
Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

A Product of Shape & Sequences abstractions

Static Analysis Symposium, Cascais, 2023

Josselin Giet1, Félix Ridoux2,3, Xavier Rival1

October, 22 2023

1INRIA Paris/CNRS/École Normale Supérieure/PSL Research University, Paris, France

2IMDEA Software Institute, Madrid, Spain

3Univ Rennes, F-35000 Rennes, France

Introduction

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

What do we want to verify ?

When we talk about automatic static analysis of program manipulating dynamic
data-structure, there are several properties we are interested in.

1 tree *insert(tree *t, int v) {
2 tree *m = malloc(sizeof(tree));
3 m->left = m->right = NULL;
4 m->data = v;
5 if (!t) {
6 // Empty case
7 } else {
8 tree *c = t;
9 while (v < c->data && c->left ||

10 v >= c->data && c->right)
11 if (v <= c->data) {
12 c = c->left;
13 } else {
14 c = c->right;
15 }
16 if (v <= c->data) {
17 c->left = m;
18 } else {
19 c->right = m;
20 }
21 return t;
22 }
23 }

1. No ill-pointer (null, ...) dereference "c->"

2. Preservation of structural invariants
"If t is a well-formed binary tree then so
is the returned value."

3. Partial functional correctness
"If t is a well-formed BST, then the
returned value r should be a well-formed
BST containing the same elements as t
plus value v."

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 1/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Comparison of existing static analysis over dynamic data structures

Various automatic static analysis over dynamic data-structures have been proposed:

Analysis pointer
dereference

structural
invariants

partial fal

correctness
SLL tree

Pointer analysis ✔ ✗ ✗ ✗

Shape analysis based on...
. . . 3-Value logic ✔ ✔ ✗ ✗

e.g. [Sagiv et al. TOPLAS, 99]

. . . Separation logic ✔ ✔ ✗ ✗

e.g. [Chang et al. POPL, 08]

. . . k-limited graphs ✔ ✔ ✔ ✗

e.g. [Bouajjani et al, CAV, 10]

None of these approaches could prove functional correctness of insertion into a binary
search tree !

How to improve the expressiveness of automatic static analysis over
dynamic data-structures to prove partial functional correctness?

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 2/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Comparison of existing static analysis over dynamic data structures

Various automatic static analysis over dynamic data-structures have been proposed:

Analysis pointer
dereference

structural
invariants

partial fal

correctness
SLL tree

Pointer analysis ✔ ✗ ✗ ✗

Shape analysis based on...
. . . 3-Value logic ✔ ✔ ✗ ✗

e.g. [Sagiv et al. TOPLAS, 99]

. . . Separation logic ✔ ✔ ✗ ✗

e.g. [Chang et al. POPL, 08]

. . . k-limited graphs ✔ ✔ ✔ ✗

e.g. [Bouajjani et al, CAV, 10]

None of these approaches could prove functional correctness of insertion into a binary
search tree !

How to improve the expressiveness of automatic static analysis over
dynamic data-structures to prove partial functional correctness?

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 2/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Separation Logic based shape analysis

[Chang et al. POPL, 2008] introduces a shape analysis based on abstract
interpretation.

It uses a subset of separation logic [Reynolds, LICS 02] as an abstract representation
for memory states:

• Abstract memory regions are connected with the separating conjunction.
It expresses that these regions are disjoint
This allows to reason locally

• Inductive data-structures are synthesized by inductive predicates
Example The predicate tree(c), denoting a binary tree:

c

:=
∅

c = 0x0

∨ δ
c

c ̸= 0x0

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 3/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Inductive predicates are not expressive enough

E

c

:=
∅

c = 0x0

∧E = ∅

∨ δ
c

El Er

c ̸= 0x0

∧E = {δ} ∪ El ∪ Er

=⇒ This predicate is expressive enough to prove memory safety & structure
preservation.

Problem This not enough for partial functional correctness: tree forgets the content !

[Li et al. SAS, 2015] added set parameters expressing the content of data-structures.

Problem Set parameters express no constraint in respect to order of appearance !

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 4/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Inductive predicates are not expressive enough

E

c

:=
∅

c = 0x0

∧E = ∅

∨ δ
c

El Er

c ̸= 0x0

∧E = {δ} ∪ El ∪ Er

=⇒ This predicate is expressive enough to prove memory safety & structure
preservation.

Problem This not enough for partial functional correctness: tree forgets the content !

