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Our Contributions

New commitment and signature schemes in bilinear groups

@ Homomorphic trapdoor commitments to group elements

@ Signatures on group elements, consisting of group elements
(structure-preserving)

@ Structure-preserving signatures signing their own public keys
(automorphic)

@ Simulatable signatures
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Our Contributions

New commitment and signature schemes in bilinear groups

@ Homomorphic trapdoor commitments to group elements

@ Signatures on group elements, consisting of group elements
(structure-preserving)

@ Structure-preserving signatures signing their own public keys
(automorphic)

@ Simulatable signatures

Applications

Constant-size trapdoor commitments with sublinear keys
First efficient round-optimal blind signatures (UC secure)
First efficient group signatures with concurrent join w/o ROM

First efficient anonymous proxy signatures
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Outline of the talk )

@ Commitments
© Automorphic Signatures
© Signatures on Vectors of Group Elements

@ Applications of Our Signatures
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© Commitments
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Commitments

@ A commitment scheme consists of setup and algorithm Com
@ Com takes a message and randomness and outputs a commitment

@ Message and randomness are called opening.
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@ A commitment scheme consists of setup and algorithm Com
@ Com takes a message and randomness and outputs a commitment

o Message and randomness are called opening. Our scheme is

hiding: a commitment reveals nothing about the message

binding: hard to find a commitment and two openings with different
messages
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@ A commitment scheme consists of setup and algorithm Com
@ Com takes a message and randomness and outputs a commitment

o Message and randomness are called opening. Our scheme is

hiding: a commitment reveals nothing about the message

binding: hard to find a commitment and two openings with different
messages

trapdoor: given a trapdoor, a commitment can be opened to any
message

homomorphic: the product of two commitments is a commitment to the
product of the messages

length-reducing: a commitment is shorter than the message

The messages are elements of a bilinear group
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Bilinear Groups and the DP Assumption

Bilinear group: (p, G1,G2,Gr, e, G, H) with
o G1,Gy, Gt cyclic groups of prime order p

o ¢: Gy x Go — G bilinear, ie
VX € G1,VY € Gy,Va, b e Z: e(X?,YP) =e(X,Y)?
o Gy = <G>, G, = <H>, Gt = <e(G,H)>
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Bilinear Groups and the DP Assumption

Bilinear group: (p, G1,G2,Gr, e, G, H) with
o G1,Gy, Gt cyclic groups of prime order p
o ¢: G x Go — G bilinear,

e G; =(G), Gy =(H), Gt = (e(G, H))

V.

Double Pairing Assumption

Given random Gg, Gt € G it is hard to find non-trivial R, T € G
satisfying e(Gr, R) e(G1,T) =1
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Bilinear Groups and the DP Assumption

Bilinear group: (p, G1,G2,Gr, e, G, H) with
o G1,Gy, Gt cyclic groups of prime order p
o ¢: G x Go — G bilinear,

e G; =(G), Gy =(H), Gt = (e(G, H))

V.

Double Pairing Assumption

Given random Gg, Gt € G it is hard to find non-trivial R, T € G
satisfying e(Gr, R) e(G1,T) =1

v

DDH in G; implies the double pairing assumption \
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Commitment Scheme for n Messages

Setup: Generate (p, G1,G2, G, e, G, H).
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Commitment Scheme for n Messages

Setup: Generate (p, G1,G2, G, e, G, H).
Key generation: Pick Gg «+— G7 and xq,...,x, < Zp. Return

Ck:(GR,Gl:Gél,...,Gn:Gé") and tk:(Xl,...,Xn).
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Commitment Scheme for n Messages

Setup: Generate (p, G1,G2, G, e, G, H).
Key generation: Pick Gg «+— G7 and xq,...,x, < Zp. Return

Ck:(GR,Gl:Gél,...,Gn:Gé") and tk:(Xl,...,Xn).

Commitment: On input ck, (My,...,M,) € G3, R € Gy, return

c = e(Gg,R) H e(Gj, M;)

i=1
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Commitment Scheme for n Messages

Setup: Generate (p, G1,G2, G, e, G, H).
Key generation: Pick Gg «+— G7 and xq,...,x, < Zp. Return

Ck:(GR,Gl:Gél,...,Gn:Gé") and tk:(Xl,...,Xn).

