s PSL* lpzia —

Automatic Verification of Tasks Schedulers

Ph.D. defense

Josselin Giet!
September 26, 2024

YINRIA Paris/CNRS/Ecole Normale Supérieure/PSL Research University, Paris, France

The importance of OSes

Operating systems fulfill two missions:

m Provide an execution environment for user applications

abstracts the hardware (CPU, memory, device driver)

App App App o
m Manages resources on the behalf of user applications
Example of resources: memory usage, CPU time
The OS decides which application can access which resource
[0s] A failure at the OS level may impact all applications.

In some cases, the whole computer is unusable

[CPU] [RAM] [] (e.g. CrowdStrike/Windows)

Automatic Verification of Tasks Schedulers Josselin Giet

The importance of OSes

App App

App

| os

)]

Operating systems fulfill two missions:
m Provide an execution environment for user applications

abstracts the hardware (CPU, memory, device driver)

m Manages resources on the behalf of user applications
Example of resources: memory usage, CPU time

The OS decides which application can access which resource

A failure at the OS level may impact all applications.
In some cases, the whole computer is unusable
(e.g. CrowdStrike/Windows)

: How to gain higher trust in OSes?

Automatic Verification of Tasks Schedulers

Josselin Giet

Our Case study: Scheduler of FreeRTOS

FreeRTOS is a small, free, mature, industrial, and highly customizable real-time OS.

Automatic Verification of Tasks Schedulers Josselin Giet

Our Case study: Scheduler of FreeRTOS

FreeRTOS is a small, free, mature, industrial, and highly customizable real-time OS.

Tasks in the FreeRTOS kernel can be in two states:

pxCurrTCB
[
ReadyTaskList
>|| ||<
~ ~
< <
Task_t Task_t Task_t

Tasks in the ready state:
B are stored in pxReadyTasksList,

m contain the running task pointed by
pxCurrentTCB.

Automatic Verification of Tasks Schedulers Josselin Giet

Our Case study: Scheduler of FreeRTOS

FreeRTOS is a small, free, mature, industrial, and highly customizable real-time OS.

Tasks in the FreeRTOS kernel can be in two states:

xTickCount
pxCurrTCB
[
|: DelayedTaskList
ReadyTaskList J 1,
K —
e '
~ ~
[v:10]), [v:12]| [v:13]
<) <) Task_t Task_t Task_t
Task_t Task_t Task_t

Teels T e (ol s Tasks in the delayed state:

) . B are stored in pxDelayedTaskList,
B are stored in pxReadyTasksList,
. . . B sorted according to the end of their delay,
m contain the running task pointed by

pxCurrentTCB. B which are greater that the tick value, stored

in xTickCount

Automatic Verification of Tasks Schedulers Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error
All pointer dereference are correct.

Automatic Verification of Tasks Schedulers Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error
All pointer dereference are correct.
2. Preservation of structural invariants
Manipulation of the doubly-linked lists maintain the invariants.

[4\kj

[o [o]

v:max

len:5
idx:

Automatic Verification of Tasks Schedulers

Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error

All pointer dereference are correct.

2. Preservation of structural invariants
Manipulation of the doubly-linked lists maintain the invariants.

3. Preservation of functional invariants of the scheduler
The list of delayed tasks is sorted.

Automatic Ve tion of Tasks Schedulers

Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error

All pointer dereference are correct.

2. Preservation of structural invariants
Manipulation of the doubly-linked lists maintain the invariants.

3. Preservation of functional invariants of the scheduler
The list of delayed tasks is sorted.

4. Partial functional correctness

No task shall stay in the delayed state, after its delay expires.

Automatic Verification of Tasks Schedulers

Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error
All pointer dereference are correct.

2. Preservation of structural invariants

Manipulation of the doubly-linked lists maintain the invariants.
3. Preservation of functional invariants of the scheduler

The list of delayed tasks is sorted.
4. Partial functional correctness

No task shall stay in the delayed state, after its delay expires.

5. Termination
All systems call should eventually end.

Automatic Verification of Tasks Schedulers Josselin Giet

What kind of properties do we attempt to prove?

1. Absence of Run-time error
All pointer dereference are correct.

2. Preservation of structural invariants

Manipulation of the doubly-linked lists maintain the invariants.
3. Preservation of functional invariants of the scheduler

The list of delayed tasks is sorted.
4. Partial functional correctness

No task shall stay in the delayed state, after its delay expires.
5. Termination

All systems call should eventually end.

6. Concurrency related properties
Interruptions must not cause race-conditions.

Automatic Verification of Tasks Schedulers Josselin Giet

Methods to verify programs

We can classify verification methods:

Automatic Verification of Tasks Schedulers

Methods to verify programs

We can classify verification methods:

Sound
Bad programs

are rejected

Automatic Verification of Tasks Schedulers

Methods to verify programs

We can classify verification methods:

Sound
Bad programs
are rejected

Complete
Good programs
are accepted

ic Verification of Tasks Schedulers

Josselin Giet

Methods to verify programs

We can classify verification methods:

Sound
Bad programs
are rejected

Automatic
No need for
user interactiof

Complete
Good programs

are accepted

ic Verification of Tasks Schedulers Josselin Giet

Methods to verify programs

Theorem: Rice’s theorem
Any non-trivial semantic property is non-decidable.

We can classify verification methods:

Sound
Bad programs

| Automatic
/ No need for
/// user interactiol

Josselin Giet

ication of Tasks Schedulers

Automatic Ve

Methods to verify programs

. I Theorem: Rice’s theorem
We can classify verification methods: — - - -
Any non-trivial semantic property is non-decidable.

Any sound verification method must be either:

m Limited to non-Turing complete programs

Sound

Bad programs

are rejected
/ Deductive
Methods

bounded loops and memories
Example: Serval
m Non-automatic (proof assistants/external solvers)

Expensive proof burden

/ (%]
/
“ Example: selL4
\ | Automatic
\\ / No need for | Non—Comp|ete
\ / user interactio . . o o
=Ry Example: Static analysis by abstract interpretation

limited expressiveness: absence of run-time error.