[Li et al. SAS, 2015] added set parameters expressing the content of data-structures.

Problem Set parameters express no constraint in respect to order of appearance !

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 4/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Inductive predicates are not expressive enough

E

c

:=
∅

c = 0x0
∧E = ∅

∨ δ
c

El Er

c ̸= 0x0
∧E = {δ} ∪ El ∪ Er

=⇒ This predicate is expressive enough to prove memory safety & structure
preservation.

Problem This not enough for partial functional correctness: tree forgets the content !

[Li et al. SAS, 2015] added set parameters expressing the content of data-structures.

Problem Set parameters express no constraint in respect to order of appearance !

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 4/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Sequence parameters

Our solution: Express constraints on the sequence of values stored in the tree.
Add a sequence parameter to the inductive predicate: tree(c, S).

S

c

:=
∅

c = 0x0
∧S = []

∨ δ
c

Sl Sr

c ̸= 0x0
∧S = Sl.[δ].Sr

The specification of the (partial) functional correctness of insert can be expressed as:{
tree(t, S)
S = sort(S)

}
r = insert(t, v)

{
tree(r, S′)

where S′ = sort(S.[v])

}

Requires to extend the shape
analysis to derive precise se-
quence constraints.

Requires an abstract domain to
reason about (possibly) sorted
sequences.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 5/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Sequence parameters

Our solution: Express constraints on the sequence of values stored in the tree.
Add a sequence parameter to the inductive predicate: tree(c, S).

S

c

:=
∅

c = 0x0
∧S = []

∨ δ
c

Sl Sr

c ̸= 0x0
∧S = Sl.[δ].Sr

The specification of the (partial) functional correctness of insert can be expressed as:{
tree(t, S)
S = sort(S)

}
r = insert(t, v)

{
tree(r, S′)

where S′ = sort(S.[v])

}

Requires to extend the shape
analysis to derive precise se-
quence constraints.

Requires an abstract domain to
reason about (possibly) sorted
sequences.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 5/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Contributions

An abstract domain reasoning over sequence constraints
To reason on content with order, length constraint, extremal elements, sortedness

A Reduced product between the sequence domain and an existing shape
domain
To express constraints over the content of inductive data structures

Evaluation of the analysis in the MemCAD tool
To demonstrate the gain of the expressiveness, the versatility of the approach, and discuss its

cost

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 6/19

Sequence domain

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Domain description

We build a domain in order to abstract sets of functions from variables to values and
sequences of values: {

α 7→ 2

δ 7→ 1

}{
S 7→ 4; 6; 1

S1 7→ 4; 6

}

An abstract value σ#
S of the sequence abstract domain D#

S consists of:(
∧Si = Ei, σ#

M , σ#
N

)

A conjuction of
sequence definitions

S = S1.[δ]
∧S = sort(S)

∧S1 = sort(S1)

An element of a
multiset domain D#

M

msetS = {{δ}} ⊎ msetS1

An element of a
numerical domain D#

N

minS ⩽ δ ⩽ maxS
∧maxS1

⩽ δ

. . .

∧ lenS = 1 + lenS1

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 7/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.[α] ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α] ∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.[α] ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α]

∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.[α] ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α]

∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.Sr ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α]

∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.Sr ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α] ∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)

5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.Sr ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α] ∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding a new constraint

guardS : D
#
S → seq. constraint → D#

S

S = S1.Sr ∧ S = sort(S)
∧S1 = sort(S1)

∧ Sr = [α] ∧ Sr = sort(Sr)

∧msetS = {{α}} ⊎msetS1

∧ msetSr = {{α}}

∧ lenS = 1 + lenS1
+ lenS2

∧ lenSr = 1

∧minS ⩽ α ⩽ maxS
∧minS ⩽ minS1

∧maxS1
⩽ maxS

∧ minSr = α = maxSr

To assume Sr = [α], guardS follows this al-
gorithm:

1. add the new definition in the
conjunction

2. add content/length/bounds constraints

3. fold other definitions

4. Saturate constraints
S = S1....Sn

∀i, Si = sort(Si) ∀i < j,maxSi
⩽ minSj

S = sort(S)
5. detect & remove cyclic constraints

Theorem: Soundness of guardS
γS(guardS(σ

#
S , S = E)) contains all valuations in γS(σ

#
S) satisfying S = E.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 8/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Abstract lattice operators

• verifyS : D
#
S → seq constraint → {true, false}

verifyS(σ
#
S , S = E) conservatively checks if σ#

S satisfies S = E.

