

Georg Fuchsbauer
IST Austria

joint work with Mihir Bellare
available on eprint 2013/413

University of Bristol, 29 Oct 2013

 Policy-based signatures

Overview

● New signature primitive

● Signer can only sign messages conforming to policy

Overview

● New signature primitive

● Signer can only sign messages conforming to policy

● Practical applications: use for corporations

● Theoretical: unification of existing work

Signatures

vk

sk

Signer

Signatures

vk

sk

VerifierSigner
(m,

Policy-based signatures

Signer

pp

skp

Authority

Policy-based signatures

Signer

pp

skp

Authority

only if (p,m)  L  {0,1}*  {0,1}*

p ... Policy
L ... Policy language

Verifier
(m,

Security

● Unforgeability:

 You can only sign a message m if you have a key for a
 policy p satisfied by m

Security

● Unforgeability:

 You can only sign a message m if you have a key for a
 policy p satisfied by m

● Privacy:

 The signature does not reveal the policy

Theoretical Motivation

● Signature analog to functional encryption [BSW11]

Theoretical Motivation

● Signature analog to functional encryption [BSW11]

● Unification of existing notions for signatures with privacy:

Group signatures [Cv91]

(Anonymous) proxy signatures [MUO96,FP08]

Ring signatures, mesh signatures [RST01,Boy07]

Attribute-based signatures [MPR11]

Anonymous credentials [CL01,BCKL08]

Group signatures

Member i

gvk

ski
(m,

Manager

Verifier

Group signatures

Member i

gvk

ski
(m,

Manager

anonymous, but can be opened:

Verifier

Manager
 i

Attribute-based signatures

Signer

pp

sk

Authority

{a1,a2,...,an}

{a1,...,an}

{a1,a2,...,an} ... Attributes
  ... Predicate

Attribute-based signatures

Signer

pp

sk

Authority

only if (a1,a2,...,an) = 1

 does not reveal {a1,a2,...,an}

Verifier
(,m,

{a1,a2,...,an}

{a1,...,an}

{a1,a2,...,an} ... Attributes
  ... Predicate

Practical Motivation

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

Practical Motivation

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

● Group signatures:

– Anonymous signing, no control of what can be signed

Practical Motivation

● Company with public key vk

● Employees get signing keys enabling signing

 anonymously on behalf of company

● Group signatures:

– Anonymous signing, no control of what can be signed

● Attribute-based signatures:

– Signing w.r.t policies like

 CEO  (board member  manager)

Can we do better?

 Public policies...

● Does verifier need to know?

Can we do better?

 Public policies...

● Does verifier need to know?

  Verification w.r.t. policies...

● Verifier must judge if message ok under policy:

 CEO  Intern

Can we do better?

 Public policies...

● Does verifier need to know?

  Verification w.r.t. policies...

● Verifier must judge if message ok under policy:

 CEO  Intern

 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

Can we do better?

 Public policies...

● Does verifier need to know?

  Verification w.r.t. policies...

● Verifier must judge if message ok under policy:

 CEO  Intern

 Policy-based signatures:

● No public policies
● Verification w.r.t. vk only

 Example:

 Employee gets key with which
 she can sign contracts only
 with company B.

Definition of PBS

Definition

● Policy languages:

We allow any language in NP, defined by policy checker

 PC : ((p,m),w) {0,1}

(p,m) L(PC) :  w {0,1}* : PC((p,m),w) = 1

 ... iff signing of m is permitted under p

Definition

● Policy languages:

We allow any language in NP, defined by policy checker

 PC : ((p,m),w) {0,1}

(p,m) L(PC) :  w {0,1}* : PC((p,m),w) = 1

 ... iff signing of m is permitted under p

● Algorithms:

 Setup(1)  (pp,msk)

 KeyGen(msk,p) skp

 Sign(skp,m,w) 
 Verify(pp,m,) b

Unforgeability

● Game

ChallengerAdversary
Query key for p

Query signature on m

m*,*

pp

Unforgeability

● Game

ChallengerAdversary
Query key for p

Query signature on m

m*,*

pp

 A wins if - Verify(pp,m*,*) = 1,

 - no signature query for m*,

 - for all key queries for p: (p, m*) L(PC)

Indistinguishability

● Game

Challenger

 b {0,1}

Adversary
p0, p1, m, w0, w1

b'

pp,msk

sk0 KeyGen(p0)
sk1 KeyGen(p1)
Sign(skb,m,wb)

Indistinguishability

● Game

Challenger

 b {0,1}

Adversary
p0, p1, m, w0, w1

b'

sk0 KeyGen(p0)
sk1 KeyGen(p1)
Sign(skb,m,wb)

 A wins if - PC((p0,m),w0) = PC((p1,m),w1) = 1,

- b' = b

pp,msk

Indistinguishability

● Game

Challenger

 b {0,1}

Adversary
p0, p1, m, w0, w1

b'

sk0 KeyGen(p0)
sk1 KeyGen(p1)
Sign(skb,m,wb)

 A wins if - PC((p0,m),w0) = PC((p1,m),w1) = 1,

- b' = b

pp,msk

Security notions

● Indistinguishability

● Adversary gets sk0 and sk1 unlinkability

Security notions

● Indistinguishability

● Adversary gets sk0 and sk1 unlinkability

● Policy-revealing schemes still secure!
 (e.g. if only one policy per message)