Commitment: On input ck, (My,...,M,) € G3, R € Gy, return
c = e(Ggr,R) H e(Gi, M;)
i=1

Trapdoor opening: Given c for (M, ..., ) and R. Open c to
(M, ..., )as R' = RT[7_{(M;/M:)%:

e(Gr, R [(Mi/My5) [ [ e(Gi, M) = e(Gr, R) [ [ e(Gi. Mi) = ¢
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Commitment Scheme for n Messages

Setup: Generate (p, G1,G2, G, e, G, H).
Key generation: Pick Gg «+— G7 and xq,...,x, < Zp. Return

Ck:(GR,Gl:Gél,...,Gn:Gén) and tk:(Xl,...,Xn).

Commitment: On input ck, (My,...,M,) € G3, R € Gy, return

c = e(Ggr,R) H e(Gi, M;)
i=1
Trapdoor opening: Given c for (M, ..., ) and R. Open c to
(M, ..., )as R' = RT[7_{(M;/M:)%:

The scheme above is a homomorphic, perfectly hiding, trapdoor
commitment scheme; under the double pairing assumption it is
computationally binding.
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Application

Commitments to Pedersen commitments

Pedersen commitment C = H" [[ H;™ to (my, ..., my) € 7k

p
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Application

Commitments to Pedersen commitments

Pedersen commitment C = H"[[ H;™ to (my,...,mg) € Zf,

c commitment to (Cy,. .., C,) where C; commitment to (mj1,..., mjx)

= can commit to m € Zg'k; key: n+ k + 2 group elements, c € G

Resulting scheme still homomorphic and trapdoor
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Application

We give another scheme based on an assumption implied by DLIN
= instantiable in symmetric bilinear groups
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© Automorphic Signatures
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Groth-Sahai Proofs

Pairing-product equation over variables Xi,..., X, € Gy, Yi,..., Y, € Gy
HeA,,Y HeX,,B HHex,,Y Yiio =t (E)
i=1j=1
determined by A; € G1,B; € Go, vij € Zp and t € G
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Groth-Sahai Proofs

Pairing-product equation over variables Xi,..., X, € Gy, Yi,..., Y, € Gy
HeA,,Y HeX,,B HHex,,Y Yiio =t (E)
i=1j=1
determined by A; € G1,B; € Go, vij € Zp and t € G

Groth, Sahai [GS08]: Non-interactive witness-indistinguishable (and NIZK)
proof of knowledge of Xi,..., X, Y1,..., Y, satisfying E

(Given a trapdoor for CRS, one can extract the witness)
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Structure-preserving signatures
o Messages, signatures and verification keys are in Gy and G
@ Verification: evaluate PPEs on message, signature and key

@ Unforgeable (under chosen-message attack)

Combined with Groth-Sahai proofs:

@ Prove knowledge of a valid signature (and message)
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Structure-preserving signatures
o Messages, signatures and verification keys are in Gy and G
@ Verification: evaluate PPEs on message, signature and key

@ Unforgeable (under chosen-message attack)

Combined with Groth-Sahai proofs:

@ Prove knowledge of a valid signature (and message)

Automorphic signatures
@ Structure-preserving

@ Verification keys lie in the message space

@ Prove knowledge of chain of keys and certificates
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A Variant of SDH and a Variant of CDH

The strong Diffie-Hellman (SDH) assumption [BB04] implies hardness of

1
Given G, G* and g — 1 pairs (G**<i, ¢;), output a new pair (Gﬁ,c) J
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A Variant of SDH and a Variant of CDH

The strong Diffie-Hellman (SDH) assumption [BB04] implies hardness of

Given G, K, GX, ((K Gvi)ﬁc"7 Ci, Vi)q

1
[_,» output a new ((K- G")*<,c,v) J
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A Variant of SDH and a Variant of CDH

