Efficient Rational Secret Sharing in Standard Communication Networks

Georg Fuchsbauer Jonathan Katz David Naccache

École Normale Supérieure

University of Maryland

TCC 2010

TCC 2010

1 / 19

New protocols for rational secret sharing

- Improved *efficiency* (no generic MPC; better parameters than prior work) and *optimal resilience*
- Work in *standard networks* (no simultaneous channels; no broadcast; can even handle asynchronous networks)

TCC 2010

2 / 19

• Satisfy strong solution concepts

New protocols for rational secret sharing

- Improved *efficiency* (no generic MPC; better parameters than prior work) and *optimal resilience*
- Work in *standard networks* (no simultaneous channels; no broadcast; can even handle asynchronous networks)
- Satisfy strong solution concepts

New solution concepts for rational cryptography

- (Computational) strict Nash; resistance to trembles
- Removing covert channels without physical assumptions

TCC 2010 3 / 19

Fuchsbauer, Katz, Naccache(ENS, UMD)Efficient Rational Secret Sharing

TCC 2010 4 / 19 Dealer shares a secret s among parties P_1, \ldots, P_n

Dealer D holding s computes shares s_i ; gives s_i to P_i s.t.

- any group of size $\geq t$ can reconstruct s
- any group of size < t has no information about s

Shamir's Secret Sharing

- D chooses random polynomial f of degree t 1 with f(0) = s
- Gives (signed copy of) $s_i = f(i)$ to each party P_i
- To reconstruct, all parties simultaneously broadcast their shares

Dealer shares a secret s among parties P_1, \ldots, P_n

Dealer D holding s computes shares s_i ; gives s_i to P_i s.t.

- any group of size $\geq t$ can reconstruct s
- any group of size < t has no information about s

Shamir's Secret Sharing

- D chooses random polynomial f of degree t 1 with f(0) = s
- Gives (signed copy of) $s_i = f(i)$ to each party P_i
- To reconstruct, all parties simultaneously broadcast their shares

Dealer shares a secret s among parties P_1, \ldots, P_n

Dealer D holding s computes shares s_i ; gives s_i to P_i s.t.

- any group of size $\geq t$ can reconstruct s
- any group of size < t has no information about s

Implicit assumption

Each party either *honest* or *corrupt*; honest parties will cooperate during the reconstruction phase

All players are rational and want to maximize their utility

Classical schemes fail in the rational setting: e.g., in Shamir's scheme broadcasting your share is *not* rational

All players are rational and want to maximize their utility

Classical schemes fail in the rational setting: e.g., in Shamir's scheme broadcasting your share is *not* rational

This motivates the problem of *rational* secret sharing [HT04, GK06, LT06, ADGH06, KN08a, KN08b, OPRV09, MS09, AL09]:

- Set of *n* computationally bounded parties P_1, \ldots, P_n
- Sharing phase: D holds random s; gives share s_i to P_i
- Reconstruction phase: Players run protocol Π to reconstruct the secret

- We say that P_i learns the secret iff it outputs s
 - Takes into account the fact that the $\{P_i\}$ are computationally bounded
 - Models learning partial information about the secret
- Outcome: $(o_1,\ldots,o_n)\in\{0,1\}^n$, with $o_i=1$ iff P_i learned secret

- We say that P_i learns the secret iff it outputs s
 - Takes into account the fact that the $\{P_i\}$ are computationally bounded
 - Models learning partial information about the secret
- Outcome: $(o_1,\ldots,o_n)\in\{0,1\}^n$, with $o_i=1$ iff P_i learned secret
- P_i 's utility: $\mu_i \colon \{0,1\}^n \to \mathbb{R}$
- Assumptions regarding players' utilities:
 - Above all, players want to learn the secret
 - 2 Second, they prefer as few other players as possible learn it

A strategy σ_i is a prob. poly-time interactive Turing machine Given strategies $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$, we let $u_i(\boldsymbol{\sigma})$ denote the expected utility of P_i if each player P_j runs σ_j

(Computational) Nash equilibrium: no efficient deviation from the protocol increases expected utility (more than a negligible amount)

A strategy σ_i is a prob. poly-time interactive Turing machine Given strategies $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$, we let $u_i(\boldsymbol{\sigma})$ denote the expected utility of P_i if each player P_j runs σ_j