Security notions

● Indistinguishability

● Adversary gets sk0 and sk1 unlinkability

● Policy-revealing schemes still secure!
 (e.g. if only one policy per message)

Simulation-based definition

Security notions

● Indistinguishability

● Adversary gets sk0 and sk1 unlinkability

● Policy-revealing schemes still secure!
 (e.g. if only one policy per message)

Simulation-based definition

● Unforgeability

● Not efficiently verifiable if game was won
 (have to check whether (m*, p) L(PC))

Security notions

● Indistinguishability

● Adversary gets sk0 and sk1 unlinkability

● Policy-revealing schemes still secure!
 (e.g. if only one policy per message)

Simulation-based definition

● Unforgeability

● Not efficiently verifiable if game was won
 (have to check whether (m*, p) L(PC))

Extraction-based definition

Extr+Sim UF+IND

Constructions of PBS

Constructions

● Generic construction (à la [BMW03])

based on - signatures

 - IND-CPA encryption

 - NIZK proofs

for any policy language in NP

Constructions

● Generic construction (à la [BMW03])

based on - signatures or based on

 - IND-CPA encryption - SSE-NIZK

 - NIZK proofs

for any policy language in NP

Constructions

● Generic construction (à la [BMW03])

based on - signatures or based on

 - IND-CPA encryption - SSE-NIZK

 - NIZK proofs

for any policy language in NP

● Efficient construction

based on - structure-preserving signatures [AFG+10]

 - Groth-Sahai proofs [GS08]

for policy languages over pairing groups

 (policies define pairing-product equations)

Primitives from PBS

Signer

pp

sk

Authority

only if (a1,a2,...,an) = 1

 does not reveal {a1,a2,...,an}

Verifier
(,m,

{a1,a2,...,an}

{a1,...,an}

Attribute-based signatures from PBS

Attribute-based signatures from PBS

● Policies p ... set of attributes A = {a1,a2,...,an}

● PBS messages of form M = (,m)

Attribute-based signatures from PBS

● Policies p ... set of attributes A = {a1,a2,...,an}

● PBS messages of form M = (,m)

● PC : (A,(,m))

Attribute-based signatures from PBS

● Policies p ... set of attributes A = {a1,a2,...,an}

● PBS messages of form M = (,m)

● PC : (A,(,m)) (A)

Member i

gvk

ski
(m,

Manager

anonymous, but can be opened:

Verifier

Manager
 i

Group signatures from PBS

Group signatures from PBS

● Use public-key encryption scheme

● Policies p ... group-member identity i

Group signatures from PBS

● Use public-key encryption scheme

● Policies p ... group-member identity i

● PBS messages of form M = (c,m)

● PC : (((ek,i),(c,m)),r)c = Enc(ek,i ;r)]

Group signatures from PBS

● Use public-key encryption scheme

● Policies p ... group-member identity i

● PBS messages of form M = (c,m)

● PC : (((ek,i),(c,m)),r)c = Enc(ek,i ;r)]

GroupKeyGen: - create (ek,dk) for Enc, (pp,msk) for PBS

 - member i gets key for p = (ek,i)

Sign(ski,m): encrypt i as c, sign (c,m), output = (c,)

Group signatures from PBS

● Use public-key encryption scheme

● Policies p ... group-member identity i

● PBS messages of form M = (c,m)

● PC : (((ek,i),(c,m)),r)c = Enc(ek,i ;r)]

GroupKeyGen: - create (ek,dk) for Enc, (pp,msk) for PBS

 - member i gets key for p = (ek,i)

Sign(ski,m): encrypt i as c, sign (c,m), output = (c,)

Verify: verify PBS Open(dk,(c,): decrypt c

Other primitives from PBS

● Simulation-sound extractable NIZK proofs [Gro06]

Other primitives from PBS

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

Other primitives from PBS

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

Other primitives from PBS

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

 thus PBS group signatures

Other primitives from PBS

● Simulation-sound extractable NIZK proofs [Gro06]

● CPA-secure public-key encryption

● combining the above [Sah99]: CCA-secure encryption

 thus PBS group signatures

● Signatures of knowledge [CL06]

Delegatable PBS

Re-delegation

● Delegatable PBS

– holding skp, one can delegate skp' for subpolicy p'

● Reflects hierarchies in organizations

Re-delegation

● Delegatable PBS

– holding skp, one can delegate skp' for subpolicy p'

● Reflects hierarchies in organizations

Alice

Bob

“sign contract with C1,C2,...,Cn”

Re-delegation

● Delegatable PBS

– holding skp, one can delegate skp' for subpolicy p'

● Reflects hierarchies in organizations

Alice

Bob Carol
“sign contract with Ck”

“sign contract with C1,C2,...,Cn”

Thank you

PBS from SSE-NIZK

● Simulation-sound extractable NIZK:

- prove membership for NP languages

● Authority has signature key pair (vk,sk)

● skp is signature on p

● PBS-signature on m is SSE-NIZK proof that (vk,m)  L

defined by

 ((vk,m),(p,sig,w)) RL 

 ((p,m),w) PC  Verify(vk,p,sig) = 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