Preservation of structural invariants

Josselin Giet

ication of Tasks Schedulers

Automatic Ve

Methods to verify programs

. I Theorem: Rice’s theorem
We can classify verification methods: — - - -
Any non-trivial semantic property is non-decidable.
our approach

Any sound verification method must be either:

Sound ® Limited to non-Turing complete programs

Bad programs

are rejected
/ Deductive
Methods

bounded loops and memories
Example: Serval
m Non-automatic (proof assistants/external solvers)

Expensive proof burden

/ (%]
/
“ Example: selL4
\ | Automatic
\\ / No need for | Non—Comp|ete
\ / user interactio . . o o
=Ry Example: Static analysis by abstract interpretation

limited expressiveness: absence of run-time error.

Preservation of structural invariants

Josselin Giet

ication of Tasks Schedulers

Automatic Ve

Abstract Interpretation in a nutshell

An abstract domain provides:

B An efficient representation of over-approximation of set of states p (ZQ)
y

Automatic Verification of Tasks Schedulers Josselin Giet

Abstract Interpretation in a nutshell

An abstract domain provides:

m An efficient representation of over-approximation of set of states o (Z*) - (Z U {xoc})*

y
2 o ¢ x:(1,4)\ ol I<x<4
o P ot) PR (P RS

y:(1,2

Automatic Verification of Tasks Schedulers Josselin Giet

Abstract Interpretation in a nutshell

An abstract domain provides:

m An efficient representation of over-approximation of set of states o (Z*) - (Z U {xoc})*

y
2 o o o
e . . y:(1,2) AN <y<2
1
m Operators that over-approximate the behaviors of the program
y y
lu-.u-- X=X+y—1 ¢« @ o o @
[] .

Automatic Verification of Tasks Schedulers Josselin Giet

Abstract Interpretation in a nutshell

An abstract domain provides:

m An efficient representation of over-approximation of set of states o (Z*) - (Z U {xoc})*

y
2 ° x:(1,4 1<xr<4
T30 (09 =leyer
; . % y:(1,2) ANSy<2
‘ T g
1
m Operators that over-approximate the behaviors of the program
y y
N b S N
1 . . 1 .
. 3 = assigni(;g x+y-1) : 3 x
! 1 4 ! 1 5

Automatic Verification of Tasks Schedulers Josselin Giet

Abstract Interpretation in a nutshell

An abstract domain provides:

v

m An efficient representation of over-approximation of set of states o (Z*) +—— (Z U {#oo})*

J

2 : :: . x:(1,4) o] 1<x<4
e o = 5 GZ

— X V<y:(1,2)) {(x 2 A1<y<2}

— ¢ 2

1
m Operators that over-approximate the behaviors of the program

y y
NP e, TR
1 . . 1 .
3 « assign’ (x, x+y-1) £ 3 .
4 ! 1 5

i
Using these operators, we define the abstract semantics:

S[l = eﬂfl (o*) :=as S|gn (I,e,0%)
S[s; ?: Uu (In OSH‘S 71) (o ﬁ)
S[if(b){s}else{s'}]% (%) : (S[[s]]n o guard’ (b, o)) L (S[s']i o guard’ (—b, O’u)>

Automatic Verification of Tasks Schedulers Josselin Giet

How to prove {P}prog{Q)} by abstract interpretation?

Automatic Verification of Tasks Schedulers Josselin Giet

How to prove {P}prog{Q)} by abstract interpretation?

S[prog]

M

Problem: S[prog] cannot be computed

Automatic Verification of Tasks Schedulers Josselin Giet

How to prove {P}prog{Q)} by abstract interpretation?

S[prog]

DF
M

Problem: S[prog] cannot be computed
Solution: Compute an over-approximation using an abstract domain Df

Automatic Verification of Tasks Schedulers Josselin Giet

How to prove {P}prog{Q)} by abstract interpretation?

S[prog] [prog]*

DF
M

Problem: S[prog] cannot be computed
Solution: Compute an over-approximation using an abstract domain D*

The program is proved by two inclusions: 1- Slprog](©) < O Correctness by construction

Established by distinct arguments 2. O C @ Result (checked by the analysis)

Automatic Verification of Tasks Schedulers Josselin Giet

Comparison of existing static analyses

Various automatic static analysis over dynamic data structures have been proposed:

. pointer structural partial f*

Analysis . . correctness
dereference invariants SLL others

[Emami et al., PLDI, 94] v X X X
Pointer analysis
[Sagiv et al., TOPLAS, 99] va v X X
Shape analysis based on 3-value logic
[Chang et al., POPL, 08] v v X X
Shape analysis based on separation logic
[Bouajjani et al., CAV, 10] v v v X

Shape analysis based on k-limited graphs

combined with decidable array logic

Automatic Verification of Tasks Schedulers Josselin Giet

Comparison of existing static analyses

Various automatic static analysis over dynamic data structures have been proposed:

) pointer structural partial f*

Analysis . . correctness
dereference invariants SLL others

[Emami et al., PLDI, 94] v X X X
Pointer analysis
[Sagiv et al., TOPLAS, 99] v v X X
Shape analysis based on 3-value logic
[Chang et al., POPL, 08] v v X X
Shape analysis based on separation logic
[Bouajjani et al., CAV, 10] v v v X

Shape analysis based on k-limited graphs

combined with decidable array logic

How to improve the expressiveness of static analysis to automatically prove partial
functional correctness of task schedulers?

Automatic Verification of Tasks Schedulers Josselin Giet

Separation logic-based shape analysis

[Chang et al. POPL, 08] uses a subset of separation logic to summarize memory states:

B points-to predicate denotes a single memory cell Lo :
Example: a.f — 3 correspond to the memory containing one cell: fl|I|

Automatic Ve tion of Tasks Schedulers Josselin Giet

Separation logic-based shape analysis

[Chang et al. POPL, 08] uses a subset of separation logic to summarize memory states:

B points-to predicate denotes a single memory cell Qo |

| |
Example: a.f — 3 correspond to the memory containing one cell: fl|I|

m Inductive predicate denotes an unbounded dynamic data structure

Example: list(a, 7) denotes a dll starting at address o where the previous node is at address .