• ⊑S : D#
S → D#

S → {true, false}
Abstract inclusion checking, using verifyS

• ⊔S : D#
S → D#

S → D#
S

That tries to infer common definitions from both inputs.

Example

(
S = S1.S2

∧S3 = []

)
⊔S

(
S = S2.S3

∧S1 = []

)
= (S = S1.S2.S3)

• ∇S : D#
S → D#

S → D#
S

That selects the constraints in the left arguments verified in the right one.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 9/19

Shape analysis with sequence
predicates

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Integrating sequence parameters in the shape domain

The tree(c) predicate only synthesizes full binary trees.
To abstract partial trees, the shape domain uses a segment predicate treeseg(l, c).

t

3

2 10

6
c

4

5

9

0

1

11

12

l

c

The shape domain automatically derives treeseg from tree.
The analysis must keep tracks of the content stored in the segment

In order to reason precisely over inductive predicates, the shape analysis relies on:

• Unfold: refines the memory by materializing synthesized memory.

• Fold: extrapolates the memory state to gain generality.
Used to over-approximate two memory states

For each of these operations, the shape domain should derive the corresponding
sequence constraints to assume or verify.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 10/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Integrating sequence parameters in the shape domain

The tree(c) predicate only synthesizes full binary trees.
To abstract partial trees, the shape domain uses a segment predicate treeseg(l, c).

t

3

2 10

6
c

4

5

9

0

1

11

12

l

c

The shape domain automatically derives treeseg from tree.
The analysis must keep tracks of the content stored in the segment

In order to reason precisely over inductive predicates, the shape analysis relies on:

• Unfold: refines the memory by materializing synthesized memory.

• Fold: extrapolates the memory state to gain generality.
Used to over-approximate two memory states

For each of these operations, the shape domain should derive the corresponding
sequence constraints to assume or verify.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 10/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Adding sequence parameters to segment predicates

t

3

2 10

6
c

4

5

9

0

1

11

12

S0 = 4 5 6 9

S1 = 0 1 2 3 S2 = 10 11 12

l

S1 S2S0

c

The sequence stored in the tree is: 0 1 2 3 4 5 6 9 10 11 12

The analysis needs to recall the location of the missing sequence in treeseg.
=⇒ the segment predicate has two sequence parameters: S1, S2

One for each side of the missing sequence

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 11/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded
• The non-empty case: c->data corresponds to δ.

3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded
• The non-empty case: c->data corresponds to δ.

3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded
• The non-empty case: c->data corresponds to δ.

3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded

• The non-empty case: c->data corresponds to δ.
3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded
• The non-empty case: c->data corresponds to δ.

3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Refining abstract memory state with unfolding

To analyze if(l){v= l->data} with initial state tree(l, S)

1. The numerical constraint l ̸= 0x0 is guarded in the numerical part of the
sequence domain.

2. To materialize l->data, the analysis unfolds the predicate
The abstract memory is replaced by the definition: δ, Sl, Sr are fresh variables
The numerical and sequences constraints are guarded in the sequence domain

• The empty case: Inconsistent with the if assumption =⇒ Discarded
• The non-empty case: c->data corresponds to δ.

3. The assignment v← δ is performed.

S

l

l ̸= 0x0

unfold
∅

l ̸= 0x0
∧ l = 0x0
∧S = []

∨ δ

l

Sl Sr

l ̸= 0x0
∧S = Sl.[δ].Sr

Theorem: Soundness of unfolding
The resulting disjunction of abstract states over approximates the original state.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 12/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Folding the abstract state

Fold generalizes the abstract state by rewriting parts of the memory into a predicate.
The analysis first checks that some constraints hold in the sequence domain.

Folding an inductive predicate

δ
c

Sl Sr

verifyS(σ
#
S , S = Sl.[δ].Sr) = true

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S

c

Folding segment and predicates

c

S1 S2

S0

verifyS(σ
#
S , S = S1.S0.S2) = true

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

S

c

Theorem: Soundness of folding
The folded abstract state over-approximates the original one.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 13/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Lattice operators

Inclusion checking
Folds the left input until both are syntactically equal.

Upper bound
Folds both inputs until they are syntactically equal.

