
École normale supérieure
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Université Paris 7

Denis Diderot

Automorphic Signatures and Applications

PhD thesis

Georg Fuchsbauer

13 October 2010





Abstract

We advocate modular design of cryptographic primitives and give building blocks to achieve this
efficiently. This thesis introduces two new primitives called automorphic signatures and commuting
signatures, and illustrates their usefulness by giving numerous applications.

Automorphic signatures are digital signatures satisfying the following properties: the verifi-
cation keys lie in the message space, messages and signatures consist of elements of a bilinear
group, and verification is done by evaluating a set of pairing-product equations. These signatures
make a perfect counterpart to the efficient proof system by Groth and Sahai (EUROCRYPT ’08).
We provide practical instantiations of automorphic signatures under appropriate assumptions and
use them to construct the first efficient round-optimal blind signatures. By combining them with
Groth-Sahai proofs, we moreover give practical instantiations of various other cryptographic primi-
tives, such as fully-secure group signatures, non-interactive anonymous credentials and anonymous
proxy signatures. To do so, we show how to transform signature schemes whose message space is
a group to a scheme that signs arbitrarily many messages at once.

Verifiable encryption allows to encrypt a signature and prove that the plaintext is valid. Com-
muting signatures extend verifiable encryption in multiple ways: A signer can encrypt both signa-
ture and message and prove validity. More importantly, given a ciphertext, a signer can create a
verifiably encrypted signature on the encrypted (unknown) message, which leads to the same result
as signing the plaintext and verifiably encrypting the message and the signature; thus, signing
and encrypting commute. We instantiate commuting signatures by combining our automorphic
signatures with the encryption and proof system by Groth and Sahai, of which we prove a series
of useful properties.

As an application, we give an instantiation of delegatable anonymous credentials, a powerful
primitive introduced by Belenkiy et al. (CRYPTO ’09). Our instantiation is arguably simpler
than theirs and it is the first to provide non-interactive (and thus concurrently secure) issuing and
delegation, which is standard for non-anonymous credentials. Moreover, the size of our credentials
and the cost of verification are less than half of those of the only previous construction, and
efficiency of issuing and delegation is increased even more significantly. All our constructions are
proved secure in the standard model under non-interactive assumptions.
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There are two antagonal approaches to the design of advanced cryptographic systems. The modular
approach splits the task into smaller parts and treats them separately: after implementing them
and proving that they satisfy the desired properties, the building blocks can be assembled to a
more complex scheme on a more abstract level. An ad hoc approach is to solve the problem as a
whole. The main advantage of the latter is that in practice it yields more efficient results. However,
due to the loss of conceptual simplicity this usually results in more complex security proofs, as one
cannot draw upon existing results.

Modular design, on the other hand, allows to build complex cryptographic primitives layer by
layer, and to follow an intuitive approach, which facilitates both their design and their analysis,
and enables making use of existing results. Ideally, one simply assembles existing instantiations
and analyzes the security of the result by treating the building blocks as black boxes. This however
requires that these blocks fit together. A drawback is that the philosophy of clean modular design
might be to the disadvantage of efficiency—which is acceptable if the goal is to merely show feasi-
bility of a new concept (below, we give the example of a strong security model for dynamic group
signatures), but is undesirable to instantiate practical schemes.

We contribute to bridging the gap between modular design and efficiency by proposing the
first signature scheme that is compatible with the (to date) only efficient standard-model zero-
knowledge proof system in a comprehensive sense. Digital signatures and non-interactive zero-
knowledge (NIZK) proof systems [BFM88] are the core of many cryptographic primitives providing
means of identification or authentication, and at the same time anonymity. A classical example are
group signatures [Cv91]: they allow members which were enrolled by a group manager to sign on
behalf of a group without revealing their identity. To prevent misuse, anonymity can be revoked
by an authority. Another primitive are anonymous credentials [Cha85], by which a user can prove
that she holds a certain credential, while remaining anonymous. Blind signatures [Cha82] were
introduced for electronic cash to prevent the linking of a coin to its spender, and are also used
in electronic voting systems, where anonymity is indispensable. Other examples are verifiably
encrypted signatures [BGLS03] and group encryption [KTY07].

Our new signature scheme provides means to instantiate such primitives in a modular way
retaining conceptual simplicity, and at the same time yielding efficiency, sometimes even outper-
forming existing constructions as we show for delegatable anonymous credentials.
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Introduction

Group Signatures. As an example for modular protocol design let us consider the BSZ model for
dynamic group signatures by Bellare et al. [BSZ05]. In their model there are 3 types of protagonists:
the issuer, the opener and group members. The system is set up by computing a group public key,
an issuer key and an opening key. To become a member of the group, a user runs the group-joining
protocol with the issuer (holding the issuer key) at the end of which the user obtains a private
signing key. Using this key, the member can make a signature on behalf of the group, which is
verified using the group public key. In case of dispute, the opening authority can open group
signatures: on input the opening key and a signature, an algorithm outputs the identity of the
signer and a proof of correct opening.

The first security requirement is anonymity, intuitively meaning that signatures of different
members are indistinguishable. Unforgeability is separated in two notions: traceability states that
every valid signature can be opened to a registered user; and non-frameability requires that no
coalition, possibly comprising issuer and opener, can produce a signature and a proof of correct
opening that wrongfully accuse an honest user.

To show feasibility of their strong model, Bellare et al. give the following generic construc-
tion. Assume the existence of a signature scheme, an encryption scheme and non-interactive zero-
knowledge proofs (see the next section), which follows from existence of trapdoor permutations.
The setup produces a pair of verification and signing keys and a pair of encryption and decryption
keys. The group public key consists of the verification and the encryption key and a common
reference string for the NIZK. The issuer key is defined as the signing key and the opening key as
the decryption key. When joining the group, a user produces a personal signature key pair and
gets a certificate (i.e., a signature under the issuer key) on the verification key from the issuer.
A member produces a group signature by first signing the message with her personal signing key,
and then encrypting her certificate, her verification key, and the signature on the message. The
group signature consists of these ciphertexts completed by a NIZK proof that the certificate and
the signature in the plaintext are valid. A group signature is opened by decrypting the contained
ciphertext: the revealed verification key identifies the user, and the signature acts as an unforgeable
proof.

