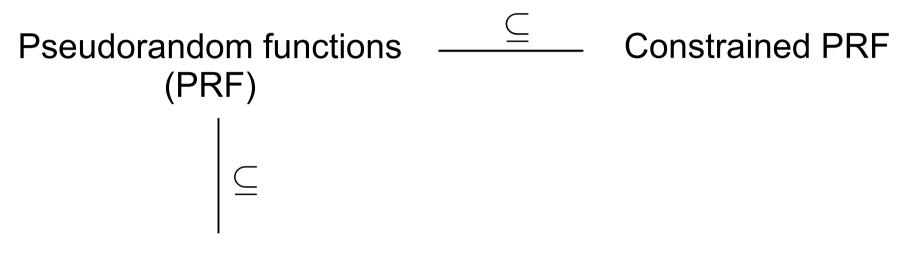
Constrained Verifiable Random Functions

Georg Fuchsbauer IST Austria

SCN 2014, 3 September 2014

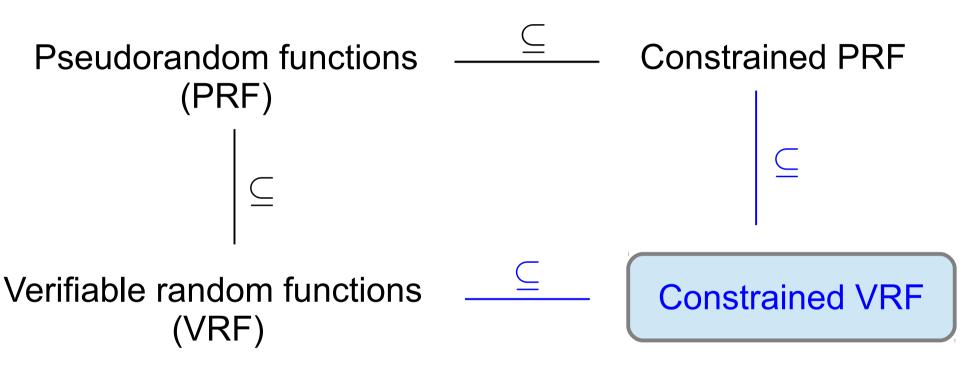
(Full version: eprint 2014/537)

Overview



Verifiable random functions (VRF)

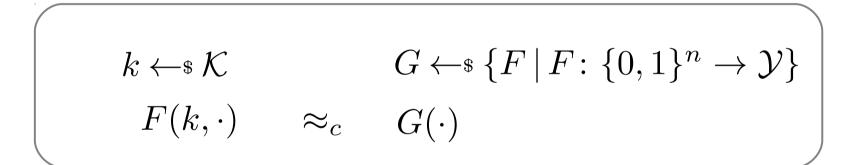
Overview



- Formal definition
- Constructions

PRFs

- Pseudorandom function [GGM86]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$



PRFs

- Pseudorandom function [GGM86]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

A PRF key is a *compact description* of an exponentially long (pseudo) random string.

PRFs

- Pseudorandom function [GGM86]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

A PRF key is a *compact description* of an exponentially long (pseudo) random string.

- Application:
 - Symmetric encryption: Key: $k \leftarrow \mathcal{K}$

Encryption: $r \leftarrow \{0,1\}^n$; $C := (r, F(k, r) \oplus M)$

Constrained PRFs

- Constrained PRF [BW13, KPTZ13, BGI14]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

for set system $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$

- Algorithms:
 - $\operatorname{Constr}(k, S \in \mathcal{S}) \to k_S$
 - $\operatorname{Eval}(k_S, x \in \{0, 1\}^n) \to y$

