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● New signature primitive

● Signer can only sign messages conforming to policy

● Practical applications: use for corporations

● Theoretical: unification of existing work
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    policy p satisfied by m

● Privacy:

    The signature does not reveal the policy
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Theoretical Motivation

● Signature analog to functional encryption  [BSW11]

● Unification of existing notions for signatures with privacy:

Group signatures  [Cv91]

(Anonymous) proxy signatures  [MUO96,FP08]

Ring signatures, mesh signatures  [RST01,Boy07]

Attribute-based signatures  [MPR11]

Anonymous credentials  [CL01,BCKL08]
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Practical Motivation

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously  on behalf of company

● Group signatures:

– Anonymous signing, no control of what can be signed

● Attribute-based signatures:

– Signing w.r.t policies like

             CEO  (board member  manager)
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Can we do better?

 Public policies... 

●  Does verifier need to know?

  Verification w.r.t. policies... 

●  Verifier must judge if message ok under policy:

                        CEO  Intern

 Policy-based signatures:

●  No public policies
●  Verification w.r.t. vk only

 Example:                      

 Employee gets key with which 
 she can sign contracts only
 with company B.
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● Policy languages:

We allow any language in NP, defined by policy checker

                                  PC : ((p,m),w) {0,1}

(p,m) L(PC)  :   w {0,1}* : PC((p,m),w) = 1

                        ... iff signing of m is permitted under p

● Algorithms:

                        Setup(1)          (pp,msk)

                        KeyGen(msk,p)  skp

                        Sign(skp,m,w)     
                        Verify(pp,m,)     b
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● Game

    

ChallengerAdversary
Query key for p

Query signature on m

m*,*

pp

  A wins if    - Verify(pp,m*,*) = 1,

   - no signature query for m*,

   - for all key queries for p: (p, m*) L(PC)
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Security notions

● Indistinguishability

● Adversary gets sk0  and sk1    unlinkability

● Policy-revealing schemes still secure!
          (e.g. if only one policy per message)

Simulation-based definition

● Unforgeability 

● Not efficiently verifiable if game was won
          (have to check whether (m*, p)  L(PC))

Extraction-based definition

Extr+Sim  UF+IND



  

Constructions of PBS



  

Constructions

● Generic construction (à la [BMW03])  

based on - signatures

 - IND-CPA encryption

 - NIZK proofs  
              

for any policy language in NP



  

Constructions

● Generic construction (à la [BMW03])   

based on - signatures                   or based on

 - IND-CPA encryption   - SSE-NIZK

 - NIZK proofs  
              

for any policy language in NP



  

Constructions

● Generic construction (à la [BMW03])   

based on - signatures                   or based on

 - IND-CPA encryption   - SSE-NIZK

 - NIZK proofs  
              

for any policy language in NP

● Efficient construction

based on - structure-preserving signatures [AFG+10]

 - Groth-Sahai proofs [GS08]

for policy languages over pairing groups

 (policies define pairing-product equations)
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Attribute-based signatures from PBS

● Policies p   ...   set of attributes A = {a1,a2,...,an} 

● PBS messages of form M = (,m)

● PC :  (A,(,m))  (A)
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Group signatures from PBS

● Use public-key encryption scheme

● Policies p   ...   group-member identity i

● PBS messages of form M = (c,m)

● PC :  (((ek,i ),(c,m)),r)c = Enc(ek,i ;r )]

GroupKeyGen:  - create (ek,dk) for Enc, (pp,msk) for PBS

                         - member i gets key for p = (ek,i )

Sign(ski,m): encrypt i as c, sign (c,m), output = (c,)

Verify: verify PBS       Open(dk,(c,): decrypt c
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Other primitives from PBS

● Simulation-sound extractable NIZK proofs  [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

   thus   PBS  group signatures

● Signatures of knowledge  [CL06]
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Re-delegation

● Delegatable PBS

– holding skp, one can delegate skp' for subpolicy p'

● Reflects hierarchies in organizations

Alice

Bob Carol
“sign contract with Ck”

“sign contract with C1,C2,...,Cn”
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PBS from SSE-NIZK

● Simulation-sound extractable NIZK:

- prove membership for NP languages

● Authority has signature key pair (vk,sk)

● skp is signature on p

● PBS-signature on m is SSE-NIZK proof that (vk,m)  L

defined by

   ((vk,m),(p,sig,w)) RL     

                                   ((p,m),w) PC  Verify(vk,p,sig)  =  1
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