
Short signatures in the random oracle model

Louis Granboulan?
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Abstract. We study how digital signature schemes can generate signa-
tures as short as possible, in particular in the case where partial message
recovery is allowed. We give a concrete proposition named OPSSR that
achieves the lower bound for message expansion, and give an exact se-
curity proof of the scheme in the ideal cipher model. We extend it to
the multi-key setting. We also show that this padding can be used for an
asymmetric encryption scheme with minimal message expansion.
Keywords: digital signature, padding, random oracle and ideal cipher
models, proven security.

1 Introduction

1.1 Overview of the results

A digital signature scheme allows a signer to transform an arbitrary mes-
sage into a signed message, such that anyone can check the validity of the
signed message using the signer’s public key, but only the signer is able
to generate signed messages. A signed message contains the information
about the message, plus some information to prove its validity. For exam-
ple in the case of a scheme without message recovery, the signed message
is the concatenation of the message and of a signature.

The message expansion of a signature scheme is the difference between
the length of the signed message and the original message. It is the length
of the signature, if there is no message recovery. We show how to obtain
message expansion as small as possible, with a concrete scheme having
proven security in the ideal cipher model. The OPSSR technique is a
padding for schemes based on trapdoor one-way bijections. Its perfor-
mance cost is small, and its security is similar to the other schemes in the
hash-then-invert paradigm.

? Part of this work has been supported by the Commission of the European Commu-
nities through the IST Programme under Contract IST-1999-12324 (NESSIE). This
paper is NESSIE document NES/DOC/ENS/WP5/021/2.



The paper is organized as follows. Section 2 describes a formalism for
digital signature schemes and describes the properties of the RSA trap-
door one-way bijection. Section 3 shows what are the lower bounds for
message expansion. Section 4 describes OPSSR, which has minimal mes-
sage expansion. Section 5 raises and solves a theoretical problem that
arises when having an idealized security model for a multi-key setting.
Section 6 discusses open problems. Appendix A compares OPSSR with
other paddings. Appendix B explains why OPSSR can also be used for
encryption.

1.2 Related work

Many schemes have been proposed with short signatures [2, 9, 10, 14, 15],
but their exact security is not proven to be equivalent to the underlying
problem with the same parameters, because their security proofs are not
tight. Therefore if the parameters are chosen to give short signatures, the
security of those schemes is not proven.

Partial message recovery can allow one to reduce message expansion when
having security parameters corresponding to the tightness of the security
proof. Message recovery has been used to reduce the message expansion
in the PSS scheme [1], the Pintsov-Vanstone scheme [3] or the DSA-like
schemes [14]. But those schemes do not achieve minimal signature length.

Coron [7] has shown how to reduce the length of the random salt in PSS,
to improve the amount of message recovered, and reduce the message
expansion. But the result of this improvement is still not optimal.

Coron, Joye, Naccache and Paillier [8] have shown that the PSS padding,
which was designed for signature, can also be used for encryption.

1.3 Our contribution

We introduce the definition of message expansion which generalizes the
notion of short signature for schemes with message recovery. We show
what is the minimal possible message expansion for a given proven secu-
rity requirement. We describe a padding that achieves this lower bound
and that can be used with RSA. This padding can be viewed as a gen-
eralization of PSSR and many other paddings. We also show that most
current schemes proven secure in a idealized model should go under a
small modification that increases their security in the multi-key setting.



2 Definitions

2.1 Digital signature schemes

Notations. If the variable x represents a value taken from a finite set X
of n elements, the we say that the size of x is the value #x = #X = log2 n,
which may not be an integer.

If the elements of X can be represented by bit strings, then ]x = ]X is
the length of the bit strings. Of course, #x ≤ ]x.

For variables x ∈ X and y ∈ Y, the corresponding element of X × Y is
written as x‖y. This notations comes from the fact that if x and y are bit
strings, then x‖y is the concatenation of these strings.

Definitions. A signature scheme is described by the following four algo-
rithms :

– a parameter generation Generate : ρ 7→ param,

– a key generation KeyGenparam : ρ′ 7→ (pk, sk),

– a signature generation Signparam,pk,sk : (m, r) 7→ σ

– and a signature verification Verparam,pk : (σ, r′) 7→ m or reject.