Widening

With these operators, we design a sound and automatic static analysis by forward
abstract interpretation. And the analysis checks that the final state satisfies to
post-condition to prove partial functional correctness.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 14/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Proving the insertion into a BST

After two iterations, the analysis inferred the following loop invraiant:

l

S1 S2S0

c

S = S1.S0.S2

∧S = sort(S)
∧Si = sort(Si), i = 0, 1, 2

∧ l, c ̸= 0x0
∧maxS1

⩽ v < minS2

Finally, the analysis was able to prove that the final state sastifies the post condition:

Sr

l

Sr = sort(S.[v])

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 15/19

Experiments

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Experimental Setup

The analysis described has been implemented in the MemCAD static analyzer
available at gitlab.inria.fr/memcad/memcad

For each test, we specify:

• the full inductive predicates,

• the pre- and post-conditions,

Everything else (segment predicates/loop invariants) is inferred by the analysis.

(Q1) Is this analysis precise enough to prove memory safety (Safe) and functional
properties (Fc) ?

(Q2) How significant is the overhead of the combined analysis compared to the
baseline?

(Q3) Can this analysis successfully verify real-world C libraries?

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 16/19

gitlab.inria.fr/memcad/memcad

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Experiment 1: Classical list & BST programs

Example
wo/ seq with seq parameters
Safe time Fc

verified overhd. % num verified
Singly linked list

concat Safe 2.4x 21.7% Fc
deep copy Safe 1.7 x 18.1% Fc
length Safe 4.7x 50.0% Fc
insert at position Safe 5.4x 60.2% Fc
sorted insertion Safe 6.1x 47.3% Fc
minimum Safe 7.8x 45.9% Fc
insertion sort Safe 29.0x 46.0% Fc
bubble sort Safe 19.1x 51.5% Fc
merge sorted lists Safe 9.6x 51.4% Fc

Binary search trees
Insertion Safe 6.0x 38.6% Fc
Delete max Safe 6.2x 48.6% Fc
Search (present) Safe 4x 45.3% Fc
BST to list Safe 3.2x 38.2% Fc
list to BST Safe 11.9x 46.1% Fc

Expressiveness
• Prove Fc for complex programs

including 3 sorting algorithms

• Sequences improve precision for Safe!

Overhead
• High slowdown for complex programs

Up to 30x for insertion sort

• Most of it in the numerical domain
Quadratic cost of sortedness checking

Length constraints are expensive

• Sequence domain slows down
convergence
Needs one more iteration for ∇S to

stabilize.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 17/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Experiment 2: Real-world libraries

We tested MemCAD on real-world list libraries implementing various features:

Linux FreeRTOS GDSL
Circular DLL with distinguished header Yes Yes Yes
Extreme sentinel nodes No No Yes
Intrusive Yes Yes No
Pointer to header No Yes No
Length in header No Yes Yes
Sorted No Yes No

Linux FreeRTOS GDSL
wo/ seq w/ seq wo/ seq w/ seq wo/ seq w/ seq

Safe 4/4✔ 4/4✔ 4/4✔ 4/4✔ 13✔ 1✗(†) 14/14✔

Fc 4/4✔ 4/4✔ 12✔ 2✗(‡)

†: Cannot prove Safe for extraction at position.
‡: Cannot prove Fc for min/max extraction.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 18/19

Conclusion

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Conclusion

How to improve the expressiveness of static analysis over
dynamic data-structures to prove partial functional

correctness?

• Design of a novel sequence abstract domain
It leverages existing numerical/set domains to express length/bounds/content constraints.

• Integration into a separation logic based shape analysis
The reduced product derives corresponding sequence constraints for unfolding/weakening.

• Implementation in the MemCAD static analyzer
Proves partial functional correctness for complex algorithms on SLL/BST and real world

libraries.

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 19/19

Introduction Sequence domain Shape analysis with sequence predicates Experiments Conclusion

Thank you !

A Product of Shape & Sequences abstractions J. Giet, F. Ridoux, X. Rival 19/19

Could we relax the sortedness checking?

Lemma
If S = S1 . . . Sn, then

S = sort(S)⇔ ∀i, Si = sort(Si) ∧ ∀i < j,maxSi
⩽ minSj

Question The number of constraints in the right-hand side is quadratic! Could we
relax it for j := i+ 1?

=⇒ NO ! Because of the empty sequence case !