(Computational) Nash equilibrium: no efficient deviation from the protocol increases expected utility (more than a negligible amount)

Computational Nash (2-player case)

 $\Pi = (\sigma_1, \sigma_2)$ induces a computational Nash eq. iff for all efficient σ_1'

$$u_1(\sigma'_1, \sigma_2) \leq u_1(\sigma_1, \sigma_2) + \operatorname{negl}(k)$$

TCC 2010

8 / 19

(and similarly for P_2)

Insufficiently strong to rule out some naturally "bad" protocols

Several suggestions in prior work for strengthening Nash solution concept; these have problems of their own

Here, we introduce two new notions (based on suggestions in [Katz08])

• Computational strict Nash: detectable deviations decrease utility

• Implies that there is a *unique* legal message at each point in the protocol — no covert channels! (An explicit goal in other work.)

• Stability w.r.t. trembles: best to follow protocol even if other parties may deviate (arbitrarily) with small probability

TCC 2010

9 / 19

See the paper for formalizations

3 Our Protocols

Fuchsbauer,Katz,Naccache(ENS,UMD) Efficient Rational Secret Sharing

TCC 2010 10 / 19

< A

• Idea: Proceed in iterations; punish players for incorrect behavior

- In each iteration, dealer distributes shares of either
 - ullet the real secret with some probability eta
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is rational to follow the protocol
- Online dealer can be simulated using secure MPC

TCC 2010 11 / 19

- Idea: Proceed in iterations; punish players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - ullet the real secret with some probability eta
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - \bullet If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is rational to follow the protocol
- Online dealer can be simulated using secure MPC

- Idea: Proceed in iterations; punish players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - ullet the real secret with some probability eta
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - $\bullet\,$ If fake secret reconstructed $\Rightarrow\,$ go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is rational to follow the protocol
- Online dealer can be simulated using secure MPC

- Idea: Proceed in iterations; punish players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - ullet the real secret with some probability eta
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - $\bullet\,$ If fake secret reconstructed $\Rightarrow\,$ go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is rational to follow the protocol

• Online dealer can be simulated using secure MPC

- Idea: Proceed in iterations; punish players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - ullet the real secret with some probability eta
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - $\bullet\,$ If fake secret reconstructed $\Rightarrow\,$ go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is rational to follow the protocol

TCC 2010

11 / 19

• Online dealer can be simulated using secure MPC

Using generic secure MPC is inefficient

Communication networks:

- All prior work seems to require broadcast
- Most prior work needs simultaneous broadcast
- Other work relies on physical assumptions

Kol and Naor give a protocol that does not use generic secure MPC, and does not assume simultaneous channels

Using generic secure MPC is inefficient

Communication networks:

- All prior work seems to require broadcast
- Most prior work needs simultaneous broadcast
- Other work relies on physical assumptions

Kol and Naor give a protocol that does not use generic secure MPC, and does not assume simultaneous channels

Advantages of our protocols

- Shares of bounded length; better round complexity
- Resistance to coalitions
- No broadcast channel needed; even asynchronous networks ok

TCC 2010

12 / 19

Different solution concepts

Fuchsbauer, Katz, Naccache(ENS, UMD)Efficient Rational Secret Sharing

TCC 2010 13 / 19

Main Idea I

- Rely on same high-level structure (using real/fake iterations) as in previous work
- Previous work allows parties to recognize the real iteration *as soon as it occurs*
 - Inherently requires simultaneous channels
- Here, the good iteration is not identified until the *following* round

Main Idea I

- Rely on same high-level structure (using real/fake iterations) as in previous work
- Previous work allows parties to recognize the real iteration *as soon as it occurs*
 - Inherently requires simultaneous channels
- Here, the good iteration is not identified until the *following* round

Main Idea II

Real iteration identified using verifiable random functions (VRFs)

TCC 2010

14 / 19

- VRFs can be replaced by trapdoor permutations
- Unique proofs ensure a unique legal message in each round

Sketch of the Protocol for n = 2

Sharing of $s \in \{0,1\}^{\ell}$

- Choose real round $r^* \sim \operatorname{GeomDist}(\beta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):

$$\Bigl({\it sk}_1, \; {\it sk}_1', \; {\it pk}_2, \; {\it pk}_2', \; {\it share}_1 := {\it F}_{{\it sk}_2}(r^*) \oplus {\it s}, \; {\it signal}_1 := {\it F}_{{\it sk}_2'}(r^*+1) \Bigr)$$