Constrained PRFs

- Constrained PRF [BW13, KPTZ13, BGI14]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

for set system $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$

- Algorithms:
 - $\operatorname{Constr}(k, S \in \mathcal{S}) \to k_S$
 - $\operatorname{Eval}(k_S, x \in \{0, 1\}^n) \to y$

$$k_{S} \leftarrow \text{Constr}(k, S)$$

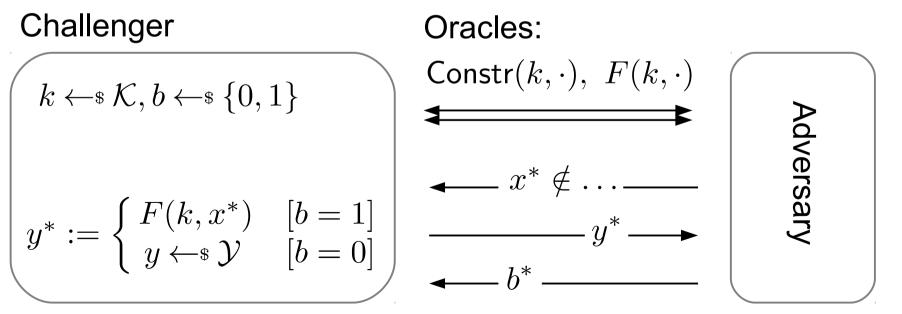
$$\Rightarrow \quad \mathsf{Eval}(k_{S}, x) = \begin{cases} F(k, x) & \text{if } x \in S \\ \bot & \text{otherwise} \end{cases}$$

Security of Constrained PRFs

- Pseudorandomness of constrained PRFs:
 - Function should look random where:
 - we have not seen its value
 - we cannot evaluate it using a constrained key

Security of Constrained PRFs

- Pseudorandomness of constrained PRFs:
 - Function should look random where:
 - we have not seen its value
 - we cannot evaluate it using a constrained key



Instantiations of Constrained PRFs

- Instantiations for set systems $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$
 - prefix-constrained PRF [BW13, KPTZ13, BGI14]: keys for sets $S_p = \{p || z \mid z \in \{0, 1\}^{n-|p|}\}$

Instantiations of Constrained PRFs

- Instantiations for set systems $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$
 - prefix-constrained PRF [BW13, KPTZ13, BGI14]: keys for sets $S_p = \{p || z \mid z \in \{0, 1\}^{n-|p|}\}$
 - bit-fixing PRF [BW13]:

keys for sets defined by $v \in \{0, 1, ?\}^n$ as

$$S_{v} = \{ z \in \{0, 1\}^{n} \mid \forall i : z_{i} = v_{i} \lor v_{i} = ? \}$$

Instantiations of Constrained PRFs

- Instantiations for set systems $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$
 - prefix-constrained PRF [BW13, KPTZ13, BGI14]: keys for sets $S_p = \{p || z \mid z \in \{0, 1\}^{n-|p|}\}$
 - bit-fixing PRF [BW13]:

keys for sets defined by $v \in \{0, 1, ?\}^n$ as

$$S_{v} = \{ z \in \{0, 1\}^{n} \mid \forall i : z_{i} = v_{i} \lor v_{i} = ? \}$$

- circuit-constrained PRF [BW13]: keys defined by circuit *C*: $S_C = \{z \in \{0,1\}^n \mid C(z) = 1\}$

Applications of Constrained PRFs

- Identity-based non-interactive key exchange (ID-NIKE) from bit-fixing PRF [BW13]
- Broadcast encryption with optimal ciphertext length [BW13]

Applications of Constrained PRFs

- Identity-based non-interactive key exchange (ID-NIKE) from bit-fixing PRF [BW13]
- Broadcast encryption with optimal ciphertext length [BW13]
- Punctured PRFs [BW13, KPTZ13, BGI14]:
 - constr. keys for domain $\mathcal{X}^* := \{0,1\}^n \setminus \{x^*\}$
 - many applications in combination with indistinguishability obfuscation [GGH+13]

VRFs

- Verifiable random function [MRV99]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$
 - Algorithms:
 - $\mathsf{Setup}(1^{\lambda}) \to (\mathsf{pk},\mathsf{sk})$
 - $\operatorname{Prove}(\operatorname{sk}, x) \to (y, \pi)$
 - Verify $(\mathsf{pk}, x, y, \pi) \to 0/1$