All these algorithms are deterministic, and the inputs ρ, ρ′, r and r′ (if
non empty) contain the randomization for the algorithms. They may have
some specific format.

Signature schemes with appendix have the property that σ = m‖s. Sig-
nature schemes with message recovery usually have the property that
σ = m̂‖s and that the whole message is m = m̂‖m̄, where m̄ is the recov-
ered part of the message. They typically have a lower bound for the size
of the whole message, which is also the amount of message recovered.1

Signature schemes with unique signature have the property that Ver is
injective (with the exception of reject), which also implies that Sign does
not use any random r (deterministic signature scheme).

Two signature schemes are equivalent when the following conditions are
satisfied:

– The possible values of param are the same.

– The distributions of the pk generated are indistinguishable.

– Both verification algorithms are the same.

– The output of the respective Sign operations for fixed m and random
r are indistinguishable.

1 This lower bound can be overcome by storing the length of the actual recovered part
in m̄. E.g. by padding m̄ with a 1 followed by a string of 0. With this padding, one
bit of message expansion is added.



2.2 Security model and proofs

A (t, ε, qS)-forger is able to make qS queries for signatures and tries to
produce a new valid signature. It succeeds in time t with probability ε.
A signature scheme with no (t, ε, qS)-forger is said to be (t, ε, qS)-secure
against adaptive chosen message attack. This security also means non-
repudiation, because it proves that only the signer is able to make valid
signed messages.

Weak security means that the forgery should be a valid signed message for
a message that was not the input of a query. Strong security means that
the forgery should be a valid signed message that was not the answer of
a query. These notions are equivalent if the scheme has unique signature.

The security level of a scheme is k bits if there exists no (t, ε, qS)-forger
with log2(t/ε) < k. This value k depends of the time unit used for t.

Please note that any (t, ε, qS)-forger for a signature scheme is also a
(t, ε, qS)-forger for all equivalent signature schemes.

A mathematical problem is (t′, ε′)-secure if there exist no algorithm that
solves an arbitrary instance of the problem in time t′ with probability
better than ε′. The difficulty is k′ bits if there exist no (t′, ε′)-solver with
log2(t

′/ε′) < k′.

A proof of security is the description of how to construct a (t′, ε′)-solver
(called reduction algorithm) when given access to a (t, ε, qS)-forger. The
reduction simulates an equivalent signature scheme and answers signature
queries from the forger. The forgery is used to solve the problem. The
reduction does not always succeed, partly because its simulation of an
equivalent signature scheme may not be perfect, and partly because the
forgery may be useless.

A tight proof of security has t′/ε′ ' t/ε.

2.3 Idealized models

An idealized oracle model replaces some components of the verification
algorithm with calls to an oracle which is simulated by the reduction. The
number of calls to these oracles is bounded e.g. by qO. Because the actual
computation of the idealized components takes time, a scheme with k bits
of security with the appropriate time unit always has qO ≤ 2k.

The random oracle model replaces hash functions by calls giving random
output. The generic group model replaces the operations in some group
by random answers that respect the group laws. The random permuta-
tion model replaces a fixed permutation by a random one constructed



in answer to the oracle calls. The ideal cipher model replaces a keyed
permutation by a random one constructed in answer to the oracle calls.

A reduction algorithm in a idealized model always gives random answers
taken from the set of values that are consistent with previous answers. It
has a total freedom for its answer to the first oracle query, and the other
answers should not allow the forger to detect that the reduction algorithm
took control of the oracle. Consistency for a random oracle means that
the same input always give the same output. For a random permutation,
two different inputs have different outputs, and queries for the inverse
permutation should also be consistent.

To be able to maintain consistency, the reduction algorithm needs to
keep tables of the subset of input/output pairs that has been developed
to answer the queries. In other words, the reduction algorithm constructs
the oracle tables.

