TD NUMÉRO 7

Algorithmique

Exercice 1 : Clôture transitive

Le but de cet exercice est de montrer que l'on peut calculer la clôture transitive d'un graphe non-orienté en le même temps que la multiplication de deux matrices booléennes et réciproquement.

Montrer les théorèmes suivants :

Théorème 1 : Si la clôture transitive d'une matrice $n \times n$ peut être calculée en temps T(n), où T(n) satisfait $T(3n) \leq 27T(n)$, alors il existe une constante c telle que le temps M(n) pour multiplier deux matrices $n \times n$ A et B satisfait $M(n) \leq cT(n)$.

L'hypothèse sur T(n) est valide car T(n) est au plus $O(n^3)$.

Théorème 2 : Si le produit de deux matrices $n \times n$ arbitraires peut se faire en temps M(n), où M(n) satisfait $M(2n) \geq 4M(n)$, alors il existe une constante c telle que le temps T(n) pour calculer la clôture transitive d'une matrice arbitraire satisfait $T(n) \leq cM(n)$.

Exercice 2: Arbre couvrant minimum - Algorithme de Kruskal

Un arbre couvrant est un arbre non orienté qui connecte tous les sommets V d'un graphe non orienté. Si les arêtes ont un poids, on recherche un arbre de poids minimum.

- 1) Montrer les lemmes suivants :
- Lemme 1 : Soit G=(V,E) un graphe connecté, non orienté et S=(V,T) un arbre couvrant pour G. Alors :
- a) pour tous sommets v_1 et v_2 de V, le chemin entre v_1 et v_2 dans S est unique, et b) si une arête de $E \setminus T$ est ajoutée à S, alors un cycle se forme.
- Lemme 2 : Soit G = (V, E) un graphe connecté, non orienté et c une fonction de coût sur les arêtes. Soit $\{(V_1, T_1), (V_2, T_2), \dots (V_k, T_k)\}$ une forêt recouvrante pour G avec k > 1. Soit $T = \bigcup_{i=1}^k T_i$. Supposons e = (v, w) une arête de poids minimale dans $E \setminus T$ telle que $v \in V_1$ et $w \notin V_1$. Alors il existe un arbre recouvrant pour G qui inclut $T \cup \{e\}$ et est de coût minimal parmi les arbre recouvrant pour G qui inclut T.
- 2) En déduire un algorithme et les structures de données nécessaires pour calculer un arbre recouvrant minimum.
 - 3) Calculer alors la complexité de votre algorithme.

Exercice 3 : Composante Fortement Connexe : Le problème 2-SAT

Soit x_1, \ldots, x_n un ensemble de n variables booléennes indexées par les entiers $\leq n$. Un littéral sur cet ensemble de variables est une variable $x_i, i \leq n$, ou sa négation $\neg x_i$. Une 2-clause sur cet ensemble de variable est une disjonction de deux littéraux $\ell \vee \ell'$. Une assignation τ est une fonction de l'ensemble $\{x_1, \ldots, x_n\}$ dans $\{0, 1\}$. La valeur d'un littéral ℓ relativement à une assignation τ , soit $V(\ell, \tau)$, est égale à $\tau(x_i)$ si $\ell = x_i$ et à $1 - \tau(x_i)$ si $\ell = \neg x_i$. La valeur d'une clause ℓ relativement à une assignation ℓ , soit $V(\ell, \tau)$, est le maximum des valeurs de ses deux littéraux. Le problème 2-SAT s'énonce de la manière suivante :

Étant donné un entier n et une liste de m 2-clauses sur l'ensemble des variables $\{x_1, \ldots, x_n\}$, déterminer s'il existe une assignation τ qui donne à toutes les clauses de la liste la valeur 1 (problème de décision). Calculer une telle assignation si elle existe (calcul d'une solution).

- 1) On associe à une liste de 2-clauses sur l'ensemble des variables $\{x_1, \ldots, x_n\}$ un graphe orienté G dont les sommets sont les littéraux sur l'ensemble de variables $\{x_1, \ldots, x_n\}$. Pour chaque clause $\ell \vee \ell'$, on ajoute à G une arc de $\neg \ell$ à ℓ' et un arc de $\neg \ell'$ à ℓ (où on pose $\neg \neg x_i = x_i$).
- a) Montrer que l'on peut calculer G en temps O(m+n) où n est le nombre de variables et m le nombre de clauses. Donner un algorithme en pseudo-code ainsi que les structures de données nécessaires.
- b) Montrer que s'il existe dans G un chemin allant de u à v, il existe aussi un chemin allant de $\neg v$ à $\neg u$.
- 2) Soit τ une assignation. On étend à l'ensemble des sommets de G en posant $\tau(\neg x_i) = 1 \tau(x_i)$. Montrer que $V(c,\tau)$ vaut 1 pour toutes les clauses de la liste donnée si et seulement si τ est croissante sur tout chemin γ du graphe G (ce qui signifie : si $\gamma = u_0, \dots, u_k$, alors $\tau(u_i) \leq \tau(u_{i+1})$ pour $i = 0, \dots, k-1$).
- 3) En utilisant l'algorithme qui détermine les composantes fortement connexes d'un graphe orienté, donner un algorithme qui résout le problème de décision 2-SAT. Montrer sa correction et évaluer sa complexité.
- 4) Comment calculer une assignation lorsque la réponse au problème de décision est positive? Évaluer la complexité de l'algorithme proposé.

Exercice 4: Existence des graphes d'expansion

Définition : $Un(n, d, \alpha, c)$ OU-concentrateur est un graphe biparti G(L, R, E), avec des ensembles de sommets L et R indépendants, chacun d'eux de cardinal n, tel que :

- 1. Tout sommet de L a un degré au plus d,
- 2. Pour tout sous-ensemble S de sommets de L tel que $|S| \le \alpha n$, il existe au moins c|S| voisins dans R.

Montrer le théorème suivant :

Théorème 3 : Il existe un entier n_0 tel que pour tout $n > n_0$, il existe un (n, 18, 1/3, 2) OU-concentrateur.