VRFs

- Verifiable random function [MRV99]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$
 - Algorithms:
 - $\mathsf{Setup}(1^{\lambda}) \to (\mathsf{pk},\mathsf{sk})$
 - $\operatorname{Prove}(\operatorname{sk}, x) \to (y, \pi)$
 - $\operatorname{Verify}(\operatorname{pk}, x, y, \pi) \to 0/1$
- Provability

$$\begin{array}{ll} (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Setup}(1^{\lambda}) \\ (y,\pi) \leftarrow \mathsf{Prove}(\mathsf{sk},x) \end{array} \quad \Rightarrow \quad \begin{array}{l} y = F(\mathsf{sk},x) \\ \mathsf{Verify}(\mathsf{pk},x,y,\pi) = 1 \end{array}$$

Security of VRFs

• Uniqueness:

- For all λ , pk, x, y_0, π_0, y_1, π_1 :

$$y_0 \neq y_1 \Rightarrow \begin{cases} \operatorname{Verify}(\mathsf{pk}, x, y_0, \pi_0) = 0 \\ \vee \operatorname{Verify}(\mathsf{pk}, x, y_1, \pi_1) = 0 \end{cases}$$

Security of VRFs

- Uniqueness:
 - For all λ , pk, x, y_0, π_0, y_1, π_1 :

$$y_0 \neq y_1 \Rightarrow \begin{cases} \operatorname{Verify}(\mathsf{pk}, x, y_0, \pi_0) = 0 \\ \vee \operatorname{Verify}(\mathsf{pk}, x, y_1, \pi_1) = 0 \end{cases}$$

- Pseudorandomness:
 - Adv gets Prove oracle
 - submits x^* that has not been queried
 - receives either $F(\mathsf{sk}, x^*)$ or $y \leftarrow \mathfrak{Y}$

Security of VRFs

• Uniqueness:

P

- For all λ , pk, x, y_0, π_0, y_1, π_1 :

A VRF public key can be seen as a *compact commitment* to an exponential number of (pseudo) random bits.

- Aur yeis more oracie
- submits x^* that has not been queried
- receives either $F(\mathsf{sk}, x^*)$ or $y \leftarrow * \mathcal{Y}$

Application of VRFs

- Micropayments:
 - e.g. many payments of 1¢, too expensive to process
 - \Rightarrow "Rivest's lottery":
 - User U pays merchant M with cheque: $C := Sign(sk_U, T)$
 - Rate s: with Pr = s, a cheque is "payable"
 - payable: M receives $\frac{1}{s}$ ¢
 - else cheque is discarded

Application of VRFs

- Micropayments:
 - e.g. many payment
 - \Rightarrow "Rivest's lottery":

• User U pays me

How do we decide which *C* should be payable (in fair way)?

- M publishes pk_M for VRF with $\mathcal{Y} := [0, 1]$
- C is payable if $F(\mathsf{sk}_M, C) < s$
- Rate s: with Pr = s, a cheque is "payable"
 - payable: M receives $\frac{1}{s} \phi$
 - else cheque is discarded

Constrained Verifiable Random Functions

Constrained VRFs

- Constrained VRF [This work]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

for set system $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$

- Algorithms:
 - $\mathsf{Setup}(1^{\lambda}) \to (\mathsf{pk},\mathsf{sk})$
 - $Constr(sk, S) \rightarrow sk_S$
- $\mathsf{Prove}(\mathsf{sk}_S, x) \to (y, \pi)$
- Verify $(\mathsf{pk}, x, y, \pi) \to 0/1$