The strong Diffie-Hellman (SDH) assumption [BB04] implies hardness of

Given G, K, G, (K- G"')X+“: Ci, v,) output a new ((K- G")x%r,c, v) J

1

Analogously to [BW07] we define a hidden variant
q - Asymm. Double Hidden SDH

Given G,F, K, X =G*X € Gy, H,Y = H* € G, and g — 1 tuples
1
(K- )77, F, H, G¥, HY)

it is hard to output (K- G¥)=re, FS, HE, G¥, H) with (c, v) # (ci, vi)
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A Variant of SDH and a Variant of CDH

The strong Diffie-Hellman (SDH) assumption [BB04] implies hardness of

Given G, K, G, (K- G"')X+“: Ci, v,) output a new ((K- G")x%c,c, v) J

1

Analogously to [BW07] we define a hidden variant
q - Asymm. Double Hidden SDH

Given G,F,K,X = G*X € Gy, H,Y = H* € G, and g — 1 tuples
1
(K- )77, F, H, G¥, HY)

it is hard to output (K- G¥)=re, FS, HE, G¥, H) with (c, v) # (ci, vi)

Asymm. Weak Flexible CDH

Given G, G? and H it is hard to output (G", G, H", H®") with r # 0
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Automorphic Signatures: Instantiation

Setup: Choose G, K, F, T «+— G1, H — Gy
Message space: DH = {(G™,H™)|m € Zp},
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Automorphic Signatures: Instantiation

Setup: Choose G, K, F, T «+— G1, H — Gy
Message space: DH = {(G™,H™)|m € Zp},
KeyGen: Secret key x < Zp, public key (X := G*, Y := HX)
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Automorphic Signatures: Instantiation

Setup: Choose G, K, F, T «+— G1, H — Gy

Message space: DH = {(G™,H™)|m € Zp},
KeyGen: Secret key x < Zp, public key (X := G*, Y := HX)
Sign(x, (M, N)): Choose ¢, r « Z,, return

((K-T"- M)==, F, HE, G", H")
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Automorphic Signatures: Instantiation

Setup: Choose G, K, F, T «+— G1, H — Gy

Message space: DH = {(G™,H™)|m € Zp},
KeyGen: Secret key x < Zp, public key (X := G*, Y := HX)
Sign(x, (M, N)): Choose ¢, r « Z,, return

((K-T"- M)==, F, HE, G", H")

Ver((X,Y),(M,N),(A, C,D,R,S)): Return 1 if

e(C, H) = e(F, D)

e(A,Y-D)=e(K-M,H) e(T,S) e(R,H) =¢(G,S)
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Automorphic Signatures: Instantiation

Setup: Choose G, K, F, T «+— G1, H — Gy

Message space: DH = {(G™,H™)|m € Zp},
KeyGen: Secret key x < Zp, public key (X := G*, Y := HX)
Sign(x, (M, N)): Choose ¢, r « Z,, return

((K-T"- M)==, F, HE, G", H")

Ver((X,Y),(M,N),(A,C,D,R,S)): Return 1 if
e(C,H)=e(F,D)

The scheme is strongly unforgeable under ADH-SDH and AWF-CDH.
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© Signatures on Vectors of Group Elements
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A Variant of the Double Pairing Assumption

Double Pairing problem: find non-trivial Z,R s.t. 1 = e(Gz, Z) e(Gg, R) )

is malleable: one solution = multiple solutions
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A Variant of the Double Pairing Assumption

Double Pairing problem: find non-trivial Z,R s.t. 1 = e(Gz, Z) e(Gg, R) )

is malleable: one solution = multiple solutions
@ Make 2 simultaneous equations with common element Z
= implied by DLIN
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A Variant of the Double Pairing Assumption

Double Pairing problem: find non-trivial Z,R s.t. 1 = e(Gz, Z) e(Gg, R) )

is malleable: one solution = multiple solutions
@ Make 2 simultaneous equations with common element Z
= implied by DLIN
e Multiply random pairings to both sides of equation (flexible)
= non-malleable
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A Variant of the Double Pairing Assumption

Double Pairing problem: find non-trivial Z,R s.t. 1 = e(Gz, Z) e(Gg, R) |

is malleable: one solution = multiple solutions
@ Make 2 simultaneous equations with common element Z
= implied by DLIN
e Multiply random pairings to both sides of equation (flexible)
= non-malleable

g - Simultaneous Flexible Pairing assumption (SFP)