The random oracle model is widely used in the literature, the ideal ci-
pher model and the generic group model have been used for proving the
security of some specific schemes. Proofs in these models cannot gener-
ically be translated into the real world [4, 11], but it is widely believed
that a proof in an idealized model give some confidence in the design
of a cryptographic primitive. The random oracle model and ideal cipher
model are very similar and we believe that they give similar confidence
in cryptographic designs: a random oracle can be contructed from ideal
ciphers, and it might be possible to build an ideal cipher from random
oracles.

2.4 The RSA trapdoor one-way bijection

Bijection. A bijection with length l is a one-to-one and onto mapping
F from a set S with 2l elements to a set L with 2l elements. It is a
permutation if S = L. Let l′ be equal to ]S.

One-way. A bijection with length l is one-way with security k′ bits if F

is easy to compute but finding the preimage for a random y ∈ L (i.e. the
unique x ∈ S such that y = F(x)) is a problem with a difficulty of k′ bits.
Exhaustive search in S shows that k′ ≤ l′.

Trapdoor. It is a trapdoor one-way bijection if knowing some secret
information (the trapdoor) makes easy the computation of F−1.



Random-self-reducibility. The permutation is random-self-reducible
if it has the following additional property. There exists a probabilistic
algorithm R that takes an input y ∈ L and generates a uniformly dis-
tributed value ỹ ∈ L such that knowing the value of F−1(ỹ) makes it easy
to compute F−1(y).

If F is random-self-reducible, then it is always possible to compute F−1(y)
in time 2l/2, using the birthday paradox. A table of 2l/2 random (x,F(x))
pairs is computed. A table of 2l/2 random ỹ values is generated with R(y).
A collision F(x) = ỹ gives the value for F−1(ỹ), from which we deduce the
value of F−1(y).

For a random-self-reducible trapdoor one-way permutation, we always
have k′ ≤ l/2.

RSA permutation. The public parameter is a number n and an odd
exponent e, the corresponding secret is the factorization pq = n or the
inverse e−1 mod φ(n). The function F(x) = xe mod n is a permutation
of the set Z∗

n of invertible integers modulo n. The trapdoor owner can
compute F−1(x) = xe

−1

mod n.

This function F is a random-self-reducible trapdoor one-way permutation.
Its random-self-reducibility comes from the algorithm R that generates a
random x̃ ∈ Z∗

n and returns ỹ = y · x̃e. Then F−1(y) = F−1(ỹ)/x̃.

The best known technique to compute F−1 is to compute the factorization
of n. Here is a table that gives estimates for minimal bit length of n to have
some given security levels. The problem of the estimation of the difficulty
of factoring large numbers is the object of some controversies and this
table should only be understood as a proposal for basing our numbers
on realistic estimates. It is not an attempt to solve this controversy. It is
based on the hypothesis than the recent factorizations of 512 bits numbers
needed a workfactor of 256 and that the asymptotic complexity of the
number field sieve is around Ln[

1
3
, 1.9].

The formula for the following table is k′ = 12 + log(L2l [13 , 1.9]).

Modulus length l 512 768 1536 4096 8192
Bit security k′ 56 64 80 128 160

RSA bijection. For the RSA permutation the permuted set L is Z∗
n

therefore the length l is not an integer. If an integer value is preferred,
the RSA bijection is defined as follows.

The set L contains all integers in Zn smaller than 2l, and S is its preimage
and l′ = dle. The computation of F(x) for x ∈ Zn begins with y =



xe mod n. If y ∈ L, it is the answer, else x is rejected because it is not an
element of S.

3 Minimal message expansion

3.1 The lower bound

A simple counting argument shows that for any signature scheme with
random salt of length #r and message expansion λ, a signed message is
valid with probability at least 1/2λ−#r. Therefore the security level of the
scheme is at most λ−#r.

Theorem 1. Minimal message expansion for k bits of security is k bits

of message expansion and can only be obtained for a signature scheme

with unique signature.

None of the previously published techniques achieve this lower bound:
they don’t allow one to go under 2k bits of message expansion. Our
OPSSR scheme achieves this lower bound.

3.2 Signature schemes with appendix

Coron [7] proved that a signature scheme with unique signature cannot
have a tight security proof, and that the lower bound for the relation
between the security k of the scheme and the security k′ of the underlying
problem is k′ ' k + log2 qS .