Constrained VRFs

- Constrained VRF [This work]:
 - Function $F: \mathcal{K} \times \{0,1\}^n \to \mathcal{Y}$

for set system $\mathcal{S} \subseteq \mathcal{P}(\{0,1\}^n)$

- Algorithms:
 - $\mathsf{Setup}(1^{\lambda}) \to (\mathsf{pk}, \mathsf{sk})$ $\mathsf{Prove}(\mathsf{sk}_S, x) \to (y, \pi)$
 - $Constr(sk, S) \rightarrow sk_S$

• Verify
$$(\mathsf{pk}, x, y, \pi) \to 0/1$$

 $\begin{cases} \mathsf{sk}_S \leftarrow \mathsf{Constr}(\mathsf{sk}, S) \\ (y, \pi) \leftarrow \mathsf{Prove}(\mathsf{sk}_S, x) \\ \Rightarrow \begin{cases} x \in S \implies y = F(\mathsf{sk}, x), \ \mathsf{Verify}(\mathsf{pk}, x, y, \pi) = 1 \\ x \notin S \implies (y, \pi) = (\bot, \bot) \end{cases}$

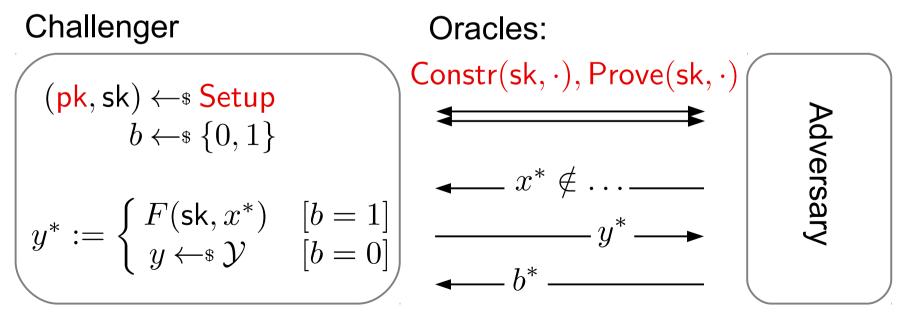
Security of Constrained VRFs

• Uniqueness: $y_0 \neq y_1 \Rightarrow \begin{cases} \operatorname{Verify}(\mathsf{pk}, x, y_0, \pi_0) = 0 \\ \lor \operatorname{Verify}(\mathsf{pk}, x, y_1, \pi_1) = 0 \end{cases}$

Security of Constrained VRFs

• Uniqueness:
$$y_0 \neq y_1 \Rightarrow \begin{cases} \operatorname{Verify}(\mathsf{pk}, x, y_0, \pi_0) = 0 \\ \lor \operatorname{Verify}(\mathsf{pk}, x, y_1, \pi_1) = 0 \end{cases}$$

Pseudorandomness of constrained PRFs:



Security of Constrained VRFs

• Uniqueness:

$$y_0 \neq y_1 \Rightarrow \begin{cases} \operatorname{Verify}(\mathsf{pk}, x, y_0, \pi_0) = 0 \\ & \lor \operatorname{Verify}(\mathsf{pk}, x, y_1, \pi_1) = 0 \end{cases}$$

- Constraint-hiding: Prove(sk, x) $\approx_c Prove(Constr(<math>sk, S$), x)
- Pseudorandomness of constrained PRFs:

Challenger

Oracles:

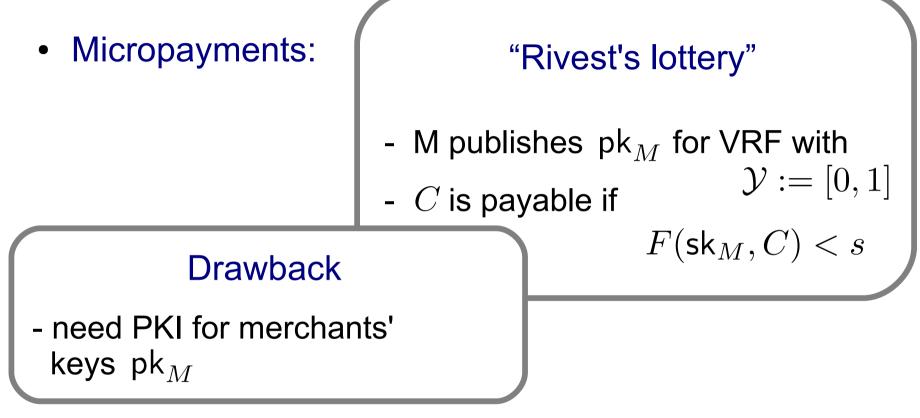
Possible Application of Constrained VRF

• Micropayments:

"Rivest's lottery"

- M publishes pk_M for VRF with
- C is payable if
- $\mathcal{Y} := [0, 1]$ $F(\mathsf{sk}_M, C) < s$

Possible Application of Constrained VRF



Identity-based solution?

Possible Application of Constrained VRF

 Micropayments: 	"Rivest's lottery"
	- M publishes pk_M for VRF with $\mathcal{Y} := [0,1]$ - C is payable if
Drawback	$F(sk_M, C) < s$
- need PKI for merchant keys pk_M	nts' \Rightarrow constrained VRFs
	- every M uses same key sk
	- C is payable if $F(sk,id_M\ C) < s$
	- Merchant M gets constr. key
	sk_M for set $(id_M, ? \ldots ?)$

PRFs

- from PRG [GGM86]
- under DDH [NR97]

VRFs

- under *q*-DDHI [DY05]
 but: poly-size domain only!
- under *q*-type assumptions,
 value in target group
 large proofs [HW10,ACF13]

PRFs

- from PRG [GGM86] .
- under DDH [NR97]

constrained PRFs

- prefix-fixing:
 - from PRG [BW13, KPTZ13, BGI14]
- bit-fixing, circuit-constr:
 - from multilin. maps
 - under MDDH [BW13]

VRFs

- under *q*-DDHI [DY05]
 but: poly-size domain only!
- under *q*-type assumptions, value in target group large proofs [HW10,ACF13]

PRFs

- from PRG [GGM86]
- under DDH [NR97]

constrained PRFs

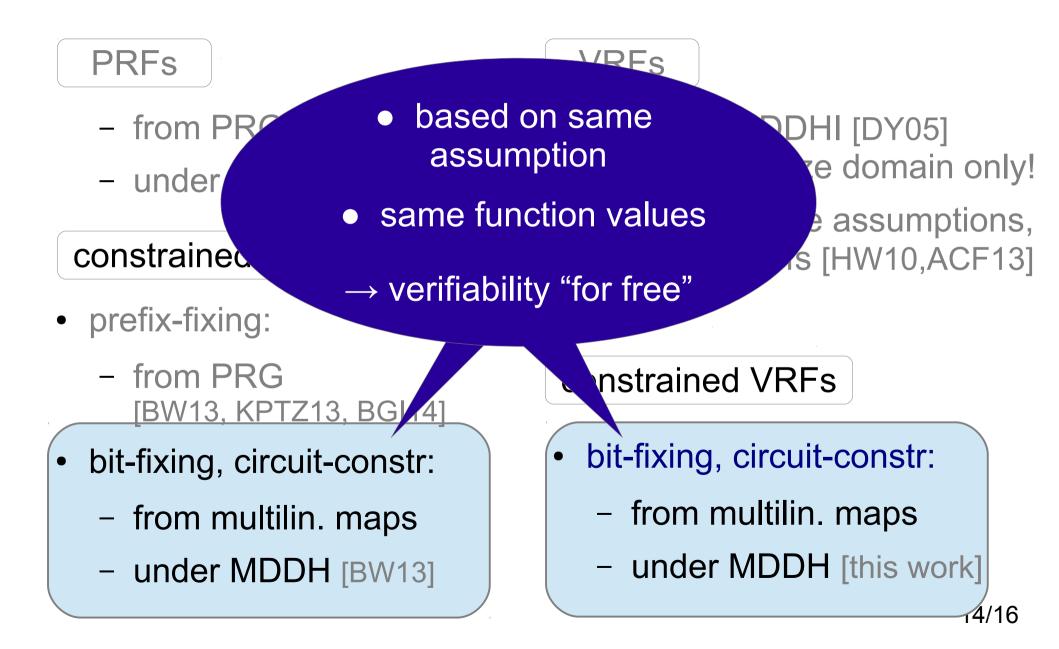
- prefix-fixing:
 - from PRG
 [BW13, KPTZ13, BGI14]
- bit-fixing, circuit-constr:
 - from multilin. maps
 - under MDDH [BW13]