Automatic Verification of Tasks Schedulers Josselin Giet

Separation logic-based shape analysis

[Chang et al. POPL, 08] uses a subset of separation logic to summarize memory states:
B points-to predicate denotes a single memory cell o Lo :
Example: a.f — [correspond to the memory containing one cell: fl|I|

m Inductive predicate denotes an unbounded dynamic data structure
Example: list(a, 7) denotes a dll starting at address o where the previous node is at address .

m The separating conjunction * binds these predicates.

m? % m’ means that the memories described by m? and m} are disjoint.

Automatic Verification of Tasks Schedulers Josselin Giet

Separation logic-based shape analysis

[Chang et al. POPL, 08] uses a subset of separation logic to summarize memory states:
B points-to predicate denotes a single memory cell o Lo :
Example: a.f — [correspond to the memory containing one cell: fl|I|

m Inductive predicate denotes an unbounded dynamic data structure
Example: list(a, 7) denotes a dll starting at address o where the previous node is at address .

m The separating conjunction * binds these predicates.

m? % m’ means that the memories described by m? and m} are disjoint.

Automatic Verification of Tasks Schedulers Josselin Giet

Separation logic-based shape analysis

[Chang et al. POPL, 08] uses a subset of separation logic to summarize memory states:
B points-to predicate denotes a single memory cell @ Lo :
Example: a.f — 3 correspond to the memory containing one cell: fl|I|

m Inductive predicate denotes an unbounded dynamic data structure
Example: list(a, 7) denotes a dll starting at address o where the previous node is at address .

m The separating conjunction * binds these predicates.

m? % m’ means that the memories described by m? and m} are disjoint.

These predicates are manipulated using
a graph representation

Automatic Verification of Tasks Schedulers Josselin Giet

We have to improve the level of expressiveness

1
H

a # 0x0

= This predicate is expressive enough to prove memory safety & structure preservation.

Automatic Veri

ation of Tasks Schedulers

Josselin Giet

We have to improve the level of expressiveness

X) a # 0x0
.— \/ T 1)
a = 0x0 |

= This predicate is expressive enough to prove memory safety & structure preservation.
Problem: It is not enough for partial functional correctness: list forgets the content !

Automatic Verification of Tasks Schedulers Josselin Giet

We have to improve the level of expressiveness

a # 0x0
E’ ANE={5}UFE

— This predicate is expressive enough to prove memory safety & structure preservation.
Problem: It is not enough for partial functional correctness: list forgets the content !

[Li et al. SAS, 2015] added set parameters expressing the content of data structures.
Problem: Set parameters express no constraint in respect to order of appearance !

Automatic Verification of Tasks Schedulers Josselin Giet

We have to improve the level of expressiveness

@
%) o
_ \/ ;‘—> o g a # 0x0
a = 0x0 W‘L—o NS 1S
NS =1]

= This predicate is expressive enough to prove memory safety & structure preservation.
Problem: It is not enough for partial functional correctness: list forgets the content !

[Li et al. SAS, 2015] added set parameters expressing the content of data structures.
Problem: Set parameters express no constraint in respect to order of appearance !

Our solution: Express constraints on the sequence of values stored in the list.
Add a sequence parameter to the inductive predicate: list(a, 7, S).

Automatic Verification of Tasks Schedulers Josselin Giet

Example: res = xTaskIncrementTick()

e Y

Ready

(Rv)

Pre D" . Dy"P is sorted

Delayed Amax(Dy"P) < xTick + 1 < min(Dy ")
(D"c;acp.DLI,é:a:p)

Ready
(DS*.R,)

xTick = xTick@old + 1
ot Delayed Ares— 41 if |D5*P| + |Ro| > 1
() 0 otherwise
(DLLewp)

Automatic Ve tion of Tasks Schedulers Josselin Giet

Example: res = xTaskIncrementTick()

Ready

| (R.) ,
Pre D;*P . Dy"P is sorted [

Delayed Amax(Dy"P) < xTick + 1 < min(Dy ")
{ (DSQCP.DLIE:’I';D)

Ready

‘| (DS R,)
xTick = xTick@old + 1
** | Delayed pres = {1 IFIDEPI+ Ryl > 1
{ (Dnesr) 0 otherwise
v

Requires to extend the shape

analysis to derive precise se-

quence constraints.

A

y

Requires an abstract domain

to reason about (possibly)

sorted sequences.

Automatic Ve

tion of Tasks Schedulers

Josselin Giet

Contributions

An abstract domain reasoning over sequence constraints

To reason on content with order, length constraint, extremal elements, sortedness

A Reduced product between the sequence domain and an existing shape domain

To express constraints over the content of inductive data structures

Verification of an instance of FreeRTOS

Specification and analysis of real-time constraints

Automatic Verification of Tasks Schedulers Josselin Giet

An abstract domain reasoning over
sequences

main description

At a high level, an abstract value o of the sequence abstract domain D consists of:

S =51.00] ming < § < maxg
msetg = {6 } Wmset
AS = So A tS t 1}:} S Amaxg, <9
msetg = msetg.
NS = sort(S) o 52

Amsetg, =msetg,

AS1 = sort(Sg) Aleng =1+ leng,

Automatic Verification of Tasks Schedulers

main description

At a high level, an abstract value o of the sequence abstract domain D consists of:

S =51.00] ming < § < maxg
msetg = {6 } Wmset
AS = So A tS t 1}:} S Amaxg, <9
msetg = msetg.
NS = sort(S) o 52

Amsetg, = msetg
21 33 Aleng = 1+ leng,

.