The fact that a signature is a ciphertext and a NIZK proof that leaks no information guar-
antees user anonymity. Traceability follows by unforgeability of the issuer’s certificates and non-
frameability by unforgeability of the user’s signatures. Due to the compatibility with an existing
encryption and proof scheme, our signature scheme allows to efficiently instantiate the building
blocks; the security results of the generic construction then carry over directly to the resulting
practical scheme.

For a long time the only efficient ways to instantiate privacy-preserving primitives was to ei-
ther rely on the random-oracle heuristic [BR93] for NIZK—or to directly use interactive assump-
tions (like the LRSW assumption [LRSW00] and its variants, or “one-more” assumptions, as in
[BNPS03]). Group signatures have been instantiated in the random-oracle model for example by
Boneh et al. [BBS04] using Boneh-Boyen signatures [BB04] and by Camenisch and Lysyanskaya
[CL04], who devise their own scheme relying on the LRSW assumption.

Due to a series of criticisms starting with [CGH98] more and more practical schemes are being
proposed and proved secure in the standard model (i.e., without random oracles) and under fal-
sifiable (and thus non-interactive) assumptions [Nao03]. All results of this work satisfy these two
criteria.
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1.1 Automorphic Signatures

1.1 Automorphic Signatures

1.1.1 Motivation

An NP language L is defined by a polynomial-time relation R(·, ·) as L := {y | ∃w : R(y, w) = 1},
where y is called the statement and w is called the witness, since it allows to efficiently verify that
y ∈ L. A non-interactive proof system [GMR85] for such a language allows to prove that y ∈ L.
Such a system consists of a setup algorithm outputting a common reference string (CRS), a prover
that has as input the CRS and (y, w) with R(y, w) = 1 and produces a proof π, and a verifier that
on input the CRS, y and π outputs a decision bit. Completeness states that an honestly computed
proof is accepted by the verifier and soundness requires that no prover can convince the verifier of
a false statement.

We will use two security requirements for proof systems. Witness indistinguishability means
that the proof does not reveal which witness the prover used to produce it. (Non-interactive) zero
knowledge [BFM88] intuitively means that the proof does not leak anything more than validity of
the statement (y ∈ L). This is formalized by requiring that there exist a simulation setup which
besides a CRS that is indistinguishable from a regular CRS outputs a trapdoor. Using this trapdoor,
a simulator can produce a proof of a statement y ∈ L without using a witness. This proof must
be indistinguishable from a proof output by the regular prover; formally: no adversary that, after
receiving a CRS, outputs a pair (y, w) with R(y, w) = 1, and gets either a real proof or a simulated
proof, can decide which type of proof it got. If the proofs are indistinguishable even if the adversary
receives the trapdoor, the system is composable zero-knowledge [Gro06].

The languages we use in this thesis are typically of the following form: a ciphertext is in the
language if it encrypts a valid signature; or the language is that of triples of encryptions of a
signature verification key, a message and a valid signature on it. Note that such languages are NP
since given as a witness the plaintexts and the randomness used to encrypt them, we can efficiently
verify the validity of the statement.

The Groth-Sahai Proof System. Until recently, most of the practical instantiations relying on
non-interactive zero-knowledge (and witness-indistinguishable) proofs use ad hoc constructions in
the random-oracle model, since the generic standard-model instantiations are by far too inefficient.
To instantiate encryption and signature schemes, groups with a bilinear map (pairing) turned out
to be an attractive tool to achieve efficiency. In [GS08], Groth and Sahai propose efficient zero-
knowledge proofs for a large class of statements over bilinear groups, which already found use in
many implementations [CGS07, Gro07, GL07, BCKL08, CCS09, BCKL09, BCC+09, 4]. They start
by constructing witness-indistinguishable (WI) proofs of satisfiability of various types of equations:
given a witness of satisfiability, one makes commitments to its values and then constructs proofs
which assert that the committed values satisfy the equations. As already observed in [Gro06], the
most interesting and widely used type is the following: pairing-product equations (PPE) whose
variables are elements of the bilinear group (cf. Sect. 2.4). A PPE consists of products of pairings
applied to the variables and constants from the group. Since the employed commitments to group
elements are extractable, and are thus encryptions, the resulting proofs actually constitute proofs
of knowledge [DP92].

To efficiently implement the generic construction for the BSZ model of group signatures from
[BSZ05], Groth [Gro07] instantiates encryption and proofs of plaintext validity with the Groth-
Sahai WI proof system. Extractability of the commitments serves two purposes: first, it lets the
opener extract the user’s verification key and thereby trace the signer (the commitments are thus
used as encryptions that can be decrypted with the extraction key); second, it makes it possible
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Introduction

to reduce unforgeability of group signatures (i.e., traceability and non-frameability) directly to the
unforgeability of the underlying signatures. For the Groth-Sahai methodology to be applicable,
Groth gives certification and signing schemes such that certificates, signature verification keys and
signatures (i.e., the components that need to be hidden) are group elements whose validity is verified
by evaluating PPEs.1 (cf. Sect. 6.1.3).

Signatures and the Groth-Sahai Proof System. The first practical schemes to use Groth-
Sahai-like proofs were the group signatures by Boyen and Waters [BW06, BW07], who indepen-
dently developed their proofs using techniques from [GOS06]. They require weakly secure2 signa-
tures whose components and messages can be encrypted (committed to) and proved to be valid.
To define certificates lying in the bilinear group, they modify the weak Boneh-Boyen signatures
[BB04], which consist of one group element and whose messages are scalars: instead of giving the
scalar directly, they give it as an exponentiation of two different group generators. The security
of their construction holds under a variant of the strong Diffie-Hellman assumption (SDH) [BB04]
called hidden SDH (HSDH). (See Sect. 2.3 for the definitions of the assumptions.)

Belenkiy et al. [BCKL08] apply the Boneh-Boyen [BB04] transformation “from weak to strong
security” to the Boyen-Waters scheme. They thereby obtain fully secure signatures, at the price of
introducing a “very strong assumption” (according to [BCC+09]) they call triple Diffie-Hellman.
Their signatures consist of group elements, yet the messages are scalars. To construct anonymous
credentials, they make commitments to a message and a signature on it and prove that their content
is valid using Groth-Sahai proofs. Since from the employed commitments only group elements can
be extracted efficiently, they are obliged to define f -extractability, meaning that only a function of
the committed value can be extracted. This entails stronger security notions (“F -unforgeability”)
for the signature scheme in order to prove security of their construction.