VRFs

- under *q*-DDHI [DY05]
 but: poly-size domain only!
- under *q*-type assumptions, value in target group large proofs [HW10,ACF13]

constrained VRFs

- bit-fixing, circuit-constr:
 - from multilin. maps
 - under MDDH [this work]



- Multilinear maps:
 - Groups $(\mathbb{G}_1, \ldots, \mathbb{G}_\kappa)$, each generated by g_i
 - Maps $e_{i,j}$ s.t. $e(g_i^a, g_j^b) = g_{i+j}^{ab}$
- κ -MDDH assumption:

given $g_1, g_1^{c_1}, \ldots, g_1^{c_{\kappa+1}}$ then $(g_{\kappa})^{\prod_{j=1}^{\kappa+1} c_j}$ looks random

• Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$

secure under (n+1)-MDDH

- Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$
- Observation: Even when $D_{i,j} := (g_1)^{d_{i,j}}$ and $(g_2)^{\alpha}$ are public, F still pseudorandom

- Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$
- Observation: Even when $D_{i,j} := (g_1)^{d_{i,j}}$ and $(g_2)^{\alpha}$ are public, F still pseudorandom
- Split $\alpha = \beta \cdot \gamma$, publish $B := (g_1)^{\beta}$ and $C := (g_1)^{\gamma}$

- Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$
- Observation: Even when $D_{i,j} := (g_1)^{d_{i,j}}$ and $(g_2)^{\alpha}$ are public, F still pseudorandom
- Split $\alpha = \beta \cdot \gamma$, publish $B := (g_1)^{\beta}$ and $C := (g_1)^{\gamma}$
- Observation: $D := (g_{n+1})^{\beta \prod_{i=1}^{n} d_{i,x_i}}$ publicly computable

- Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$
- Observation: Even when $D_{i,j} := (g_1)^{d_{i,j}}$ and $(g_2)^{\alpha}$ are public, F still pseudorandom
- Split $\alpha = \beta \cdot \gamma$, publish $B := (g_1)^{\beta}$ and $C := (g_1)^{\gamma}$
- Observation: $D := (g_{n+1})^{\beta \prod_{i=1}^{n} d_{i,x_i}}$ publicly computable
- Define proof: $P := (g_n)^{\beta \prod_{i=1}^n d_{i,x_i}}$

- Boneh-Waters cPRF: (bit-fixing) $k := \begin{cases} \alpha, \quad d_{1,0}, \dots, d_{n,0} \\ \quad d_{1,1}, \dots, d_{n,1} \end{cases}$ $F(k, x) := (g_{n+1})^{\alpha \prod_{i=1}^{n} d_{i,x_i}}$
- Observation: Even when $D_{i,j} := (g_1)^{d_{i,j}}$ and $(g_2)^{\alpha}$ are public, F still pseudorandom
- Split $\alpha = \beta \cdot \gamma$, publish $B := (g_1)^{\beta}$ and $C := (g_1)^{\gamma}$
- Observation: $D := (g_{n+1})^{\beta \prod_{i=1}^{n} d_{i,x_i}}$ publicly computable
- Define proof: $P := (g_n)^{\beta \prod_{i=1}^n d_{i,x_i}}$
- Verification of y: $e(P, g_1) \stackrel{?}{=} D \land e(P, C) \stackrel{?}{=} y$

Thank you