U-F:S ~ Sy An element of a An element of a
Sorted: S, S1, S multiset domain D}, 5 numerical domain]Dg),

A S1 = sort(S3)

Automatic Verification of Tasks Schedulers

Domain description

At a high level, an abstract value o of the sequence abstract domain D consists of:

S =51.00] ming < § < maxg
msetg = {6 } Wmset
AS = So A tS t 1}:} S Amaxg, <9
msetg = msetg.
NS = sort(S) o 52

Amsetg, = msetg
21 33 Aleng =1+ leng,

.

U-F:S ~ Sy An element of a An element of a
Sorted: S, S1, S multiset domain D}, 5 numerical domain]Dg),

A S1 = sort(S3)

The concretization, . (cF) is the set of valuation functions that satisfy the constraints expressed by o#:

S, So+—4;6;8
Example: { (j;:z } S1+—4:6
S3+>6;4

Automatic Verification of Tasks Schedulers Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S =51.[al AS = sort(S)

A S1 = sort(51) To assume S, = [a], guard® follows this algorithm:

Amsets = { a } Wmsetg,

Alens =1+ lengs, + lens,

Aming < a < maxg

<
Aming < ming; Amaxs, < maxs

Automatic Verification of Tasks Schedulers Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S =51.[al AS = sort(S)

A S1 = sort(51) To assume S, = [a], guard® follows this algorithm:
A Sr = [al

1. add the new definition in the conjunction
Amsets = { a } Wmsetg,

Alens =1+ lengs, + lens,

Aming < a < maxg
<

Aming < ming; Amaxs, < maxs

Automatic Verification of Tasks Schedulers

Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S = 51.5- NS = sort(S)
A S1 = sort(51) To assume S, = [a], guard® follows this algorithm:
A Sr = [al

1. add the new definition in the conjunction

Amsets = {{ o } Wmsets, 2. fold other definitions

Alens =1+ lengs, + lens,

Aming < a < maxg
<

Aming < ming; Amaxs, < maxs

Automatic Verification of Tasks Schedulers

Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S = 51.5- NS = sort(S)
A S1 = sort(S1)

To assume S, = [a], guard® follows this algorithm:
A Sr = [al

1. add the new definition in the conjunction

Amsets = {{ o } Wmsets, 2. fold other definitions

3. detect & remove cyclic constraints
Alens =1+ lengs, + lens,

Aming < a < maxg

<
Aming < ming; Amaxs, < maxs

Automatic Verification of Tasks Schedulers

Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S = 51.5- NS = sort(S)

A Sy = sort(S1) To assume S, = [a], guard® follows this algorithm:
A Sy = [a S . .
7= e 1. add the new definition in the conjunction
Amsets = { o} Umsets, 2. fold other definitions
A msets, = {a} 3. detect & remove cyclic constraints
Aleng =1+ leng, + leng, 4. add content/length/bounds constraints
A leng, =1
Aming < o < maxs

<
Aming < ming; Amaxs, < maxs

A ming, = o = maxg,

Automatic Verification of Tasks Schedulers Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!

S = 51.5- NS = sort(S)
A S1 = sort(S1)

To assume S, = [a], guard® follows this algorithm:
A Sy = [al NS, = sort(S;)

1. add the new definition in the conjunction
Amsets = { a } Wmsetg,
A msetg, = {a}

. fold other definitions

Alens =1+ lengs, + lens,

2

3. detect & remove cyclic constraints

4. add content/length/bounds constraints
5

A leng, =1 . Saturate constraints
& = BhoooSn
Aming < o < maxs Vi, S; = sort(S;) Vi < j,maxs;, < ming;
Aming < ming, Amaxg, < maxg S = sort(S)
A ming, = o = maxg,

Automatic Verification of Tasks Schedulers

Josselin Giet

Adding a new constraint

guard’ : D! — seq. constraint — D!
S = 51.5- NS = sort(S)

A S1 = sort(S1)

To assume S, = [a], guard® follows this algorithm:
A Sy = [al NS, = sort(S;)

1. add the new definition in the conjunction

Amsets = { o} Umsets, 2. fold other definitions
A msets, = {a} 3. detect & remove cyclic constraints
Aleng =1+ leng, + leng, 4. add content/length/bounds constraints
A lens, =1 5. Saturate constraints
8 = ShoocoSip
Aming < o < maxg Vi, S; = sort(S;) Vi< j,maxs, < ming;
Aming < ming, Amaxg, < maxs S = sort(S)

A ming, = o = maxg,

Theorem: Soundness of guard’

guardﬁ(ag, S = E) over-approximates all valuations summarized by ¢! satisfying S = E.

Automatic Verification of Tasks Schedulers Josselin Giet

Abstract operators

m sat! : D¥ — seq constraint — {true, false}

saté((ri. S = E) conservatively checks if o satisfies S = E.

m C!:Df — DE - {true, false}

Abstract inclusion checking, using sati

m D! > DE 5 DE

That tries to infer common definitions from both inputs.

5 =55) 5 =558
o2 (> 3):(5:31.52.33)

Example A
ASs =11 NSt =1]

s V!:D! — Df — DY

That selects the constraints in the left arguments verified in the right one.

Automatic Verification of Tasks Schedulers Josselin Giet

Shape analysis with sequence predicates

C

c = 0x0 c # 0x0

A = D ,-p |[V| A /N AS=S.161.5,

Elements of the combined domain and their concretization

S =sort(S)AS = S;.[61.5
S; =sort(S;) i€ {l,r}

Ao # 0x0 A v < 0 A ag # 0x0
maxg, < 0 < ming,

Automatic Verification of Tasks Schedulers

Elements of the combined domain and their concretization

S =sort(S)AS = S;.[61.5
Si =sort(S;) i€ {l,r}

Ao # 0x0 A v < 0 A ag # 0x0
maxg, < 0 < ming,

Ym L s
. / '

c oo 53 S§+02361011 53

& 08 Si+02 o — 08
S, +61011 X

Q42 Sr—=691011 Q42

Automatic Verification of Tasks Schedulers

Elements of the combined domain and their concretization

S =sort(S)AS = S;.[61.5
Si =sort(S;) i€ {l,r}

Ao # 0x0 A v < 0 A ag # 0x0
maxg, < 0 < ming,

Ym L s
. / '

c oo 53 502361011 53
1
cee a;— 08 cee S;—02 a;— 08
{b AR O DU " 1) s.—691011 arsa2 (| 7
[[o[] [Tel] []22]]
\