Given Gz, Fz,Ggr,Fy,A, B € Gy and A, B € G, and g tuples
(ZithSI') Ti7 Ul'a Vi7 VVI) s.t.

e(A,A) = e(Gz,Z;) e(Gr, Ri) e(Si, T)
e(B,B) = e(Fz, Z)) e(Fy, U;) e(V;, W)

it is hard to find such a tuple (Z,R,S, T, U, V, W) with Z # 1 and

10 d
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A Variant of the Double Pairing Assumption

g - Simultaneous Flexible Pairing assumption (SFP)

Given Gz, Fz,Ggr,Fy,A,B € Gy and A, B € G, and q tuples
(Z,', R,',S,', T,', U,', \/,', VV,) s.t.

e(A,A) = e(Gz, Z;) e(Gr, Ri) e(Si, T;)
e(B, B) = e(Fz,Z)) e(Fy, U;) e(V;, W)

it is hard to find such a tuple (Z,R,S, T, U, V, W) with Z # 1 and
Z # Z; forall i
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A Variant of the Double Pairing Assumption

For a generic algorithm the probability of breaking SFP with ¢ operations is
bounded by O(q% + ¢2)/p
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Scheme Signing k G, Elements at Once

Setup: Choose a bilinear group (p, G1,G2,Gr,e, G, H)
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Scheme Signing k G, Elements at Once

Setup: Choose a bilinear group (p, G1,G2,Gr,e, G, H)
KeyGen: Message Space: GX
Choose secret key (av, 3,7z, 02,71, 01, - .., Yk, 6k) — (Z3)?kT*
Public key: Gg « G}, Gz = Gi#,{G; = GJ}*_,,a = e(Gg, H?)
Fy — G}, Fz=F7, {Fi=FJ}% b= e(Fy, H")
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Scheme Signing k G, Elements at Once

Setup: Choose a bilinear group (p, G1,G2,Gr,e, G, H)
KeyGen: Message Space: GX

ChOOSE secret key (Ol, /87 Yz, 527 1, 617 < Yk 5/{) — (Z;’;)Qk+4
Public key: Gg « G}, Gz = Gi#,{G; = GJ}*_,,a = e(Gg, H?)
Fy — G}, Fz=F7, {Fi=FJ}% b= e(Fy, H")
Sign(sk, (M, ..., My)): Choose (. p, 7, ¢, w « Z, return
7 — HS R = Hrz¢ H,,k:l N S=Gr"T T = H(a=p)/T
U - H\,’) 6z¢C Hlkil —0; V = FULU W = H(ﬂ 99) w

Abe,Fuchsbauer,Groth,Haralambiev,Ohkubo: Sign and Commit to Group Elements

CRYPTO'10 16 / 23



Scheme Signing k G, Elements at Once

Setup: Choose a bilinear group (p, G1,G2,Gr,e, G, H)
KeyGen: Message Space: GX
Choose secret key (av, 3,7z, 02,71, 01, - .., Yk, 6k) — (Z3)?kT*
Public key: Gg « G}, Gz = Gi#,{G; = GJ}*_,,a = e(Gg, H?)
Fy — G}, Fz=F7, {Fi=FJ}% b= e(Fy, H")

Sign(sk, (M, ..., My)): Choose ¢.p. 7,0, w « 77,
Z=HS R=HrZ¢ Hf:l —i S =Gr" T — Hla=p)/7
U=Heo2C[[F, M=% v =Fy® W =HB®

return

Ver(vk,(My,...,My),(Z,R,S, T,U, V,W)): Return 1 if
a=e(Gz,2)e(Ggr,R)e(S, T) T15, e(Gi, M;)
b= e(Fz,Z)e(Fy, U)e(V, W) I, e(Fi, M))
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Scheme Signing k G, Elements at Once