In the abovementioned group signatures from [Gro07] this drawback is avoided by designing
the key-certification scheme so that all committed values are group elements. The key certification
is thus different from the signature scheme whose keys are certified. Moreover, the certificate-
verification key is an element of the target group. As opposed to standard group signatures, in
hierarchical group signatures [TW05] or anonymous proxy signatures [1], or more generally, to
instantiate certification chains, verification keys are not only certified once, but must also serve to
certify other keys. The message space must thus contain the verification keys. If we want to apply
the Groth-Sahai methodology to “anonymize” such schemes and prove unforgeability by reducing
it to the security of the underlying signatures, everything has to be in the bilinear group.

We identify the all-purpose building block to efficiently instantiate privacy-related primitives in
combination with Groth-Sahai proofs as a digital signature scheme with the following properties:

• the scheme is existentially unforgeable against chosen-message attacks;

• the verification keys lie in the message space; and

• the messages and signatures are elements of a bilinear group and the signature-verification
equations are PPEs;

Moreover, the scheme should be efficient (messages and signatures consist of a small number of
group elements and verification requires a small number of pairing computations). We call such a

1The certified signatures defined by Ateniese et al. [ACHM05] satisfy these properties as well (and they can be
completely randomized). The certificates are (a variant of) CL signatures [CL04] on the user’s secret key; certification
is thus an interactive protocol. Moreover, their construction strongly relies on interactive (thus non-falsifiable)
assumptions, such as the strong LRSW [ACdM05] assumption.

2Throughout this thesis we call a signature scheme weakly secure if an adversary getting signatures on random
messages cannot produce a signature on a new message.
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1.1 Automorphic Signatures

scheme an automorphic signature, as it is able to sign its own keys and verification preserves the
structure of keys and messages, which makes it perfectly suitable to be combined with Groth-Sahai
proofs. We believe that working with group elements enables a modular approach of combining
signatures with Groth-Sahai proofs, and automorphic signatures are the building block tailored
to do so. As demonstrated in Chapter 6, they yield straightforward efficient implementations of
generic constructions of a variety of primitives, by simply plugging in concrete schemes for generic
ones.

We note that a scheme in [Gro06] based on the decision linear assumption [BBS04] can be
considered automorphic, but should rather be regarded as a proof of concept due to its inefficiency
(a signature consists of hundreds of thousands of group elements), whereas we give practical-level
efficiency under reasonable assumptions. Independently of our work, Cathalo, Libert and Yung
[CLY09] gave a practical signature scheme whose messages and signatures are group elements.
However, as for the certification scheme from [Gro07], the verification keys contain an element
from the target group. We now present two more primitives of which we will give the first efficient
instantiation—using automorphic signatures.

Round-Optimal Blind Signatures. Blind signatures, introduced by Chaum [Cha82], allow
a user to obtain a signature on a message such that the signer cannot relate the resulting mes-
sage/signature pair to the execution of the signing protocol. They were formalized by [JLO97, PS00]
and practical schemes without random oracles have been constructed in e.g. [CKW04, KZ06, Oka06,
KZ08]. However, all these schemes require more than one round (i.e., two moves) of communica-
tion between the user and the signer to issue a blind signature. This is even the case for most
instantiations in the random-oracle model, an exception being Chaum’s scheme proved secure in
[BNPS03] under an interactive assumption.

In [Fis06], Fischlin gives a generic construction of round-optimal blind signatures in the common-
reference string (CRS) model: the signing protocol consists of one message from the user to the
signer and one response by the signer. This immediately implies concurrent security, an explicit
goal in other works such as [HKKL07]. Up to now, a practical instantiation of round-optimal blind
signatures in the standard model has been an open problem.

Anonymous Proxy Signatures. Proxy signatures allow the delegation of signing rights; they
were introduced by [MUO96] and later formalized in [BPW03, SMP08]. In [1] we introduced
anonymous proxy signatures, which unify (multi-level) proxy signatures and group signatures by
guaranteeing anonymity to the proxy signer and intermediate delegators.

They enable users (“original delegators”) to delegate others to sign on their behalf; the latter,
called delegatees, can furthermore re-delegate the received rights to other users. Anonymity ensures
that proxy signatures do not reveal who signed and who re-delegated; however, they guarantee that
there exists a delegation chain from the original delegator to the proxy signer. As for group signa-
tures, an algorithm to revoke anonymity is provided to deter from misuse. Due to consecutiveness
of delegation, this primitive also models hierarchical group signatures satisfying a security model
generalizing the one of [BSZ05]. The only prior concrete instantiation of anonymous proxy signa-
tures was given in [3], where we used Groth-Sahai-like proofs; it is however fairly impractical and
relies on a new type of assumption.

1.1.2 Instantiations and Applications

In Chapter 4 we give two concrete instantiations of automorphic signatures and show them to be
strongly unforgeable under chosen-message attack (Sect. 4.1). The first one relies on an assumption
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Introduction

which we introduced in [4]: the double hidden SDH assumption (DH-SDH) is a variant of SDH in
the flavor of HSDH in symmetric bilinear groups (“Type-1” in the terminology of [GPS08]). As
also pointed out by [GSW09a], the most efficient instantiation of Groth-Sahai (GS) proofs is the
one in asymmetric bilinear groups (“Type-3”) based on SXDH (cf. Sect. 2.2). In order to construct
automorphic signatures over these groups, we define a variant of DH-SDH in asymmetric groups,
called ADH-SDH and prove it secure in the generic group model [Sho97]. Lastly, we give a new type
of flexible CDH assumption, which is weaker than all previous versions such as [LV08]. Together
with ADH-SDH it implies strong unforgeability of our second automorphic-signature instantiation
in asymmetric bilinear groups. The scheme can be combined with the SXDH-instantiation of GS
proofs and its signatures consist of only 5 group elements. We insist that all our assumptions are
non-interactive and falsifiable [Nao03], and hold in the generic group model.

In Sect. 4.2, we use our schemes to give the first efficient instantiation of round-optimal blind
signatures. The blind signature and the user message are of order 30 group elements (depending on
the instantiation of the employed GS proofs) and the signer message consists of 5 elements. They can
be based on either DH-SDH or ADH-SDH, the latter leading to a scheme that is automorphic itself,
which makes it especially suitable for our applications. In Sect. 4.3, we give a generic transformation
of a signature scheme whose message space is an algebraic group and contains the verification
keys to one that signs vectors of arbitrary length. Our transformation preserves the structure of
verification; thus applied to an automorphic scheme the resulting scheme is automorphic.