Automatic Verification of Tasks Schedulers

Elements of the combined domain and their concretization

t][o S =sort(S)AS = 5,.[61.5,
¢ nnu @ S; =sort(S;) i€ {l,r}

Ao # 0x0 A v < 0 A ag # 0x0
maxg, < 0 < ming,

Ym l Vs

\

. 03 S$+—02361011 03
Si—02
cee . X a;— 08 cee S;—02 a;— 08
Sr—61011 . eee .,) . ..
Q42 Sr—=691011 Q42

—> 000

Josselin Giet

Automatic Ve tion of Tasks Schedulers

Elements of the combined domain and their concretization

t -= S = sort(S‘) /\ S = 5;.061.5,

c| e a S; =sort(S;) i€ {l,r}
/S\\ / w\\ Ao # 0x0 Av < § A o # 0x0
AN maxg, <6 <ming,

Symbolic variable are existentially quantified at the level of the abstract state
z% e i This also includes sequence variables S, Si, Sr ’
[s(mt,0s) = {m SSUIE A |
x

Josselin Giet

Automatic Verification of Tasks Schedulers

Integrating sequence parameters in the shape domain

The tree(c) predicate only synthesizes full binary trees.
To abstract partial trees, the shape domain uses a segment predicate treeseg(1, c).

T)

"~ PR e I\
[Is]]

The shape domain automatically derives treeseg from tree.
The analysis must keep tracks of the content stored in the segment

Automatic Verification of Tasks Schedulers Josselin Giet

Integrating sequence parameters in the shape domain

The tree(c) predicate only synthesizes full binary trees.
To abstract partial trees, the shape domain uses a segment predicate treeseg(1, c).

«[Ced 1 - 1

The shape domain automatically derives treeseg from tree.
The analysis must keep tracks of the content stored in the segment

In order to reason precisely over inductive predicates, the shape analysis relies on:
m Unfold: refines the memory by materializing synthesized memory.
m Fold: extrapolates the memory state to weaken it.
Used to over-approximate two memory states
For each of these operations, the shape domain should derive the corresponding sequence constraints
to assume or verify.

Automatic Verification of Tasks Schedulers Josselin Giet

Adding sequence parameters to segment predicates

t[e

[11]ef
[[12]
e ——
So =10 11 12

The sequence stored in the treeis: 01234569 10 11 12

The analysis needs to recall the location of the missing sequence in treeseg.
— the segment predicate has two sequence parameters: S;1ES5>

One for each side of the missing sequence

Automatic Verification of Tasks Schedulers Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1, S):

Automatic Verification of Tasks Schedulers Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1, S):

1. The numerical constraint 1 # 0x0 is guarded in the numerical part of the sequence domain.

Automatic Verification of Tasks Schedulers Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1, S):

1. The numerical constraint 1 # 0x0 is guarded in the numerical part of the sequence domain.
2. To materialize 1 ->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: §,.5;, .S, are fresh variables

The numerical and sequences constraints are guarded in the sequence domain

%)
1 # 0x0
A1l = 0x0 1 # 0x0
ANS=1] AS = 85.[0]1.S,

Automatic Verification of Tasks Schedulers Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1, S):

1. The numerical constraint 1 # 0x0 is guarded in the numerical part of the sequence domain.
2. To materialize 1 ->data, the analysis unfolds the predicate

The abstract memory is replaced by the definition: §,.5;, .S, are fresh variables

The numerical and sequences constraints are guarded in the sequence domain

» The empty case: Inconsistent with the if assumption = Discarded

unfold’

= Qx0

1= 1 # 0x0
NS =1] NS = 5.06].5

Automatic Verification of Tasks Schedulers Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1,S):

1. The numerical constraint 1 # 0x0 is guarded in the numerical part of the sequence domain.
2. To materialize 1 ->data, the analysis unfolds the predicate

The abstract memory is replaced by the definition: §,.5;, .S, are fresh variables

The numerical and sequences constraints are guarded in the sequence domain
» The empty case: Inconsistent with the if assumption = Discarded
» The non-empty case: 1->data corresponds to §.

unfold’

= Qx0
1=
NS =1

V| /s\

1 # 0x0
NS = 5.00].5

Automatic Verification of Tasks Schedulers

Josselin Giet

Refining abstract memory state with unfolding

To analyze if(1){v=1->data} with initial state tree(1, S):

1. The numerical constraint 1 # 0x0 is guarded in the numerical part of the sequence domain.
2. To materialize 1 ->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: §,.5;, .S, are fresh variables
The numerical and sequences constraints are guarded in the sequence domain
» The empty case: Inconsistent with the if assumption = Discarded
» The non-empty case: 1 ->data corresponds to J.
3. The assignment v < ¢ is performed.

unfold’

= Qx0
11— 1 # 0x0

ANS=1 NS = 5.06].5

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

Automatic Verification of Tasks Schedulers

Josselin Giet

Folding the abstract state

Fold generalizes the abstract state by rewriting parts of the memory into a predicate.
The analysis first checks that some constraints hold in the sequence domain.
Folding an inductive predicate

sat? (0%, S = 5,.[61.5,) = true

Folding segment and predicates
(¢}

| Theorem: Soundness of folding

sat! (o, S = 51.50.52) = true

The folded abstract state over-approximates the original one.

Automatic Verification of Tasks Schedulers Josselin Giet

Lattice operators

m C) St ST {true, false}
Abstract inclusion checking
m Ul St st st
Compute a common over-approximation of the inputs.
m VLSt St st
Compute a common over-approximation of the inputs and

ensures convergence ofiterations.

Automatic Verification of Tasks Schedulers Josselin Giet

Lattice operators

m C) St ST {true, false}
Abstract inclusion checking
m Ul St st st
Compute a common over-approximation of the inputs.
m V.St st st
Compute a common over-approximation of the inputs and
ensures convergence ofiterations.