Setup: Choose a bilinear group (p, G1,G2,Gr,e, G, H)
KeyGen: Message Space: GX

ChOOSE secret key (a7ﬂ7’727 527717 517 < Yk 5/{) — (Z;’;)Qk+4
Public key: Gg « G}, Gz = Gi#,{G; = GJ}*_,,a = e(Gg, H?)
Fy — G}, Fz=F7, {Fi=FJ}% b= e(Fy, H")
Sign(sk, (M, ..., My)): Choose (. p, 7, ¢, w « Z, return
7 — HS R = HPZ¢ H,‘k:l N S=Gr"T T = H(a=p)/T
U - H\,’) 6z¢C Hlkil —0; V = FULU W = H(ﬂ @) w

: Return 1 if

The scheme is existentially unforgeable under the SFP assumption

Abe,Fuchsbauer,Groth,Haralambiev,Ohkubo: Sign and Commit to Group Elements

CRYPTO'10 16 / 23



Variants of the Scheme

e Given (Z,R,S, T, U,V , W), we can randomise (R,S, T, U, V, W)
o Replace a by random Ao,Ao,Al,Al with a = e(Ao,Ao) e(Al,,Z\l)
and b analogously

= Verification key from Gy and G = structure preserving
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Variants of the Scheme

e Given (Z,R,S, T, U,V , W), we can randomise (R,S, T, U, V, W)
] Replace a by random Ao,Ao,Al,Al with a = e(Ao,Ao) e(Al,,Z\l)

and b analogously

= Verification key from Gy and G = structure preserving
o Dual scheme for signing messages in GX

= combine both schemes to sign messages in Gi“ X GgQ
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Variants of the Scheme

Given (Z,R,S, T, U, V, W), we can randomise (R,S, T, U, V, W)
Replace a by random Ao,Ao,Al,Al with a = e(Ao,Ao) e(Al,,Z\l)
and b analogously

= Verification key from Gy and G = structure preserving

Dual scheme for signing messages in G¥

= combine both schemes to sign messages in Gi“ X GgQ

Chaining signatures to sign unbounded messages = automorphic
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Variants of the Scheme

e Given (Z,R,S, T, U,V , W), we can randomise (R,S, T, U, V, W)
o Replace a by random Ao,Ao,Al,Al with a = e(Ao,Ao) e(Al,,Z\l)
and b analogously
= Verification key from Gy and G = structure preserving

o Dual scheme for signing messages in GX
= combine both schemes to sign messages in Gi“ X GgQ

o Chaining signatures to sign unbounded messages = automorphic

Simulatable Signatures
@ Signature scheme in the common reference string (CRS) model

@ Trapdoor for CRS allows making signatures for any public key

Can use W1l instead of ZK proofs, since signatures can be simulated directly
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@ Applications of Our Signatures
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Round-Optimal Blind Signatures

A blind signature scheme allows a user U to obtain a signature on a
message hidden from the signer S
Round optimal: Signature issuing: m —-U —— S

U——-=:-5

v
>
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Round-Optimal Blind Signatures

A blind signature scheme allows a user U to obtain a signature on a
message hidden from the signer S
Round optimal: Signature issuing: m —-U —— S

U——-=:-5

v
>

v

Sketch of the scheme [Fis06]
@ User makes a commitment C to the message m

@ Signer makes signature o on C

e Blind signature: proof of knowledge (PoK) of

o C o o e an opening of C to m

Abe,Fuchsbauer,Groth,Haralambiev,Ohkubo: Sign and Commit to Group Elements

CRYPTO'10 19 / 23



Round-Optimal Blind Signatures

A blind signature scheme allows a user U to obtain a signature on a
message hidden from the signer S
Round optimal: Signature issuing: m —-U —— S

U——-=:-5

v
>

v

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message m (Pedersen)

@ Signer makes signature o on C (structure-preserving)

e Blind signature: proof of knowledge (PoK) of (Groth-Sahai)

o C o 0 e an opening of C to m
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Round-Optimal Blind Signatures

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message m

@ Signer makes signature o on C
@ Blind signature: proof of knowledge (PoK) of

o C o o e an opening of C to m

Abe,Fuchsbauer,Groth,Haralambiev,Ohkubo: Sign and Commit to Group Elements CRYPTO'10 19 / 23



Round-Optimal Blind Signatures

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message m

@ Signer makes signature o on C
@ Blind signature: proof of knowledge (PoK) of

o C o o e an opening of C to m

Round-opt. automorphic blind signature

@ Message from group, user gets signature on message
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Round-Optimal Blind Signatures