Applications of Automorphic Signatures. In Chapter 6 we give efficient black-box construc-
tions of cryptographic primitives by combining GS proofs and automorphic signatures. We first
discuss the generic construction of round-optimal blind signatures in the common-reference-string
model by [Fis06]—although the direct (non-black-box) construction in Sect. 4.2 yields a more effi-
cient result.3 We note that in [11] we expanded on these ideas to give the first instantiation of fair
blind signatures without random oracles; these are blind signatures where an authority can revoke
anonymity: the authority can trace a signature to the user it was issued to and link an issuing to
the issued signature.

In Sect. 6.1.2 and 6.1.3, we use automorphic signatures to build group signatures satisfying the
BSZ model, and revisit the construction of non-interactive anonymous credentials of [BCKL08]; in
particular, we achieve actual message extractability and give an efficient credential-issuing proto-
col. We then present the first efficient instantiation of anonymous proxy signatures (APS) in the
standard model. We use automorphic signatures to certify public keys, so delegation is done by
simply signing the delegatee’s public key. An anonymous proxy signature is a Groth-Sahai (GS)
proof of knowledge of a certification chain that starts at the original delegator and ends at the
message.

We then strengthen the model for APS by enhancing the anonymity guarantees in Sect. 6.2.5.
We first revise delegation so that intermediate delegators remain anonymous to the delegatee
whereas the generic construction in [3] only provides anonymity w.r.t. the verifier. Moreover,
we give a protocol for blind delegation: a user can be delegated to without revealing her iden-
tity. These enhancements do not affect the signature size, which grows linearly in the number of
delegations (which is optimal, since the signature must contain opening information).

Recently, Belenkiy et al. [BCC+09] (BCCKLS) introduced delegatable anonymous credentials.
They also provide mechanisms enabling users to prove possession of certain rights while remaining
anonymous; and they consider re-delegation of received rights. (We discuss this primitive in more
detail in the next section.) Similarly to the construction of APS, a delegatable credential consists

3The ad hoc construction yields thus a better result than the modular construction. In Chapter 5 the blind
signature is however superseded by a more powerful primitive, which can then be used as a black-box building block
for more complex protocols.
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of a chain of certificates that is encrypted and proved valid. The core protocol of the BCCKLS
instantiation lets a user obtain a proof of knowledge of an authenticator on her secret key, without
revealing the identity of neither the signer nor the user. This imposes interactivity of the delegation
process, while (non-blind) delegations for APS are non-interactive, even when delegators remain
anonymous. (We show how to achieve delegatee anonymity at the expense of non-interactivity).
Besides, the BCCKLS model only deals with authentication rather than signing, and does not
provide tracing mechanisms.

We will show that using our second new primitive called commuting signatures, whose instan-
tiation uses automorphic signatures and which we introduce in the next section, we can combine
the best of both instantiations: non-interactive delegation and anonymity of both delegator and
delegatee w.r.t. each other.

1.2 Commuting Signatures and Verifiable Encryption

1.2.1 Motivation and Definition

Verifiable Encryption. A verifiably encrypted signature scheme [BGLS03, RS09] enables a signer
to make a digital signature on a message, encrypt the signature under a third party’s encryption
key, and produce a proof asserting that the ciphertext contains a valid signature. Suppose the
message is only available as an encryption. The signer cannot make a signature on the plaintext, as
this would contradict the security of the encryption scheme (given two messages and the encryption
of one of them, a signature on the plaintext could be used to decide which message was encrypted).
However, the following does not seem a priori impossible: given a ciphertext, instead of directly
making a signature on the plaintext, the signer could produce a verifiable encryption of a signature
on the plaintext.

We show that—surprisingly—such a functionality is feasible and moreover give a practical
instantiation of it. We then use this new primitive to build the first non-interactively delegatable
anonymous credential scheme: given an encrypted public key, a delegator can make a verifiably
encrypted certificate on the key, which acts as credential.

Delegatable Anonymous Credentials. Access control that respects users’ privacy concerns is a
challenging problem in security. To gain access to resources, a participant must prove to possess the
required credential issued by an authority. To increase manageability of the system, the authority
usually does not issue credentials directly to each user, but relies on intermediate layers in the
hierarchy. Belenkiy et al. [BCC+09] give the following example: a system administrator issues
credentials for webmasters to use his server. The latter are entitled to create forums and delegate
rights to moderators, who in turn can give posting privileges to users.

Web-based social network services are enjoying a huge popularity and represent another area
of application for credentials. Registered users can be given credentials to access services, which
they delegate to introduce and recommend friends and friend of friends. The recent rise of concern
about protection of privacy in such networks motivates anonymous credentials: a user can obtain
a credential and prove possession of it without revealing neither her identity nor that of the user
that delegated it to her.

In the real world (non-anonymous) delegation of rights is usually realized by certifying the
public key of the delegated user. Consecutive delegation leads to a credential chain, consisting of
public keys and certificates linking them, starting with the original issuer of the credential and
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ending with a user, say Alice. To delegate her credential to Bob, Alice simply extends the length
of the chain by one by appending a certificate on Bob’s public key, produced with her secret key.

Anonymous credentials [Cha85, Dam90, LRSW00, Bra99, CL01, CL02, CL04, BCKL08] aim
to provide a functionality similar to certificates while at the same time not revealing information
about the user’s identity when obtaining or showing a credential. However, the goal of reconciling
delegatability and anonymity remained elusive—until recently. Chase and Lysyanskaya [CL06]
construct a first delegatable anonymous credential scheme; yet, the size of a credential is exponential
in its length (i.e., the number of delegations), which makes them impractical. A breakthrough was
made in [BCC+09], where Belenkiy et al. (BCCKLS) introduce a new approach using a non-
interactive zero-knowledge (NIZK) proof system with randomizable proofs: given such a proof,
anyone can transform it to a new proof that cannot be linked to the original one. A credential is
a non-interactive proof of knowledge of a certification chain that can be randomized before being
delegated or shown; this guarantees anonymity and unlinkability.