All these operators follow a three-step principle:

1. Shape step
Shape parts are folded to establish the result

Sequence constraints to verify are accumulated

2. Instantiation step
Accumulated sequence constraints are used to enrich the

sequence part of the input

3. Sequence step The result is computed in the sequence part

Automatic Verification of Tasks Schedulers Josselin Giet

Lattice operators

m C) St ST {true, false}
Abstract inclusion checking
m Ul St st st
Compute a common over-approximation of the inputs.
m VLSt St st
Compute a common over-approximation of the inputs and
ensures convergence ofiterations.

All these operators follow a three-step principle:

1. Shape step
Shape parts are folded to establish the result

Sequence constraints to verify are accumulated

2. Instantiation step
Accumulated sequence constraints are used to enrich the

sequence part of the input

3. Sequence step The result is computed in the sequence part

Automatic Verification of Tasks Schedulers Josselin Giet

Example:

L S = Sl- [6] Sr)
11
1
S = 51.50.52

Inclusion test (shape step)

1

1M

Accumulated constraints :

Automatic Verification of Tasks Schedulers Josselin Giet

Inclusion test (shape step)

1M

S1=5,=10]

Accumulated constraints :

Automatic Ve tion of Tasks Schedulers Josselin Giet

Inclusion test (shape step)

Si=95=10
Accumulated constraints : 2 g; z ?é [01.51

Automatic Verification of Tasks Schedulers Josselin Giet

Inclusion test (shape step)

1
ﬂﬂﬂ v 1

Si=5=10
Accumulated constraints : A Eh = Sl/' [01.53
A Sy =S}
A So = Sr

Automatic Verification of Tasks Schedulers Josselin Giet

Inclusion test (instantiation & sequence steps)

The inclusion between the shape parts hold if the accumulated constraints are valid:
S1=8;=10 NSz =53
AS1 =8.161.51 ASo=S,
Problem Sy, S1, ... do not even appear in the left input.

It contains only S, S;, and S;

Automatic Verification of Tasks Schedulers Josselin Giet

Inclusion test (instantiation & sequence steps)

The inclusion between the shape parts hold if the accumulated constraints are valid:
S1=8;=10 NSz =53
AS1 =8.161.51 ASo=S,
Problem Sy, S1, ... do not even appear in the left input.

It contains only S, S;, and S;

Solution Use the accumulated constraints as definitions of unknown variables: Instantiation

This is sound since sequence variables are implicitly existentially quantified at the level of the abstract state.
Theorem: Soundness of instantiation
If S is not occurring in s* nor in E, then vs(s*) C s o guard’ (s*, S = E)

Automatic Ve tion of Tasks Schedulers Josselin Giet

Inclusion test (instantiation & sequence steps)

The inclusion between the shape parts hold if the accumulated constraints are valid:
S1=8,=1 NSy =S5
A Sy =Sz.[5].Si ASo =S,
Problem Sy, S1, ... do not even appear in the left input.
It contains only S, S;, and S;

Solution Use the accumulated constraints as definitions of unknown variables: Instantiation

This is sound since sequence variables are implicitly existentially quantified at the level of the abstract state.

Theorem: Soundness of instantiation
If S is not occurring in s* nor in E, then vs(s*) C s o guard’ (s*, S = E)

After the instantiation phase, the analysis performs the following inclusion test:

8= 5.5
NS, =8b=8 =10 _,

C*® = .90.
ASi = S.[6] Ls 5= 81505
NS, = So

Josselin Giet

Automatic Verification of Tasks Schedulers

Inclusion test (instantiation & sequence steps)

The inclusion between the shape parts hold if the accumulated constraints are valid:
S1=8,=1 NSy =S5
A Sy =Sz.[5].Si ASo =S,
Problem Sy, S1, ... do not even appear in the left input.
It contains only S, S;, and S;

Solution Use the accumulated constraints as definitions of unknown variables: Instantiation

This is sound since sequence variables are implicitly existentially quantified at the level of the abstract state.

Theorem: Soundness of instantiation
If S is not occurring in s* nor in E, then vs(s*) C s o guard’ (s*, S = E)

After the instantiation phase, the analysis performs the following inclusion test:

S = 51.5-
! ! .
221 ; 212 [—5]52 =0 C? S =51.5.5 = The inclusion test returns true
NS, = So

Josselin Giet

Automatic Verification of Tasks Schedulers

Verification of an instance of FreeRTOS

Specifications of the States of the scheduler

xTaskCreateStatic
xTaskCreateStatic vTaskStartScheduler

vTaskStartScheduler
Ready pxCurrentTCB € msetp,
‘ (Ra, R) ’ AxTick <minp,
o R)
A D, is sorted
H(p) = Delayed A xNextUnblockTime = { ' ix=INT if Dy =e
min(D,) otherwise
{ (Da, Dy) } A uxNumber0fTasks = |Rq| + |Da|
A uxSchedulerSuspended. ..
\ J
H is fully described using 17 parameters: R,, Ry, ..., xTick,...

Automatic Ve tion of Tasks Schedulers Josselin Giet

Specification of the functions

{H(m A (fopr'e} r= f(a‘rgs) {H(ﬁl) A @post}

All pre- and post-conditions are written using H (p)

This ensures that £ maintains the invariants of the scheduler

Cost of Specification :

m Simple functions (15/19)
» 1~2 goals per function A goal is similar to a behavior in ACSL
» < 10 lines per goal
m Complex functions (4/19) functions with loops: xTaskIncrementTick and callers