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message v M

@ Signer makes signattres—em—€ pre-signature; User recovers o on M
e Blind signature: proof of knowledge (PoK) of

(e e 0 o—an-epeningof-Cto—m

Round-opt. automorphic blind signature

@ Message from group, user gets signature on message
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Round-Optimal Blind Signatures

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message m

@ Signer makes signature o on C
@ Blind signature: proof of knowledge (PoK) of

o C o o e an opening of C to m

Round-opt. automorphic blind signature

@ Message from group, user gets signature on message

Variant Il | Universally composable round-opt. blind signature

@ Use simulatable signature
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Round-Optimal Blind Signatures

Sketch of the scheme [Fis06]

@ User makes a commitment C to the message m

@ Signer makes signature o on C (simulatable!)
e Blind signature: proof of knowledge (PoK) of

o C o o e an opening of C to m

Round-opt. automorphic blind signature

@ Message from group, user gets signature on message

Variant Il | Universally composable round-opt. blind signature

@ Use simulatable signature
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Group Signatures

A group signature scheme lets a group manager enrol users who can then

sign on behalf of the group anonymously. The anonymity is revocable by an
opener
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Group Signatures

A group signature scheme lets a group manager enrol users who can then

sign on behalf of the group anonymously. The anonymity is revocable by an
opener

Automorphic signatures enable efficient instantiation of the following
(satisfying model from [BSZ05])

Group signatures with concurrent join

@ Opener generates CRS for proof system, keeps trapdoor

e Group manager (GM) generates verification key, keeps signing key
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(satisfying model from [BSZ05])

Group signatures with concurrent join

@ Opener generates CRS for proof system, keeps trapdoor
e Group manager (GM) generates verification key, keeps signing key
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Group Signatures

A group signature scheme lets a group manager enrol users who can then
sign on behalf of the group anonymously. The anonymity is revocable by an
opener

Automorphic signatures enable efficient instantiation of the following
(satisfying model from [BSZ05])

Group signatures with concurrent join

@ Opener generates CRS for proof system, keeps trapdoor

e Group manager (GM) generates verification key, keeps signing key
@ Enrol: User creates signature key pair (uvk, usk), GM signs uvk
o

Group signature on M: Make signature o on M with usk, and PoK of
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Group Signatures

A group signature scheme lets a group manager enrol users who can then
sign on behalf of the group anonymously. The anonymity is revocable by an
opener

Automorphic signatures enable efficient instantiation of the following
(satisfying model from [BSZ05])

Group signatures with concurrent join

@ Opener generates CRS for proof system, keeps trapdoor

e Group manager (GM) generates verification key, keeps signing key
@ Enrol: User creates signature key pair (uvk, usk), GM signs uvk
o

Group signature on M: Make signature o on M with usk, and PoK of
o uvk e signature on uvk by GM e o

@ Open: Opener extracts uvk and o
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Anonymous Proxy Signatures

Anonymous proxy signatures [FP08]

@ Generalisation of group signatures and proxy signatures
Users hold signature key pairs
Users can delegate signing rights to other users

Users can re-delegate and make proxy signatures anonymously

Anonymity revocable by openers
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Anonymous Proxy Signatures

Anonymous proxy signatures [FP08]

@ Generalisation of group signatures and proxy signatures
Users hold signature key pairs
Users can delegate signing rights to other users

Users can re-delegate and make proxy signatures anonymously

Anonymity revocable by openers

Instantiation

@ Automorphic signatures = delegation by signing public keys
@ GS proof = proxy signature is PoK of delegation chain
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Conclusion

Commitments
@ First homomorphic trapdoor commitments to group elements

@ Used them to construct more efficient schemes
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Conclusion

Commitments
@ First homomorphic trapdoor commitments to group elements

@ Used them to construct more efficient schemes

Signatures
@ First signature schemes that are fully “Groth-Sahai compatible”
@ Various extensions
@ Exemplified their usefulness

Combined with Groth-Sahai proofs, structure-preserving signatures
lead to modular instantiations of more complex primitives
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Thank you! ©
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