The functionality of the system can be sketched as follows: each user holds a secret key which
she uses to produce multiple pseudonyms Nym, which cannot be linked to each other. A user A
can be known to user O as Nym(O)

A and to B as Nym(B)

A . Given a credential issued by O for Nym(O)

A ,
A can transform it into a credential for Nym(B)

A and show it to B. Moreover A can delegate the
credential to user C, known to A as Nym(A)

C . C can then show a credential from O for Nym(D)

C to
user D (without revealing neither Nym(C)

A nor Nym(A)

C ), or redelegate it, and so on.
Delegation preserves anonymity, i.e., delegator and delegatee learn nothing more about each

other than their respective pseudonyms. In the instantiation of [BCC+09], the delegation protocol
is fairly complex and highly interactive—in contrast to (non-anonymous) credentials, where it
suffices to know a user’s public key in order to issue or delegate a credential to her. We overcome
this shortcoming by giving an instantiation of the BCCKLS model that enables non-interactive
delegation: pseudonyms are encryptions of a user public key, and given a pseudonym Nym, the
delegator can produce a credential for the holder of Nym without any interaction, by making a
proof of knowledge of a signature on the public key given to her as an encryption Nym. This can
be achieved using commuting signatures and verifiable encryption, the latter representing a proof
of knowledge of a signature.

Note that a non-interactive delegation protocol immediately yields security against concurrent
attacks where an adversary might simultaneously run protocols for delegating or being delegated
credentials with honest users. This was not considered in the BCCKLS model. An interesting
property of our instantiation is that the delegation is not only a non-interactive protocol, but the
delegator produces a ready credential for the user’s pseudonym without any interaction of the user.

Finally, we note that, as for the BCCKLS instantiation, abuse prevention mechanisms such as
anonymity revocation [CL01] or limited show [CHK+06] can be added to our construction.

Commuting Signatures and Verifiable Encryption. Our main building block to instantiate
non-interactively delegatable anonymous credentials is a new primitive we call commuting signature
which we sketch in the following and formally define in Sect. 5.2. It combines a digital signature
scheme, an encryption scheme and a proof system with the following properties: given a verification
key, a message and a signature on it valid under the key, we can encrypt any subset of {key, message,
signature}, and make a proof that the plaintexts constitute a triple of a key, a message and a valid
signature. We also require that the proof does not leak any more information about the encrypted
values besides validity.

For consistency with our instantiation using the Groth-Sahai methodology [GS08], we will say
commitment instead of encryption. Note that the commitments we use are extractable, and therefore
constitute an encryption scheme (see Sect. 2.2.1). We denote committing to signatures by Com and
committing to messages by ComM. A proof for a committed signature is denoted π̃, and a proof
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Figure 1.1: Commuting signatures

for a committed message by π̄. If both are committed, we simply write π, and if the verification
key is committed too, we write π̂.

Besides allowing to prove validity of committed values, a commuting signature scheme provides
the following additional functionalities (sketched in Figure 1.1). Note that none of them requires
knowledge of the extraction (decryption) key.

SigCom. Given a commitment CM to a message M and a signing key sk, SigCom produces a
commitment cΣ to a signature Σ on M under sk, and a proof π that the content of cΣ is a
valid signature on the content of CM .

AdPrC (“adapt proof when committing”). Given a commitment CM to M , a signature Σ on M
and a proof π̄ of validity of Σ on the content of CM , we can make a commitment cΣ to Σ
using randomness ρΣ and run algorithm AdPrC on CM ,Σ, ρΣ and π̄. Its output is a proof π
that the content of cΣ is a valid signature on the content of CM .
AdPrDC (“adapt proof when decommitting”) does the converse: given a committed message
CM , a committed signature cΣ together with the used randomness ρΣ, and a proof π for CM

and cΣ, AdPrDC outputs a proof π̄ of validity of the signature Σ on the committed message.

AdPrCM. Analogously we define algorithms for proof adaptation when committing and decommit-
ting to the message. Given a message M , a commitment cΣ to a signature on M and a
proof of validity π̃, AdPrCM transforms the proof to the case when the message is committed
as well. AdPrDCM is given commitments CM and cΣ to a signature and a message M , the
randomness ρM for CM and a proof π. It adapts π to a proof π̃ that the content of cΣ is a
valid signature on M .

AdPrCK. We can also adapt proofs when committing or decommitting to the verification key. Given
commitments CM and cΣ to a message and a signature, a proof of validity π, the verification
key vk and randomness ρvk, AdPrCK outputs a proof π̂ that the content of cΣ is a signature
on the content of CM valid under the key vk given as a commitment cvk with randomness
ρvk. AdPrDCK is given (vk, ρvk,CM , cΣ, π̂) and adapts the proof π̂ for (cvk,CM , cΣ), where
cvk is a commitment to vk with randomness ρvk, to a proof for (vk,CM , cΣ).

We require that committing, signing and the functionalities above commute with each other, that
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is, it does not matter in which order we execute them; e.g., signing a message, committing to
the message and the signature and proving validity yields the same as committing to the message
and then running SigCom. Thus, the diagram in Figure 1.1 commutes. Note that due to the
argument given in the beginning of Sect. 1.2.1 there cannot exist a functionality XX that is given
a commitment CM to a message M and a secret key sk, and outputs a signature Σ on M .

Besides verifiably encrypted signatures (Sect. 5.1) and blind signatures (Sect. 5.2.1), commuting
signatures also immediately yield CL signatures [CL01, CL02, CL04], an important building block
for protocols providing privacy. They allow a user to obtain a signature on a committed value
from a signer by running a protocol Issue. The user can then make a proof of knowledge of that
signature which is verifiable given the commitment. SigCom provides a non-interactive issuing,
which directly gives the user a proof of knowledge of such a signature.

1.2.2 Instantiations

Instantiating Commuting Signatures. Our instantiation will be based on Groth-Sahai (GS)
proofs and automorphic signatures, in particular the blind signature scheme from Sect. 4.2, which
can be sketched as follows: the user randomizes the message by multiplying it with a random
term, makes an (extractable) commitment to the message and the randomness and adds a witness-
indistinguishable (WI) proof that the commitments contain the correct values. The signer receives
the randomization, commitments and a proof and therefore learns nothing about the message.
Using the randomized message, the signer fabricates a “pre-signature”, from which, knowing the
randomness, the user can retrieve an actual signature. To prevent the signer from linking the
resulting signature to the signing session, the actual blind signature is a WI proof of knowledge
(PoK) of the signature. The PoK consists of extractable commitments to the signature components
and a WI proof that the committed values satisfy the signature verification equation on the message;
in other words, the PoK is a verifiably encrypted signature. The commitments and WI proofs
are instantiated with the GS methodology for committing to elements from a bilinear group and
constructing proofs that they satisfy pairing-product equations.