» 4~5 goals per function
» 15~40 lines per goals

= the full specification is done in ~750 lines: specification/code ratio < 1.1

inductive predicates + scheduler invariants + functions pre- and post-conditions

Automatic Verification of Tasks Schedulers Josselin Giet

Experimental results

Function name Goal LoS Pro;-).erty tme](5) |

verified all num usage (MB)

a 6 v 0.63 0.00 28.11

vTaskSwitchContext E 14 v 0-76 0.08 29.31

G 15 v 0.79 0.09 29.73

d 9 v 0.72 0.05 29.28

a 10 v 0.82 0.03 29.55

b 17 v 0.75 0.06 30.10

. G 14 v 0.73 0.04 30.42

xTaskIncrementTick d 14 v 074 0.04 30.06

e 26 v 36.48 33.39 68.10

f 24 v 21.80 19.69 42.35

a 36 v 178.05 163.72 203.81

b 34 v 316.83 284.04 298.86

xTaskResumeAll c 9 v 0.69 0.01 31.93

d 25 v 2.36 1.26 34.39

e 26 v 1.85 0.91 36.09

a 26 v 214.09 197.00 204.54

. b 28 v 463.48 410.65 384.84
xTaskCatchUpTicks

G 17 v 1.55 0.73 36.45

d 18 v 1.62 0.78 36.29

a 31 v 14.51 12.94 35.48

TaskDelay b 31 v 21.31 19.44 37.96

G 40 v 759.65 694.22 661.01

d 42 Safe Fc 823.71 762.47 612.33

Safe:

B Memory safety

m Structural invariants
Fc:

m Functional invariants

m Partial functional correctness

Automatic Verification of Tasks Schedulers

Josselin Giet

Lessons learned: Cost of the analysis

guardgl | uard?,| guard%
S=10 S = g/|teng = 0 satgl | comparegl ‘ |:|
guard: ‘ Sati ‘ pruneg ‘ | guardg [I[I
instantiateg unfoldé | E‘
U:/Vt | assigng | guardé |
[vTaskDelay]/ (s*) |
1 Numerical domain D, 1 Sequence domain I 1 Shape domain SF

m ~ 70% of time spent in L%/ VE.
Curse of disjunctions introduced by unfolding predicates (up to 38 in vTaskDelay)

m Numerical domain operations have an exponential cost

Light (in-)equalities domains do not reason on incremented values, we have to use polyhedra domain

Automatic Verification of Tasks Schedulers Josselin Giet

Lessons learned: Impact on the analysis

m Modification of the sequence domain: only once
for xTaskIncrementTick
m Efforts to improve the performance of the analysis:
» Remove superfluous reduction operations
» Try to use simple domains for (in-/dis-)equalities
Does not work for functions incrementing values
» Memorize calls to costly operators
Example Bound saturations of sequence variables, finding equal variables
m Help to the analysis

» Directive for loop unroll, predicate unfolding, merging or introducing disjunctions
» Ghost code to avoid aggressive predicates folding during widening

Automatic Verification of Tasks Schedulers Josselin Giet

Lessons learned: Verification effort

m Overall 8 months, distributed as follows:
» ~ 25%: writing/modifying the specification
» ~ 15%: Improving the analysis
» ~ 60%: Inspecting logs of analyzes

Imprecision in the shape part is easily detected.

|

il

Imprecision in the seq/num parts require more

effort.
m Simple functions are easily proved

m Analysis of xTaskIncrementTick required 8 weeks
Most of it was spent inspecting abstract states to

localize the loss of precision

B xTaskResumeAll and xTaskCatchUpTicks were
proved easily after

m vTaskDelay took 2~3 months.

Automatic Ve tion of Tasks Schedulers Josselin Giet

Conclusion

Conclusion

How to improve the expressiveness of static analysis to automatically prove partial
functional correctness of task schedulers?

Adding sequence parameters to inductive predicates

m Design of a novel sequence abstract domain

It also provides insights over their length/bounds/content/sortedness

m Integration into a separation logic based shape analysis

Using two sequence parameters for segments, Instantiation step for folding

Analysis of an instance of FreeRTOS

Specification of an instance .
o o)) Promising results!
Verification of this instance using our analysis

The future:
m Analyzing other instances applying history of development

m Extending the analysis to support new features & prove new properties

Automatic Verification of Tasks Schedulers Josselin Giet

Thank you for your attention !

Questions?

Sequence related stuff

Could we relax the sortedness checking?

Lemma
If S=51...5,, then

S = sort(S) < Vi, S; = sort(S;) AVi < j,maxs; < ming;,

The number of constraints in the right-hand side is quadratic! Could we relax it for
j=i+1?

NO ! Because of the empty sequence case !

. L maxs = —00
By consistency of the concretization: vs(S) = e —] s
ming = 400

S 31 We have indeed:
Vg): Sh= S1.SQ.S;;
Consider vs = ? 3 vs = S; = sort(S;), Vi But:
o> € Vs |=maxg, <ming, Vs l# S = SOI’t(S)

Sz 1 Vs = maxg, < ming,

Removing cyclic constraints

Assume the abstract state o5 contains the following constraints:

S =51.5".5,
AS' = 85.5"
ANS" =85.54

If we inline definitions over S’ and S” into the definition of S we obtain:
S =51.53.5.54.5-

The constraints over S, S’,S” are replaced by { 1= €2 - lis =Sa=1
§=5=F5

If one constraint contains at least one atom [a], then the state is reduced to L.

S = sort(S) does not count as a cyclic constraint as the implementation of the abstract domain does
not represent it as such.

Analysis structure

S =51.5".5,
Sequence | AS = sort(S) A S" = sort(S”)
AS1 = sort(S1)

Numerical

msets =msetg, t,c#0x0ANa, =c
Wmsets, lens = leng, + leng:
Wmsetgs maxs > maxs,,maxgs
D}
Ym s
J’\/A
g)(X—>V>< A—\V) p(V—=V)
num. val mem. state.

St = Mt x DE — 25 4 o (A —~ V)

Construction of segments predicates

Segment tree predicate

To derive treeseg(1, ¢, S1@S2), denoting a partial tree between ¢ and 1:

Segment tree predicate

To derive treeseg(1, ¢, S1@S2), denoting a partial tree between ¢ and 1:

m We add the empty segment case
» c and 1 are equal
» There is no content: S1 and Sy are empty.