A signature scheme with appendix based on a problem with security k′

has an appendix of length at least k′. Therefore the message expansion
for a deterministic signature scheme with appendix is at least k+log2 qS .

Randomized signature schemes can enhance the tightness of the proof,
but at the cost of a random seed that appears in the signed message.
Each bit of gained tightness costs one bit of random seed.

Theorem 2. The lower bound for a signature scheme with appendix hav-

ing k bits of security against a forger allowed to make qS signature queries

is a message expansion of k + log2 qS bits.

None of the previously published techniques achieves this lower bound,
and the problem is still open whether it is possible to achieve it or not.



4 The OPSSR padding

4.1 Some previous work: PFDH and PSSR

Quick introduction. Full Domain Hash was formally described and
proved by Bellare and Rogaway in [1]. Their proof shows that in the
random oracle model with at most qH hash queries the security k of
FDH is related to the security k′ of the underlying trapdoor one-way
bijection by k′ ' k+ log2(qH + qS). Coron has shown in [6] that random-
self-reducibility helps to improve the proof and obtains k′ ' k + log2 qS .
Coron also introduced in [7] a probabilistic variant of Full Domain Hash
that we describe below.

PFDH. The two components are a random-self-reducible trapdoor one-
way bijection F and a cryptographic hash function H. The verification of
a signed message splits σ = m‖r‖s and says the signature is valid if s ∈ S
and H(m‖r) = F(s). It outputs the message m.

The trapdoor owner signs the message m by first generating a random
salt r, then computing s = F−1 ◦ H(m‖r), and returns σ = m‖r‖s.

The proof shows that if #r ≥ log2 qS then k′ ' k and if #r ≤ log2 qS then
k′ ' k + log2 qS −#r. We can notice that the output length of the hash
function is equal to the length l of the bijection and that the message
expansion is l′ +#r. Because of random-self-reducibility, l′ ≥ 2k′. PFDH
does not allow better message expansion than 2k.

PSSR. This scheme was introduced in [1] and its optimal proof of secu-
rity is in [7]. It is a modification of PFDH by adding recovery of the salt
and of part of the message.

The hash function H has output length 2k and an additional crypto-
graphic hash function G with input length 2k and output length l− 2k is
needed and is modeled as a random oracle.

The verification splits σ = m̂‖s, checks that s ∈ S, computes a‖h = F(s)
and m̄ = a⊕ G(h), and checks if H(m̂‖m̄) ?= h. It computes m‖r = m̂‖m̄
and outputs the message m.

The trapdoor owner signs the message m by first generating a random
salt r, then computing m̂‖m̄ = m‖r where m̄ is l − 2k bits long. Then
h = H(m‖r) and a = m̄ ⊕ G(h) are computed. The signed message is
m̂‖F−1(a‖h). PSS is the special case where #r = l − 2k.

The security proof is very similar to the proof for PFDH and shows that
PSSR has the same security as PFDH. The addition of G does not weaken



the scheme because the probability of a collision in the input of G is low.
This is due to the fact that the input size of G is twice the security level
of the scheme. The message expansion with PSSR is 2k+#r. PSSR does
not allow better message expansion than 2k.

Replacing a XOR with a block cipher. The idea of improving a
padding by replacing a XOR with a block cipher was introduced by Jons-
son [12] for an improvement of OAEP+ named OAEP++. The same can
be done with PSS. It only changes the security properties of the padding
when used for asymmetric encryption.

4.2 Basic OPSSR

OPSSR means Optimal Padding for Signature Schemes with message
Recovery. We begin with a simplified version of our OPSSR scheme.

This signature scheme can only sign messages of length l − k. It has two
parameters: a trapdoor one-way bijection F with length l and security k′

and an arbitrary permutation E of blocks of size l. The random permu-
tation model for E is used. In practice E can be based on a large block
cipher with fixed key 0 and F can be the RSA bijection.

Let κ be a fixed value of k bits, e.g. 0k. Valid signatures are generated
by m 7→ F−1(E−1(m‖κ)). The verification computes m‖v = E(F(σ)) and
checks if v ?= κ.