We observe that the values the user sends to the signer can be seen as a commitment to (or an
encryption of) the message. We show that this commitment can be used by the signer to directly—
without the help of the user—construct a proof of knowledge of a signature on the committed
message (that is, extractable commitments to the signature components and a proof that the
committed values constitute a valid signature on the committed message). This is possible due to a
series of properties of GS proofs we identify: the proofs are homomorphic w.r.t. the statement they
prove; moreover, they are independent of parts of the statement and there are ways to “blindly”
transform a proof for one statement to a proof for another statement (Sect. 5.3).

GS commitments are extractable, thus the extraction key acts as the decryption key and witness
indistinguishability implies semantic security (cf. Sect. 2.2.1). We will use the notions encryption
and extractable commitment interchangeably. An extractable commitment to a signature together
with a proof of validity is a verifiably encrypted signature (VES) and can also be interpreted as
a proof of knowledge of a signature (since by decryption, the signature can be extracted). Our
instantiation of commuting signatures is given in Sect. 5.4.

Instantiating Delegatable Anonymous Credentials. Belenkiy et al. [BCC+09] show that
Groth-Sahai proofs can be randomized and combine them with an authentication scheme for secret
keys to construct delegatable credentials. A pseudonym Nym is a commitment to the user’s secret
key and a credential is a proof of knowledge of an authentication chain. Such a proof consists
of commitments to secret keys, commitments to authenticators between the keys, and proofs of
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validity. To issue or delegate, the issuer and the user jointly compute a proof of knowledge of an
authenticator on the content of the user’s pseudonym. In the case of delegation, the issuer prepends
her own credential, which she randomizes before. The authors note that secret keys cannot be
extracted from the commitments, and that an adversary against the authentication scheme must
be allowed to ask for authenticators on as well as under the attacked key. They therefore give an
F-unforgeable certification-secure authentication scheme.

We avoid this notion and interactivity of delegation by choosing a more modular approach. We
replace the authenticators on secret keys by commuting signatures on public keys; in particular,
the underlying signatures are automorphic, i.e., Groth-Sahai compatible with verification keys that
lie in the message space—which is a requirement for delegation. A credential is then a chain of
public keys and certificates (as in the non-anonymous case), which are all given as commitments
completed with proofs of validity.

Commuting signatures enable non-interactive delegation (and issuing, which is a special case
of delegation): given a pseudonym NymU (i.e., a commitment to the public key) of a user, the
issuer can produce a commitment cΣ to a signature on the committed user key and a proof π of
validity using SigCom. In the case of issuing, the credential is (cΣ, π) and is verified by checking π
on the issuer’s public key, NymU and cΣ. In the case of delegation the issuer randomizes her own
credential credI , yielding a credential credI

′ on her pseudonym NymI that is unlinkable to credI .
Finally, running AdPrCK, the issuer adapts the proof π (which is valid under her verification key)
to a proof π̂ of validity of the signature contained in cΣ on the content of the user pseudonym
NymU under the content of the issuer’s pseudonym NymI . The credential for the user is then
credI

′ ‖NymI ‖ (cΣ, π̂).

Comparing our Results to Previous Ones. Replacing the authenticators from [BCC+09],
which consist of 11 group elements and are verified by 8 pairing-product equations (PPE), with the
automorphic signatures from Sect. 7.3.1 (consisting of 5 group elements and satisfying 3 PPEs) more
than doubles efficiency of the scheme. Moreover, in Sect. 7.4 we revise the approach to achieving
simulatability of credentials. Groth and Sahai [GS08] show how to simulate proofs of satisfiability
consisting of commitments and proofs for the committed values, which are both produced by the
simulator. However, in order to simulate credentials, the simulator has to construct proofs for given
commitments. Belenkiy et al. therefore double some of the commitments and provide proofs that
the committed values are equivalent. We show that our equations can be directly simulated even
if some of the commitments are fixed before simulation.

Most importantly, our delegation (and issuing) protocol outperforms theirs significantly (see
Sect. 7.2.1 for a more detailed comparison): In the BCCKLS scheme, the issuer first sends a GS
proof of knowledge of the first 6 signature components. The issuer and the user then run a two-
party protocol to jointly compute the last component, using a homomorphic encryption scheme
and interactive ZK proofs that blinding values are in the correct ranges. In our instantiation the
issuer simply sends a GS proof of knowledge of our 5 signature components.

The assumptions under which the respective schemes are proven secure are the BB-CDH, the
BB-HSDH, and the SXDH assumption for the instantiation of [BCC+09], whereas our instantiation
is secure under ADH-SDH and SXDH (see Sect. 2.3 and 3.3). BB-HSDH, introduced in [BCC+09],
and ADH-SDH are incomparable and both “hidden” variants of the strong Diffie-Hellman assump-
tion [BB04]. They both fall in Boyen’s generalized “Uber-Assumption” family [Boy08] and have
the same generic security bound. We discuss similarities in Sect. 3.3.1.

We combined automorphic signatures with Groth-Sahai proofs in Sect. 6.2 to construct anony-
mous proxy signatures. This primitive is related to anonymous credentials in that it considers
proving rights in an anonymous way; but it does not achieve mutual anonymity between the dele-
gator and the delegated user. Note that if in our credential scheme we give the extraction key for
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the commitments to a tracing authority, and if we define a proxy signing algorithm which works like
delegation but produces a committed signature on a clear message rather than a committed user
key, we get an instantiation of anonymous proxy signatures with mutually anonymous delegation.

We note that recently [AHO10] also introduced a signature scheme with messages and signatures
from a bilinear group which are verified by pairing-product equations. While their initial scheme is
not automorphic, they give an automorphic variant whose keys are however 33 times longer than
ours, while signatures are 8 times longer.4 They use their scheme to construct a blind signature,
which follows Fischlin’s [Fis06] approach, in which the user only gets a signature on a commitment
of the message. It is thus not clear whether their scheme can be used to instantiate commuting
signatures.

Overview. The part on commuting signatures and their application to delegatable credentials
is structured as follows. Using the definitions of extractable commitments, randomizable witness-
indistinguishable proofs, and compatible signatures from Sect. 2.2, we discuss how they can be
combined to verifiably encrypted signatures in Sect. 5.1. In Sect. 5.2 we formally define commuting
signatures and give some immediate black-box results, such as blind signatures. In Sect. 5.3 we state
and prove 5 lemmas about properties of Groth-Sahai proofs which are used in Sect. 5.4, where we
instantiate our commuting-signature scheme using Groth-Sahai proofs (Sect. 2.4) and automorphic
signatures (Sect. 4.1). In Sect. 5.5, we give some complementary results; in particular, we describe
how to extend commuting signatures when several messages are to be signed at once.