@=1,
NS =11
AS2 =11

Segment tree predicate

To derive treeseg(1, ¢, S1@S2), denoting a partial tree between ¢ and 1:
m We add the empty segment case
» c and 1 are equal

» There is no content: S1 and Sy are empty.

B The other cases must have at least one element inside: c is in of the two subtrees.
The content constraints are synthesized by matching each side of the insertion point

e.g. in the left case: S = S;.[6].5, {S + S1352} {S1 < S1,105:,2}

:>51 =811
= 513852 = Sl,lEISz,z. [61.S, Sp = 5172' [61.5,
1 %)
x|V v
ASL =0 1#c A1l#0x0
NSy =1 B =
AS2 = 8;2.[61.5-

Segment tree predicate

To derive treeseg(1, ¢, S1@S2), denoting a partial tree between ¢ and 1:

m We add the empty

segment case

» c and 1 are equal

» There is no content: S1 and Sy are empty.

B The other cases must have at least one element inside: c is in of the two subtrees.

The content constraints are synthesized by matching each side of the insertion point

e.g. in the left case:

S =5,.00].5- {S — 51ESQ} {Sl — Sl,lBSLQ}
= 51852 = 51,1885:,2.[0].5;

Si = Si
52 = Sl,2~ [5] ~S'r

4 A 4
1 1]
LV
AS; =[] 1#cA1l#0x0
ASy =1 AS1L =51
AS2 = 8,2.[0].5,
(. J (. J (.

1#c Al#0x0
AS1 = 51.[0].5:1
NSz = Sr2

Hypothesis to derive segment from full predicate

Hypothesis
m The only constraint over sequence parameter is concatenation based. i.e. no sort predicate

m The argument of each recursive call occurs exactly once in the constraint.

-

= E.Si,zE]Si,r.El

S = E.Si,
Sp=Si,.E

Concatenating inductive predicates

seg-full case

satﬁ(a”7 S = 51.50.52) = true

C
seg-seg case

4 C N\
©
sat’(cf, S; = S1.57) = true
sat® (o, Sy = S5.5%) = true

Other unfolding

Other examples of unfolding

Some unfolding leverages information from the sequence domain.
For instance, if S denotes the sequence of addresses of the nodes in the tree:

«a # 0x0
AS = S;.[al.S,

c € msetg

Other examples of unfolding

Some unfolding leverages information from the sequence domain.
For instance, if S denotes the sequence of addresses of the nodes in the tree:

«a # 0x0
AS = S;.[al.S,

c Emsetg / So \
S =51.50.52
A c € msetg,

Other examples of unfolding

Some unfolding leverages information from the sequence domain.
For instance, if S denotes the sequence of addresses of the nodes in the tree:

L o o = 0x0 o # 0x0
/s \ | AS=1 \/ AS = 5;.[al.S,
Let us analyze v=c ->data, with initial state (tree(l, S) A c € msets).
— [15)
l/\ // \
/ \
/ c \\
unfold?
AVAV VAV SRS AA \\\ S = 51.80.52
“ /S1/ \S2\ Ac € msets,
c € msets / 20 v _ o a a A So = S;.[c].Sr
S =51.5.8 0 = 5. [c].5;
5 = 51.50.52 102
A c € msetg, Ac € msets,
i (ASe=0 |

Other examples of unfolding

Some unfolding leverages information from the sequence domain.
For instance, if S denotes the sequence of addresses of the nodes in the tree:

L o o = 0x0 o # 0x0
/s \ | AS=1 \/ AS = 5;.[al.S,
Let us analyze v=c ->data, with initial state (tree(l, S) A ¢ € msets)
- = <
l/\ / \
/ \
i S
fold?
VAV v I AV S = 51.50.52
“ /81 / K\ S2\ Ac € msets,
c € msets / 50 \ /N o ASo = Si.[c1.S,
S Si. .S 0 1 7
5 = 51.50.52 NG
A c € msetg, /)< € msets
il ASo =11

Experiments

Experiment 1: Classical list & BST programs

wo/ seq with seq parameters
Example Safe time Fc
verified overhead % num verified

Singly linked list

concat Safe 2.4x 21.7% Fc
deep copy Safe 1.7x 18.1% Fc
length Safe 4.7x 50.0% Fc
insert at position Safe 5.4x 60.2% Fc
sorted insertion Safe 6.1x 47.3% Fc
minimum Safe 7.8x 45.9% Fc
insertion sort Safe 29.0x 46.0% Fc
bubble sort Safe 19.1x 51.5% Fc
merge sorted lists Safe 9.6x 51.4% Fc
Binary search trees
Insertion Safe 6.0x 38.6% Fc
Delete max Safe 6.2x 48.6% Fc
Search (present) Safe 4x 45.3% Fc
BST to list Safe 3.2x 38.2% Fc
list to BST Safe 11.9x 46.1% Fc

Expressiveness

m Prove Fc for complex programs

including 3 sorting algorithms

m Sequences improve precision for Safe!

Overhead

m High slowdown for complex programs

Up to 30x for insertion sort

® Most of it in the numerical domain
Quadratic cost of sortedness checking

Length constraints are expensive
m Sequence domain slows down

convergence

Needs one more iteration for v‘i to stabilize.

Experiment 2: Real-world libraries

We tested MemCAD on real-world list libraries implementing various features:

Linux FreeRTOS GDSL

Circular DLL with distinguished header ® ® ®
Extreme sentinel nodes ®
Intrusive % %
Pointer to header ®
Length in header ® 3
Sorted ®
Linux FreeRTOS GDSL

wo/ seq w/seq wo/seq w/ seq wo/ seq w/ seq
Safe 4/4/ 4/A/ 4/a/ 4/4v 13/ 1X(1) 14/14v
Fc 4/4y 4/ay 14/14v

t: Cannot prove Safe for extraction at position.

	An abstract domain reasoning over sequences
	Shape analysis with sequence predicates
	Verification of an instance of FreeRTOS
	Conclusion
	Appendix
	Sequence related stuff
	Construction of segments predicates
	Other unfolding
	Experiments