Security proof. We show how it is possible to compute F−1(y) for an
arbitrary y without knowing the trapdoor, but with access to a forger of
OPSSR in the random permutation model.

The number of signature queries is bounded by qS and the number of
oracle queries (to E and E−1) is bounded by qO. For all answers to the
qO+ qS ≤ 2k queries made by the forger, we will need to generate a value
y′ uniformly distributed in L. In this proof, one query has y′ = y and all
other queries have y′ = F(x′) for a random x′. A table of (y′, x′) is stored,
enabling the lookup of F−1(y′).

First we send to the forger the description of F. Then we will answer to
four types of queries and the oracle table is updated according to these
answers.

– In response to a signature query for m, the reduction generates a

value y′ and updates the oracle table with y′
E
7→ m‖κ. The answer is

x′ = F−1(y′).



The signature query aborts if E(y′) was already defined. Since y′ is
uniformly distributed in L, and at most 2k values were defined, this
happens with probability at most 1/2l−k.
The signature query also aborts if y′ = y. This has probability 1/2k.

– In response to a query for E−1(m‖κ), that is not in the table, a sig-
nature query for m is simulated. The answer is y′.
The oracle query aborts if E(y′) was already defined. This has proba-
bility at most 1/2l−k.
The oracle query does not abort if y′ = y. If the forger later makes a
query of a signature for m, then the signature query will abort.

– In response to a query for E−1(m‖v) with v 6= κ, a random value y′′

is generated and the oracle table is updated with y′′
E
7→ m‖v.

The oracle query aborts if E(y′′) was already defined. This has prob-
ability at most 1/2l−k.

– In response to a query for E(y′′), random m and v are chosen, and the

oracle table is updated with y′′
E
7→ m‖v.

The oracle query aborts if v = κ. This has probability 1/2k.

If l ≥ 2k + 1, then no query make the reduction abort with probability
more than 2−k. The total probability of non abortion is (1−1/2k)2

k
≥ 1/e.

The forger returns a forgery σ which is the signature of a message m
with probability better than 1/2k. If this message was not in a query for
E−1(m‖κ), then the signature is valid with probability 1/2k. Therefore
this message was in a query for E−1(m‖κ) and a value y′ was generated.
The reduction can compute F−1(y) if this forgery corresponds to y = y′,
which happens with probability 2−k. Therefore the success probability of
the reduction is the one of the forger divided by at most e2k.
The running time t of the (real world) forger includes some actual compu-
tations of F, E and E−1. The answer to an oracle query by the reduction
algorithm needs some table lookups and at most one computation of F.
Under the hypothesis that the time for all these computations are similar,
the running time for the reduction is γt for some small constant γ.
A difficulty level of k′ ' 2k is needed and this scheme has minimal message
expansion.

Random-self-reducibility. The same technique as in [6] can be used
when F is random-self-reducible. This technique consists in a change of
the way the values y′ are generated. The full details on how to optimize
the parameters can be found in Coron’s papers.
The basic idea is to have a proportion α/qS of the values y′ generated with
the algorithm R. A signature query will abort if such a y′ was generated,



which happens with probability α. However, if the reduction does not
abort, then its success probability is the success probability of the forger
divided by qS/α.

This idea applies to OPSSR as well and a difficulty level of k′ ' k+log2 qS
is needed and the scheme has minimal message expansion.

Randomization. The same technique as in [1, 7] can be used to enhance
the tightness of the reduction, if F is random-self-reducible. The message
m is padded with a random salt r before being signed. The signature
verification works as before but the salt is discarded.

The reason why this improves the tightness of the reduction is that a much
higher proportion of the values y′ can be generated with the algorithm
R, because a signature query can choose a value for the salt for which
y′ = F(x′).

This idea applies to OPSSR as well and a difficulty level of k′ ' k +
log2 qS − #r is sufficient when the salt has length #r ≤ log2 qS . How-
ever this randomized scheme does not have minimal message expansion,
because the salt is recovered and the expansion is k +#r.