By consistency of the concretization: νS(S) = ε =⇒
{

maxS = −∞
minS = +∞

Consider νS =


S 7→ 3 1

S1 7→ 3

S2 7→ ε

S3 7→ 1


We have indeed:

νS |= S = S1.S2.S3

νS |= Si = sort(Si), ∀i
νS |= maxS1

⩽ minS2

νS |= maxS2
⩽ minS3

But:
νS ̸|= S = sort(S)

Removing cyclic constraints

Assume the abstract state σ#
S contains the following constraints:

S = S1.S′.S2

∧S′ = S3.S′′

∧S′′ = S.S4

If we inline definitions over S′ and S′′ into the definition of S we obtain:

S = S1.S3.S.S4.S2

The constraints over S, S′, S′′ are replaced by

{
S1 = S2 = S3 = S4 = []
S = S′ = S′′

If one constraint contains at least one atom [α], then the state is reduced to ⊥S .

S = sort(S) does not count as a cyclic constraint as the implementation of the
abstract domain does not represent it as such.

Concatenating inductive predicates

seg-full case

c

S1 S2

S0

verifyS(σ
#
S , S = S1.S0.S2) = true

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

S

c

seg-seg case

c

S′
1 S′

2S′′
1 S′′

2

verifyS(σ
#
S , S1 = S′

1.S
′′
1) = true

verifyS(σ
#
S , S2 = S′′

2 .S
′
2) = true

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

c

S1 S2

Segment tree predicate

l

c

S1 S2

:=

∅
c = l
∧S1 = []
∧S2 = []∨

δ

l

c

Sl,1 Sl,2

Sr

l ̸= c ∧ l ̸= 0x0
∧S1 = Sl,1

∧S2 = Sl,2.[δ].Sr

∨
δ

l

Sl c

Sr,1 Sr,2

l ̸= c ∧ l ̸= 0x0
∧S1 = Sl.[δ].Sr,1

∧S2 = Sr,2

Hypothesis to derive segment from full predicate

Hypothesis
• The constraint over sequence parameter is only concatenation based

• The argument of each recursive call occurs exactly once in the constraint

S
:=

∨

Si

S = E.Si.E
′

∨

Sl Sr

:=
∨

Si,l Si,r

Sl � Sr = E.Si.E
′{Si ← Si,l � Si,r}

= E.Si,l � Si,r.E
′

=⇒
{

Sl = E.Si,l

Sr = Si,r.E
′

∨

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
•if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t

c

S

α

δ

Sl

αl

Sr

αr

S = sort(S)

∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0 ∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{ •

ptree c= t;
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t

c

S

α

δ

Sl

αl

Sr

αr

S = sort(S)

∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0

∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{

ptree c= t;•
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

S

α

δ

Sl

αl

Sr

αr

S = sort(S)

∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0

∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(•v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

S

α

δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0

∧ v < δ ∧ αl ̸= 0x0

maxSl
⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l•||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

S

α

δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0 ∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l•
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

S

α

δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0 ∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{tree(t, S) ∧ S =
sort(S)}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l•
}else {

c = c->r•;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

S

α

δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧ α ̸= 0x0 ∧ v < δ ∧ αl ̸= 0x0
maxSl

⩽ δ ⩽ minSr

t
c δ

Sl

αl

Sr

αr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0 ∧ v ⩾ δ ∧ αr ̸= 0x0
maxSl

⩽ δ ⩽ minSr

Union (Shape part)

t
c

S

α

α

⊔Σ

t
c δ

Sr

αr

Sl

αl

αl

t
c δ

Sl

αl

Sr

αr

αr

t
c

αt

S1 S2
S0

αc

α←[αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ ?? , ??

[]←[S2 7→ ?? , ??

Union (Shape part)

t
c

S

α

α ⊔Σ

t
c δ

Sr

αr

Sl

αl

αl

t
c δ

Sl

αl

Sr

αr

αr

t
c

αt

S1 S2

S0

αc

α←[αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ ?? , ??

[]←[S2 7→ ?? , ??

Union (Shape part)

t
c

S

α
α

⊔Σ

t
c

δ

Sr

αr

Sl

αl
αl

t
c

δ

Sl

αl

Sr

αr
αr

t
c

αt

S1 S2
S0

αc

α←[αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ ?? , ??

[]←[S2 7→ ?? , ??