Chapter 7 is dedicated to delegatable credentials. In Sect. 7.1 we recall the model for delegatable
anonymous credentials from [BCC+09] and subsequently describe our instantiation providing non-
interactive delegation in Sect. 7.2. We prove security and conclude with a comparison to the
BCCKLS instantiation in Sect. 7.2.1. In Sect. 7.3 we give a variant of the automorphic signatures
from Sect. 4.1 which enables a more efficient instantiation of delegatable credentials. In Sect. 7.4
we discuss some issues of simulatability of Groth-Sahai proofs that arise when they are used to
instantiate delegatable credentials satisfying a simulation-based anonymity definition.

This Thesis. The results of this thesis appear in [6] and [8], with two exceptions: Sect. 2.4.5
contains results from [7] and Sect. 3.2 contains results from the full version of [4].

4Our keys and signatures are in G1 × G2 and G3
1 × G2

2 for asymmetric groups, whereas those of [AHO10] are in
G50 and G28, respectively, where G is a (less efficient) symmetric bilinear group. We assumed G is of the same size
as G2 while G1 elements have a representation half as long as G2 elements.
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2.1 Notation

Since we are going to combine quite a few concepts we give a guideline on notation. We tried to
stick to our framework, but deviated sometimes for the sake of consistency with other work such
as Groth and Sahai’s [GS08].

• Capital Roman letters denote elements of a bilinear group.1 Diffie-Hellman pairs of group
elements (see Sect. 2.3) are mostly two consecutive letters of the alphabet.

• Lower-case Roman letters denote integers. Mostly they correspond to the logarithm of the
corresponding capital letter in a common basis, e.g. M = Gm.

• Greek letters denote the randomness used in the commitments to a group element that is
denoted by the corresponding Roman letter, e.g. cM = Com(ck,M, µ).

• M, V, R and C denote spaces for messages, values, randomness and commitments, respec-
tively; E denotes a class of equations, H a hash function, and O denotes an oracle. G denotes
an algebraic group, Z denotes integers, N non-negative integers, and R denotes the reals. By
G∗ we denote G \ {1}, i.e., the group without the neutral element; and analogously we define
Z∗p := Zp \ {1}.

1Although generators of bilinear group are typically denoted by g, definitions like X := gx are very common in the
literature. We think it is sensible to distinguish different types of variables by different types of letters, and accept
that G being a generator rather than a group may look unusual at first.
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• Special cases:

– λ ∈ N denotes the security parameter
– p denotes a prime (typically the group order), e denotes a bilinear map (pairing) and E

denotes a generic equation;
– φ and θ denote the components of Groth-Sahai proofs, whereas π denotes a generic

proof;
– ~u, ~v with components uij and vij are the keys for Groth-Sahai commitments;
– c,d and C denote commitments;
– tT denotes an element from the target group GT ;
– Γ and Z denote matrices in with entries γij and zij in Zp, respectively.

• In general, we denote row vectors by bold letters and column vectors with arrows; e.g.,
u11 ∈ G, u1 ∈ G3, and ~u ∈ G3×3.

• In a bilinear group, we denote the group operation by “ · ”. For vectors and matrices of group
elements, “ ◦· ” denotes applying the group operation componentwise.

• By “:=”, we denote either a definition—with the definiens on the right-hand side (RHS) and
the definiendum on the left-hand side (LHS)—or an assignment of the value on the RHS to
the variable on the LHS.

• “←” denotes a random assignment. If the RHS is a finite set it denotes choosing a value from
it uniformly and assigning it to the LHS. If the RHS is a probabilistic algorithm it denotes
choosing its random tape uniformly and assigning the outcome to the LHS.

• The concatenation of two bit strings s and t is denoted by s‖t. The empty string is denoted
by ε. If λ ∈ N then 1λ denotes the string of λ ones.

• Variables of cryptographic protocols are denoted in slanted font; e.g., sk is a signing key.

• Algorithms are denoted sans serif like Sign and are assumed to be probabilistic polynomial
time (p.p.t.) or polynomial time (p.t.). We write e.g. Σ ← Sign(sk,M) if the algorithm is
probabilistic. To make the internal randomness r explicit we write Σ := Sign(sk,M ; r).

• A function f : N → R is called negligible if for all c ∈ N there exists k0 ∈ N s.t. for all
k > k0: |f(k)| < 1

kc . Problems are called hard if no p.p.t. algorithm can solve them with
non-negligible probability.

2.2 Formal Definition of Primitives

We formally define some cryptographic primitives from the literature.

2.2.1 Commitments

A (non-interactive) randomizable extractable commitment scheme Com is composed of the algo-
rithms Setup, Com, RdCom, ExSetup, Extr, and WISetup, which define V, the space of “committable”
values, R, the randomness space and C the space of commitments. Setup and WISetup output com-
mitment keys ck, and Com, on inputs ck, a message M ∈ V and randomness ρ ∈ R outputs a
commitment c ∈ C. ExSetup outputs (ck, ek), where ck is distributed as the output of Setup, and
ek is the extraction key. We require the following:
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• The scheme is perfectly binding, i.e., for any ck output by Setup and any commitment c ∈ C
there exists exactly one M ∈ V s.t. c = Com(ck,M, ρ) for some ρ. Moreover, if (ck, ek) ←
ExSetup then Extr(ek, c) extracts that value M from c.

• The scheme is computationally hiding, in particular, the keys output by WISetup are compu-
tationally indistinguishable from those output by Setup; and they generate perfectly hiding
commitments, i.e., for ck∗ output by WISetup we have that for every c ∈ C and M ∈ V there
exists a ρ ∈ R s.t. c = Com(ck∗,M, ρ).

• The scheme is randomizable, i.e., RdCom takes as input a key ck, a commitment c and fresh
randomness ρ′ ← R and outputs a randomized commitment c′. If ρ′ is chosen uniformly from
R then c′ is distributed as Com(ck,M, ρ) where ρ is picked uniformly from R.

We require that (R,+) is a group and that we have

RdCom(ck,Com(ck,M, ρ), ρ′) = Com(ck,M, ρ+ ρ′) .