4.3 OPSSR

Basic OPSSR only allows one to sign messages of length l − k. To sign
a message m of arbitrary length greater than l − k, the message is split
m̂‖m̄ = m where m̄ has length l − k bits. m̂ will be transmitted in the
clear and m̄ will be recovered with the Basic OPSSR scheme.

The security proof still holds if all answers to oracle queries are indepen-
dent for different values of m̂. Therefore the functions E and E−1 need to
take m̂ in their input. For better efficiency, a hash of m̂ is used.

In practice, OPSSR will use a collision free hash function H with 2k bits
of output and a keyed permutation Ek of blocks of size l with a key of
size 2k. The function Ek is modeled as an ideal cipher.

Signature generation. The message is split m = m̂‖m̄ with l−k bits in
m̄. Then h = H(m̂) and and x = E−1

h (m̄‖κ) and s = F−1(x) are computed.
The signed message is σ = m̂‖s.

Signature verification. The signed message is split σ = m̂‖s with s ∈ S.
Then x = F(s) and h = H(m̂) and m̄‖v = Eh(x) are computed. The
signature is valid if v = κ.



4.4 RSA-OPSSR and comparison with other schemes

RSA-OPSSR. With a goal of 80 bits of security and log2 qS ' 48,
OPSSR can be used for a proven (in the ideal cipher model) deterministic
signature algorithm with 80 bits of message expansion with a 4096 bits
RSA (or whatever is the modulus size for 128 bits of RSA security), or
for a proven probabilistic signature algorithm with 128 bits of message
expansion with 48 bits of salt and 1536 bits RSA (80 bits of RSA security).

RSA-PSSR. With a goal of 80 bits of security and log2 qS ' 48, PSSR
can be used for a proven (in the random oracle model) deterministic
signature algorithm with 160 bits of message expansion with a 4096 bits
RSA (or whatever is the modulus size for 128 bits of RSA security), or
for a proven probabilistic signature algorithm with 208 bits of message
expansion with 48 bits of salt and 1536 bits RSA (80 bits of RSA security).

PVSSR or Naccache-Stern. With a goal of 80 bits of security and
log2 qS ' 48, They can be used for a proven (in the generic group model)
probabilistic signature algorithm based on 160 bits elliptic curve discrete
logarithm and achieving 240 to 208 bits of message expansion.

5 Idealized security models and multi-key setting

5.1 The multi-key setting

Proofs of security for digital signature schemes only consider the case
where the forger is able to ask signature queries for one public key, and
has to make a valid signature for that public key.
However, it may be the case that computations done by the forger to
attack one public key also help to attack another public key. Taking this
into consideration is called the multi-key setting.
This consideration first appeared in a different form in the description of
KCDSA for security against parameter manipulation [13, section 4.2].
Since the performance cost for having proofs of security against attacks
in the multi-key setting is small, we believe that signature schemes should
take this into account.

5.2 A concrete solution

To make the proof take the multi-key setting in account, one can make
sure that all the components completely change if the public key changes.
For RSA-OPSSR, we have to meet the two following requirements:



– the best way to factor a bunch of RSA numbers is to factor separately
each of them,

– the function E, in the idealized world, depends on the public key.

The first requirement does not depend on the padding and may not be
met by the RSA bijection, because it may be possible to factor a bunch
of RSA numbers faster than factoring them individually [5]. 2

To mett the second requirement we propose here a straightforward and
simple improvement of the OPSSR scheme. The only change is that h =
H(m̂, pk).

All other signature schemes proven secure in an idealized model can ben-
efit from a similar improvement of their security. For example with RSA-
PSS, it is sufficient to include the public key in the input of both hash
functions H and G.

6 Discussion and open problems

6.1 Large block cipher

OPSSR with 4096 bits RSA needs a block cipher able to encrypt blocks
of 512 bytes. No such block cipher has been widely studied. Using a
deterministic mode of operation of a 8 or 16 byte block cipher is not
a solution because it is not a valid implementation of the ideal cipher
model.

Two research directions can be proposed.

– Is it possible to build a ideal cipher from random oracles, for example
with a sufficient number of Feistel rounds ?

– How many rounds of the generalization of Rijndael that is based on
512 parallel S-boxes and an adequate MDS matrix are needed to have
a secure cipher ?