Weakening: inclusion test

δ
αt

Sr

αrαc

fold−−→

δ
αt

Sr

αrαl

αc
Sl,1 Sl,2

fold−−→

αt

αc

S1 S2

To verify:

Sl,1 = []
Sl,2 = []
αl = αc

S1 = Sl,1

S2 = Sl,2.[δ].Sr

αt ̸= 0x0

The constraints are simplified.
α ̸= 0

αl = αl

S1 = []
S2 = [δ].Sr

The numerical ones are checked with verifyS
The sequence ones are used for definition of S1 and S2

Weakening: inclusion test

δ
αt

Sr

αrαc
fold−−→

δ
αt

Sr

αrαl

αc
Sl,1 Sl,2

fold−−→

αt

αc

S1 S2

To verify:
Sl,1 = []
Sl,2 = []
αl = αc

S1 = Sl,1

S2 = Sl,2.[δ].Sr

αt ̸= 0x0

The constraints are simplified.
α ̸= 0

αl = αl

S1 = []
S2 = [δ].Sr

The numerical ones are checked with verifyS
The sequence ones are used for definition of S1 and S2

Weakening: inclusion test

δ
αt

Sr

αrαc
fold−−→

δ
αt

Sr

αrαl

αc
Sl,1 Sl,2

fold−−→

αt

αc

S1 S2

To verify:
Sl,1 = []
Sl,2 = []
αl = αc

S1 = Sl,1

S2 = Sl,2.[δ].Sr

αt ̸= 0x0

The constraints are simplified.
α ̸= 0

αl = αl

S1 = []
S2 = [δ].Sr

The numerical ones are checked with verifyS
The sequence ones are used for definition of S1 and S2

Union (Shape part)

t
c

⊔Σ
t
c

t
c

t
c

αt

S1 S2
S0

αc

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sr , []

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

S = sort(S)

∧α ̸= 0x0
⊔Σ

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0
∧αl ̸= 0x0
∧v < δ

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = Sl.[δ].Sr

Si = sort(Si) i ∈ {l, r}

∧α ̸= 0x0
∧αr ̸= 0x0
∧v ⩾ δ

maxSl
⩽ δ ⩽ minSr

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

S = sort(S)
S1 = S2 = []
∧α= αc = αt ̸= 0x0

⊔Σ

S = sort(S) ∧ S = S0.S2

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sl ∧ S1 = [] ∧ S2 = [δ].Sr

∧α= αt ̸= 0x0
∧αl= αc ̸= 0x0
∧v < δ= minS2

∧maxS1
= −∞

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = S1.S0

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sr ∧ S1 = Sl.[δ] ∧ S2 = []
∧α= αt ̸= 0x0
∧αr= αc ̸= 0x0
∧v ⩾ δ= maxS1

∧minS2
= +∞

maxSl
⩽ δ ⩽ minSr

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

Si = sort(Si) i ∈ {_, 0, 1, 2}

S = sort(S)
S1 = S2 = []
∧α= αc = αt ̸= 0x0

⊔Σ

S = sort(S) ∧ S = S0.S2

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sl ∧ S1 = [] ∧ S2 = [δ].Sr

∧α= αt ̸= 0x0
∧αl= αc ̸= 0x0
∧v < δ= minS2

∧maxS1
= −∞

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = S1.S0

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sr ∧ S1 = Sl.[δ] ∧ S2 = []
∧α= αt ̸= 0x0
∧αr= αc ̸= 0x0
∧v ⩾ δ= maxS1

∧minS2
= +∞

maxSl
⩽ δ ⩽ minSr

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

Si = sort(Si) i ∈ {_, 0, 1, 2}
S = S1.S0.S2

S = sort(S)
S1 = S2 = []
∧α= αc = αt ̸= 0x0

⊔Σ

S = sort(S) ∧ S = S0.S2

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sl ∧ S1 = [] ∧ S2 = [δ].Sr

∧α= αt ̸= 0x0
∧αl= αc ̸= 0x0
∧v < δ= minS2

∧maxS1
= −∞

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = S1.S0

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sr ∧ S1 = Sl.[δ] ∧ S2 = []
∧α= αt ̸= 0x0
∧αr= αc ̸= 0x0
∧v ⩾ δ= maxS1

∧minS2
= +∞

maxSl
⩽ δ ⩽ minSr

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

Si = sort(Si) i ∈ {_, 0, 1, 2}
S = S1.S0.S2

αc, αt ̸= 0x0

S = sort(S)
S1 = S2 = []
∧α= αc = αt ̸= 0x0

⊔Σ

S = sort(S) ∧ S = S0.S2

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sl ∧ S1 = [] ∧ S2 = [δ].Sr

∧α= αt ̸= 0x0
∧αl= αc ̸= 0x0
∧v < δ= minS2

∧maxS1
= −∞

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = S1.S0

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sr ∧ S1 = Sl.[δ] ∧ S2 = []
∧α= αt ̸= 0x0
∧αr= αc ̸= 0x0
∧v ⩾ δ= maxS1

