials. We notice that each of them has

non trivial probability, with the exception of (d, e, 0, 0) ﬁ)2_16 (£, 9,0, h) which
cannot distinguish the cipher 87p from a random cipher. The authors want to



use this 28-rounds differential to get some information about the key used in its
first round, but it is even not possible if the cipher is restricted to the first twelve
rounds of this differential. Indeed, even if someone gives us the value (f, g,0, h),
the differential (a,b,0,c) ﬂh—m (d,e,0,0) E)Q—m (f,9,0,h), which can be
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rewritten (a,b,0,c) ~2, 15 (0,¢,b,0) —2725, 15 (f,9,0,h), has a second part
with trivial probability.

Section 5.1. The authors consider the following 12-rounds forward differential
A= (0,a,0,0) TA%By ) A* = (c,d, e,0) and the following 12-rounds backward

—1go —1
differential V = (f£,0,0,0) ﬂ)l V* = (i,h,0,j) that always hold, and
build a boomerang attack. Boomerang attacks are chosen-plaintext, adaptive
chosen-ciphertext attacks that allow to detect the occurence of some differences
in the middle. The attack builds pairs such that P @ P’ € A, encrypts them to
C and C', chooses D and D' such that C ® D € V and C' @ D' € V, decrypts
them to @ and @'. The result is a quartet of plaintext/ciphertext pairs that
looks good if Q @ Q' € A. Good looking quartets have probability 274 for a
random cipher. We will denote P, P’, ) and Q' the results of encryption by half
of the cipher. Right quartets have P® P' € A*, Q® Q' € A*, P® Q € V* and
P'oQ eV

The authors compute the probability for a quartet of being a right one. The
two differentials have probability one, so we have P & P' € A*, P& Q € V*
and P' ® Q' € V* with probability one. The conclusion (footnote in the article)
is that Q @ Q' € A* happens with probability 27'6. The backward differential
A* — A having probability 2732 the conclusion of [3] is that right quartets have
probability 2748,

Their error is that they expect two good looking quartets in 2*% : one right
and one wrong, and that is what distinguishes Skipjack from a random cipher.
But with Skipjack (reduced to the middle twenty-four rounds) all good looking
quartets are right one, because both differentials A - A* and V — V* have
probability one.

We consider that this mistake is similar to the error in sections 4.1 and 4.3,
in the sense that the occurence of some event should not only have interesting
probability, but this event should be related to the input of the analysis. If the
property Q@® Q' € A* had depended on P and P’, the attack could have worked.
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A Attacking Skipjack reduced to the first 16 rounds

Lemma 1. We start with N values (¢;)i=1.. n taken uniform randomly and in-
dependantly from K possible values. We choose randomly two of them «; and
a;j. The expected value for the probablility of a; = a5 is ™ = KJ'\F,ZQ_I. We remark
that if N = K then m ~ % and if N = K2 then 7w ~ %—}—%

Below we apply this lemma to estimate the probability of ¢(i) = ¢(j) for some
random cryptographic function ¢.

Description of the attack. To attack by fitering and counting the key of the
first round of Skipjack reduced to its first 16 rounds, the differential characteristic
used in [3, section 4.1] is

A=(a,b,0,c) —A— A% =(0,¢,b,00 A5, A* = (g,h,f,0).

Let us recall the notations for the probabilities of the differentials. Let p be
the probability of AX — A*) ¢ the probability of A — A*, p* the probability
of A —» A*. and ¢* the probability of A — A* — A*. The filtering condition is
q*/q > p*, which rewrites p > p* if the Markov hypothesis holds.

The Markov hypothesis does not hold in general for Skipjack with truncated
differentials, but in that case it holds, because uniform random pairs with dif-
ference (a,b,0,c) such that (a,b,0,c) -2 (0,c,b,0) give uniform random pairs
with difference (0, ¢, b, 0).

In [3] p = 2716 is computed assuming Markov hypothesis for all truncated
differentials and Skipkack, and p* = 276 can be computed with the same hy-
pothesis. That result implies that the the attack cannot work. However we see
below that the Markov hypothesis does not hold in that case and that p ~ 271%
and p* ~ 2716,

Computation of the probability p of (0,c,b,0) TTa87s (g, h, f,0). To
make an exact computation of p we need to write the result of the encryption of
a pair through those 15 rounds of SkipJack. Let G2 to G14 the keyed G functions.