6.2 Optimal trapdoor one-way permutations

Another drawback of using OPSSR with RSA is that even if the message
expansion is small, the minimal length for a signed message is equal to the
size l′ = dle of the RSA modulus. Optimal trapdoor one-way permutation
have minimal input length and would minimize this value.

2 This requirement is not met for schemes with security based on the hardness of the
discrete logarithm in some fixed integer multiplicative group. The multi-key setting
needs distinct groups for distinct public keys.



With an optimal trapdoor one-way (non random-self-reducible) permu-
tation, i.e. that permutes l bits blocks with k′ = l bits of security, (deter-
ministic) OPSSR can be applied with l ' 2k. The minimal length for a
signed message is 2k and the message expansion is k.
With an optimal random-self-reducible trapdoor one-way permutation,
i.e. that permutes l bits blocks with k′ = l/2 bits of security, (determin-
istic) OPSSR can be applied with l = 2k′ = 2(k + log2 qS). The minimal
length for a signed message is 2k + 2 log2 qS and the message expansion
is k. Randomized OPSSR can also be applied with #r = log2 qS and
l = 2k′ = 2k. The minimal length for a signed message is 2k+log2 qS and
the message expansion is k + log2 qS .
But the problem of finding an explicit candidate for being an optimal
(random-self-reducible) trapdoor one-way permutation is old and still un-
solved.

6.3 Avoiding idealized security models

The other important open problem is how to get rid of the idealized oracle
models, which are the core of our proofs of security. Signature schemes
based on chameleon hash functions or similar techniques cannot be an
answer, because the information needed to commit to some hash has to
be in the signed message, and will increase the message expansion.
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A Comparison of OPSSR with other paddings

Many other paddings have been proposed. We show below the description
of those paddings, when used for private decryption in an asymmetric
encryption scheme or for public verification in a digital signature scheme.
Their output is the message m, a random seed r and a validation value
v. A non zero value for v leads to a rejection.
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All these paddings have security proofs, where the internal components
(the hash functions G, H and H′ and the encryption functions E) are
modelized as random oracles and ideal ciphers.
They are special implementations of OPSSR where the encryption func-
tion has a special form, but the security proof for OPSSR does not apply
to this special form.
For example with PSS-R, if v is k bits long, then it is easy to find a collision
H(m‖r) = H(m′‖r′) in time 2k/2. If E is the corresponding encryption
function for OPSSR (an unbalanced 2-rounds Feistel scheme based on G

and H), that means that if E−1(m‖r‖v) = a‖b is known, then the attacker
can deduce that E−1(m′‖r′‖v) = a′‖b where a′ = a ⊕m‖r ⊕m′‖r′. This
is incompatible with the ideal cipher model for E.



B OPSSR is an optimal universal padding scheme

Basic OPSSR for encryption. This scheme can only encrypt messages
of length l − k. It is built on a trapdoor one-way permutation F and a
permutation E of blocks of size l.
The encryption of the message m is F ◦ E(m‖κ). The decryption of the
cipher c is m‖v = E−1 ◦ F−1(c) and is rejected if v 6= κ.

To improve the tightness of the security proof, the scheme needs to be
randomized. The encryption of m is F ◦ E(m‖r‖κ) and the decryption
m‖r‖v = E−1 ◦ F−1(c) is rejected if v 6= κ.

OPSSR for encryption. To be able to encrypt arbitrary-length mes-
sages, one can use the same technique as Jonsson [12] and notice that the
whole E(m‖r‖κ) does not need to be permuted with F. To encrypt m we
compute x‖y = E(m‖r‖κ) and the cipher is c = x‖F(y).

Properties. All properties of PSS described in [8] for a dual encryp-
tion+signature usage of the same public key are also valid for OPSSR.
Moreover, the security reduction for the encryption scheme is as tight as
for OAEP++. This is proved with the technique from [12].
The main advantage of using OPSSR for encryption rather than these
other paddings is that the message expansion is minimal, like it is the case
for signature with OPSSR. The main disadvantage is that the encryption
of a message of n bits with k bits of security and k bits of expansion needs
a random permutation of blocks of n+ k bits.
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