∧minS2
= +∞

maxSl
⩽ δ ⩽ minSr

Union (Numerical part)

α← [αc 7→αl , αr

S←[S0 7→Sl , Sr

α←[αt 7→α , α

[]←[S1 7→ [] , Sl.[δ]
[]←[S2 7→ [δ].Sl , []

Result:

Si = sort(Si) i ∈ {_, 0, 1, 2}
S = S1.S0.S2

αc, αt ̸= 0x0
maxS1

⩽ v ⩽ minS2

S = sort(S)
S1 = S2 = []
∧α= αc = αt ̸= 0x0

⊔Σ

S = sort(S) ∧ S = S0.S2

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sl ∧ S1 = [] ∧ S2 = [δ].Sr

∧α= αt ̸= 0x0
∧αl= αc ̸= 0x0
∧v < δ= minS2

∧maxS1
= −∞

maxSl
⩽ δ ⩽ minSr

S = sort(S) ∧ S = S1.S0

Si = sort(Si) i ∈ {l, r, 1, 2}
S0 = Sr ∧ S1 = Sl.[δ] ∧ S2 = []
∧α= αt ̸= 0x0
∧αr= αc ̸= 0x0
∧v ⩾ δ= maxS1

∧minS2
= +∞

maxSl
⩽ δ ⩽ minSr

Exemple: insertion in binary search tree

{
tree(t, S)
∧S = sort(S)

}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(•v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

αt

S1 S2

S0

αc

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2

, l, r

}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt

, αl

̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

Exemple: insertion in binary search tree

{
tree(t, S)
∧S = sort(S)

}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l•||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

αt

S1 S2

S0

αc

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2

, l, r

}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt

, αl

̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

Exemple: insertion in binary search tree

{
tree(t, S)
∧S = sort(S)

}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l•||

v>= c->d && c->r)
if(v < c->d) {

c = c->l
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

αt

S1 S2

S0

αc

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2, l, r}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt, αl ̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

Exemple: insertion in binary search tree

{
tree(t, S)
∧S = sort(S)

}
if(t== NULL){

// Empty case
}else{

ptree c= t;
while(v< c->d && c->l||

v>= c->d && c->r)
if(v < c->d) {

c = c->l•
}else {

c = c->r;
}

if(v< c->d){
c->l = m;

}else{
c->r = m;

}
return t;

}

{tree(t, sort(S.[v]))}

t
c

αt

S1 S2

S0

αc

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2, l, r}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt, αl ̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

Exemple: insertion in binary search tree

t
c

αt

S1 S2

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2

, l, r

}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt

, αl

̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

⊑Σ

t
c

αt

S1 S2

S0

αc

Si = sort(Si) i ∈ {_, 1, 2}
S = S1.S0.S2

αc, αt ̸= 0x0
maxS1

⩽ v ⩽ minS2

=⇒ Invariant found after two iterations !

Exemple: insertion in binary search tree

t
c

αt

S1 S2

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2

, l, r

}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt

, αl

̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

⊑Σ

t
c

αt

S1 S2

S0

αc

Si = sort(Si) i ∈ {_, 1, 2}
S = S1.S0.S2

αc, αt ̸= 0x0
maxS1

⩽ v ⩽ minS2

=⇒ Invariant found after two iterations !

Exemple: insertion in binary search tree

t
c

αt

S1 S2

δ

αc

Sl

αl

Sr

αr

Si = sort(Si) i ∈ {_, 1, 2, l, r}
S = S1.S0.S2

S0 = Sl.[δ].Sr

αc, αt, αl ̸= 0x0
maxS1

⩽ v ⩽ minS2

v < δ

⊑Σ

t
c

αt

S1 S2

S0

αc

Si = sort(Si) i ∈ {_, 1, 2}
S = S1.S0.S2

αc, αt ̸= 0x0
maxS1

⩽ v ⩽ minS2

=⇒ Invariant found after two iterations !

	Introduction
	An abstract domain reasoning over sequences
	Shape analysis with sequence predicates
	Experiments
	Conclusion
	Appendix