L If ¢ is a permutation, this probability is equal to % However, if ¢ is obtained by the
exclusive XOR of permutations, or similar operations, then the values ¢(i) appear
to be taken uniform randomly and the lemma applies.



We also write AG;(X) the value of G;(z1) ® G;(x2) for some z1 ® z2 = X. If
the input pair has difference (0, ¢, b, 0) then the values of the differences through
the 15 rounds are shown in figure 1.

0 c b 0
Z‘ 0 0 ¢ b

b 0 0 c
:A ca®Z z 0 0 Z = AG4(b)
T;‘ Y Y Z 0 Y = AGs(c® 2)
o X X Y z X = AGs(Y)

Zow W X Y W = AG+(X)

:A Yev V w X V =AGs(ZOW)
; X U Y w U=AGy(Y V)
B w T U X Y T:AGm(X)
T Y S WoT UaX  S=AGu(W)
TB Uo X R YoS WaoT  R=AGn,(Y)
TB WaeT Q UsX®R Y®oS Q=AGuiUaX)
TB Y®S P WoeTe®Q U@®XOR P=AGu(WaT)
P UsX®R N YaoSeP WaoTadQ N=AGs(Y®S)
™ WeTeQ M UsX®R®N Y®SeOP M=AGsU®XaR)

Fig. 1. Differences during 77487p with input difference (0, ¢, b,0)

Let the input pair be (8,c¢1,b1,0) , (8,c¢2,bs, @) uniform random. Let v =
a® Gy(B) and y; = B & Gs(c; ® G4(b; ® G3(7))), then the triplet (v, yi,y5) is
uniform random.

Let ¢y : y = y © G11(G7(y @ G6(y))) ® G14(G7(y & Ge(y)) © G10(Gs(y)))-
The differential holds if Y @ S @ P = 0, i.e. ¢,(y]) = ¢~ (y3).

The function ¢, is a random cryptographic function for our lemma 1 with
N = K = 2'6, The probability of the differential is then estimated to be 2713,

Computing with exhaustive search for random uniform g1,y the probabil-
ity of ¢ (y1) = ¢-(yb), we check that the value of p is around 2715, slightly
depending on v and the key (less than 1% variation).

Computation of the probability p* of (a,b,0,c) 874875 (g, h, f,0). The
values of the differences through those 16 rounds are shown in figure 2.

Let the input pair be (a1,b1,,¢1) , (a2, b2, a, ¢2) uniform random. Let e =
a® Ga(c; +G1(a;)) and y; = a ® G5(G1(a;) ® G4(b; ® Gs(e;))), then the values
e, Y1, ey, yh are random uniform.

Let ¢ : (e,y) = y®G11(G7(G3(e)®Ge(eDY))) B G14(G7(G3(e) DG (eDy)) ®
G10(Gs(e ® y))). The differential holds if ¥ (e}, y}) = (e}, y3). The function ¢
is a random cryptographic function for our lemma 1 with N = 232 and K = 216,
The probability of the differential is then estimated to be 2716 4 2732,
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D = AG1(G)
E = AG2(c® D)
F = AGs(E)

Z =AG4(ba F)

Y =AGs(D&® Z)
X =AGs(E®Y)
V=AG(ZaW)
U=AGo(Y @ V)

T = AG1o(X)
S = AGn (W)
R= AG1:(Y)

Q=AGuUeX)

U X®R P=AGu(WoT)
WoTaeQ N=AG;5(Y ®S)
M UsX®R®N YoOSe®P M=AGs{U®X®R)

Conclusion. The actual probabilities are p ~ 2p*. The filtering condition holds
and the attack can work. To validate the counting hypothesis and check if the

Fig. 2. Differences during 87487 with input difference (a, b, 0, ¢)

Computing with semi-exhaustive search for random uniform (e}, 1), (€5, y3)
the probability of ¥ (e}, y;) = ¥(e},y)), we check that the value of p* is indeed
about 2716 with precision better than 2%.

attacks really works, an implementation of the attack is needed.

not repaired by similar exact computations.

The attack from [3, section 4.3] of Skipjack reduced to the last 28 rounds is




