Algorithmique Travaux dirigés, 22 octobre 2004

Louis Granboulan

1 Arithmétique flottante

1. Étude théorique

On se donne quatre entiers : une base B, une longueur de mantisse n et deux exposants extrémaux E_{\min} et E_{\max} . Habituellement, $B\geqslant 2,\ n\geqslant 2$ et $E_{\min}<0<E_{\max}$. L'écriture en virgule flottante d'un réel x est $\epsilon_x.\overline{x_0,x_1...x_{n-1}}B^{e_x}$ avec $\epsilon_x=\pm 1$, $E_{\min}\leqslant e_x\leqslant E_{\max}$ et $0\leqslant x_i< B$, si on a $x=\epsilon_x\left(\sum_{i=0}^{n-1}x_iB^{-i}\right)B^{e_x}$. On appelle mantisse la valeur $f_x=\sum_{i=0}^{n-1}x_iB^{-i}$.

- (a) Bien évidemment, tous les réels ne sont pas représentables exactement. Calculer quels sont le plus petit et le plus grand réels positifs représentables exactement.
- (b) L'addition, soustraction, multiplication, ... de deux réels exactement représentables n'est pas toujours un réel exactement représentable. On décide par exemple d'arrondir au plus grand réel exactement représentable inférieur au résultat.

Que donne l'algorithme suivant ? On suppose que $E_{\rm max}$ est suffisamment grand pour éviter les overflow.

$$a \leftarrow 1.0$$
 $b \leftarrow 1.0$ tant que $((a+1.0)-a)-1.0$ == 0 faire $a \leftarrow a+a$ tant que $((a+b)-a)-b \Leftrightarrow 0$ faire $b \leftarrow b+1.0$ imprimer b

2. Norme IEEE 754

Cette norme étend la notation précédente comme suit : la base B=2 et on note $f_x=\sum_{i=1}^n x_i 2^{-i}$. L'exposant e_x peut varier dans l'intervalle $[E_{\min}-1,E_{\max}+1]$.

Exposant Mantisse	Valeur	float	double
$E_{\min} - 1 \qquad f_x = 0$	±0	32 bits	64 bits
	$\pm f_x 2^{E_{\min}}$	n=23	n = 52
	$(1+f_x)2^{e_x}$	$E_{\min} = -126$	$E_{\min} = -1022$
$E_{\text{max}} + 1 \qquad f_x = 0$ $E_{\text{max}} + 1 \qquad f_x \neq 0$	$^{\pm\infty}_{ m NaN}$	$E_{\rm max} = +127$	$E_{\rm max} = +1023$

Les arrondis des opérations peuvent se faire de plusieurs façons : au plus proche, vers 0, vers le haut ou vers le bas.

(a) Comparer cette représentation avec la représentation précédente.

2 Calcul d'une somme

1. Série harmonique

- (a) On définit la suite $u_0 = 0$ et $u_n = u_{n-1} + \frac{1}{n}$ Montrer que le calcul de cette suite en représentation flottante converge.
- (b) Trouver une astuce pour calculer assez précisément $\sum_{n=1}^{N} \frac{1}{n}$. Évaluer la précision du résultat.

2. Encadrement du résultat

- (a) Décrire des techniques de calcul d'un encadrement de $\sum_{n=1}^{N} a_n$.
- (b) En déduire quelques considérations sur la représentation d'un réel par un intervalle.

3. Double précision

On représente un réel par une somme de deux flot tants. On veut normaliser A+B sous la forme X+x de telle sorte que la valeur absolue de x soit la plus petite possible. On suppose que les opérations sur les flot tants sont arrondies au plus proche.

- (a) Exprimer la condition de normalisation sous la forme $|x| \leq \frac{1}{2}\alpha(X)$.
- (b) Trouver comment faire cette normalisation en six opérations dans le cas général et en trois opérations (additions et soustractions) si |B| est suffisamment petit.
- (c) En déduire comment faire une addition en vingt opérations.
- (d) Étudier, dans cette représentation, les autres opérations habituelles.