Sketch of the Protocol for n = 2

Sharing of $s \in \{0,1\}^{\ell}$

- Choose real round $r^* \sim {\sf GeomDist}(eta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):

$$\Bigl({\it sk}_1, \; {\it sk}_1', \; {\it pk}_2, \; {\it pk}_2', \; {\sf share}_1 := {\it F}_{{\it sk}_2}(r^*) \oplus {\it s}, \; {\sf signal}_1 := {\it F}_{{\it sk}_2'}(r^*+1) \Bigr)$$

Reconstruction phase (P_1) 's view, iteration r)

- Send $F_{sk_1}(r), F_{sk'_1}(r)$ and proofs
- Receive $y^{(r)}, z^{(r)}$ and proofs. Then:
 - If signal $_1=z^{(r)}$ then output $s^{(r-1)}:={\sf share}_1\oplus y_2^{(r-1)}$ and halt
 - If P_2 aborted or sent incorrect proofs, output $s^{(r-1)}$ and halt
 - Otherwise, go to next iteration

Sketch of the Protocol for n = 2

Sharing of $s \in \{0,1\}^{\ell}$

- Choose real round $r^* \sim {\sf GeomDist}(eta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):

$$\Bigl({\it sk}_1, \; {\it sk}_1', \; {\it pk}_2, \; {\it pk}_2', \; {\sf share}_1 := {\it F}_{{\it sk}_2}(r^*) \oplus {\it s}, \; {\sf signal}_1 := {\it F}_{{\it sk}_2'}(r^*+1) \Bigr)$$

Reconstruction phase (P_1) 's view, iteration r)

- Send $F_{sk_1}(r), F_{sk'_1}(r)$ and proofs
- Receive $y^{(r)}, z^{(r)}$ and proofs. Then:
 - If signal $_1 = z^{(r)}$ then output $s^{(r-1)} := {\sf share}_1 \oplus y_2^{(r-1)}$ and halt
 - If P_2 aborted or sent incorrect proofs, output $s^{(r-1)}$ and halt
 - Otherwise, go to next iteration

Theorem

For appropriate choice of β , the above protocol induces a computational strict Nash equilibrium that is stable w.r.t. trembles.

TCC 2010

15 / 19

Fuchsbauer,Katz,Naccache(ENS,UMD) Efficient Rational Secret Sharing

Observation: in our protocol, VRFs are only evaluated in order

Idea

 Assume f trapdoor permutation with associated hardcore bit h, let y be random in Dom(f)

TCC 2010

16 / 19

Define VRF(1) as h(f⁻¹(y)),..., h(f^{-l}(y))
Define VRF(2) as h(f^{-l-1}(y)),..., h(f^{-2l}(y))

• Verifiable, since f efficiently computable

- Dealer chooses r^* , assignes VRFs F_i , F'_i to P_i
- Makes *t*-out-of-*n* Shamir shares:
 - s_1, \ldots, s_n of s
 - $z_1, ..., z_n$ of 0
- Each player P_i gets
 - s_j blinded by $F_j(r^*)$
 - z_j blinded by $F'_j(r^*+1)$ for all j

- Dealer chooses r^* , assignes VRFs F_i , F'_i to P_i
- Makes *t*-out-of-*n* Shamir shares:
 - s_1, \ldots, s_n of s
 - $z_1, ..., z_n$ of 0
- Each player P_i gets
 - s_j blinded by $F_j(r^*)$
 - z_j blinded by $F'_j(r^*+1)$ for all j
- Reconstruction
 - every player sends $F_i(r), F'_i(r)$
 - constructs polynomial to determine $r^* + 1$

TCC 2010

17 / 19

Theorem

Assume exactly t parties are active during the reconstruction phase. Then for appropriate choice of β , the above protocol induces (t - 1)-resilient computational strict Nash equilibrium that is stable w.r.t. trembles.

See paper for:

- Extensions of the protocol for the case when > t players may be active during reconstruction
- Definitions and a protocol for the case of asynchronous networks

Thank you! 💮

Efficient Rational Secret Sharing ${\sf Fuchsbauer}, {\sf Katz}, {\sf Naccache}\,({\sf ENS}, {\sf UMD})$

æ TCC 2010 19 / 19

ヨト

・ロト ・ 日 ト ・ ヨ ト ・