A perfectly binding computationally hiding commitment scheme as defined above is actually a
lossy encryption scheme [BHY09]. This is an encryption scheme with two key generation algorithms
producing indistinguishable encryption keys. One outputs regular key pairs that lead to decryptable
ciphertexts, whereas the other one returns “lossy” encryption keys, which lead to ciphertexts that
are independent of the message. Lossy encryption schemes satisfy the standard IND-CPA definition
of semantic security.2

We write Com also when we commit to a vector in Vn: if M = (M1, . . . ,Mn) and ρ =
(ρ1, . . . , ρn) then Com(ck,M, ρ) :=

(
Com(ck,M1, ρ1), . . . ,Com(ck,Mn, ρn)

)
. Likewise, we define

Extr(ck, (c1, . . . , cn)) :=
(
Extr(ck, c1), . . . ,Extr(ck, cn)

)
.

2.2.2 Proofs for Committed Values

We define a proof system which allows to prove that committed values satisfy an equation. The
proofs are constructed using the committed values and the used randomness. They are witness-
indistinguishable, that is, they reveal nothing more than the fact that the committed values satisfy
the equation. Moreover, given a proof for a set of commitments, the proof can be adapted to a
randomization of the commitments (without knowledge of the committed values).

A randomizable witness-indistinguishable proof system Proof for a commitment scheme Com
for a class E of equations consists of the algorithms Prove, Verify and RdProof. Given values
M1, . . . ,Mn ∈ V satisfying an equation E ∈ E , the algorithm Prove, on input ck, a description of
E, (M1, . . . ,Mn) and ρ1, . . . , ρn ∈ R, outputs a proof π. On inputs ck, E, c1, . . . , cn and π, Verify
outputs 0 or 1, indicating acceptance or rejection of a proof. We require that the system satisfies
the following:

• Completeness. For all (M1, . . . ,Mn) satisfying E ∈ E , and all ρ1, . . . , ρn ∈ R we have

Verify
(
ck,E,Com(ck,M1, ρ1), . . . ,Com(ck,Mn, ρn),

Prove(ck,E, (M1, ρ1), . . . , (Mn, ρn))
)

= 1 .

2Consider the security game for indistinguishability under chosen-plaintext attack (IND-CPA) for encryption
schemes. The challenger creates a pair of encryption and decryption key, and gives the encryption key to the
adversary (who can thus make ciphertexts for plaintexts of his choice). The adversary outputs two messages, gets
an encryption of one of them and has to guess which one. Replacing the key by a “lossy” encryption key output
by WISetup is indistinguishable; and encryptions under a lossy key are independent of the message. Encryptions of
different messages are thus indistinguishable.
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• Soundness. Let (ck, ek) ← ExSetup, E ∈ E , and c1, . . . , cn ∈ C. If there exists π such that
Verify(ck,E, c1, . . . , cn, π) = 1, then letting Mi := Extr(ek, ci), we have that (M1, . . . ,Mn)
satisfy E.

• Witness indistinguishability. Let ck∗ ← WISetup, and M1, . . . ,Mn,M
′
1, . . . ,M

′
n ∈ V be such

that both (M1, . . . ,Mn) and (M ′1, . . . ,M
′
n) satisfy an equation E ∈ E . Let moreover ρ1, . . . , ρn,

ρ′1, . . . , ρ
′
n ∈ R be such that for all i, Com(ck∗,Mi, ρi) = Com(ck∗,M ′i , ρ

′
i). Then the outputs

of Prove(ck∗,E, (M1, ρ1), . . . , (Mn, ρn)) and Prove(ck∗,E, (M ′1, ρ
′
1), . . . , (M ′n, ρ

′
n)) are equally

distributed.

• Randomizability. Given ck, commitments c1, . . . , cn, a proof π for (c1, . . . , cn) and E, and
ρ′1, . . . , ρ

′
n ∈ R, algorithm RdProof outputs a proof π′ for the randomized commitments

c′i := RdCom(ck, ci, ρ′i).
For all i, let Mi be the value committed in ci and let ρi be such that ci = Com(ck,Mi, ρi).
Then we require that the output of RdProof

(
ck,E, (c1, ρ

′
1), . . . , (cn, ρ′n), π

)
is distributed as

the output of Prove
(
ck,E, (M1, ρ1 + ρ′1), . . . , (Mn, ρn + ρ′n)

)
. Thus, if ρ′1, . . . , ρ

′
n are cho-

sen uniformly, then π′ and (c′i)
n
i=1 are distributed as Prove

(
ck,E, (M1, ρ̂1), . . . , (Mn, ρ̂n)

)
and(

Com(ck,Mi, ρ̂i)
)n
i=1

with ρ̂i chosen uniformly from R.

If E is the conjunction of E1, . . . ,Ek over variables M1, . . . ,Mn (which can be common to several
equations) then for M = (M1, . . . ,Mn) and ρ = (ρ1, . . . , ρn) we define

Prove(ck,E, (M,ρ)) :=
(
Prove(ck,Ej , (Mi, ρi)ni=1)

)k
j=1

Ver(ck,E, (ci)ni=1, π) :=
∧k
j=1 Ver(ck,Ej , (ci)ni=1, πj)

for π = (π1, . . . , πk).

2.2.3 Digital Signatures

A digital signature scheme Sig consists of the following algorithms: SetupS takes as input the
security parameter 1λ and outputs public parameters pp, which define a message space M. On
input pp, KeyGenS outputs a pair (vk, sk) of verification and signing key. For M ∈M, Sign(sk,M)
outputs a signature Σ, which is verified by Ver(vk,M,Σ) outputting a decision bit. Correctness
requires that if pp is output by SetupS and (vk, sk) is output by KeyGenS(pp) then for all M ∈M:
Ver(vk,M, Sign(sk,M)) = 1.

Signatures are existentially unforgeable under chosen-message attack (EUF-CMA) [GMR88] if
no adversary, given vk and a signing oracle for messages of its choice, can output a pair (M,Σ) s.t.
M was never queried and Ver(vk,M,Σ) = 1. We define two more notions for Sig:

• Strong unforgeability (under chosen message attack). No probabilistic polynomial-time (p.p.t.)
adversary, given vk and an oracle for adaptive signing queries on messages of its choice can
output a pair (M,Σ), s.t. Ver(vk,M,Σ) = 1 and (M,Σ) 6= (Mi,Σi) for all i; where Mi are
the queried messages and Σi the oracle responses.

• Compatibility with Com and Proof . The messages, verification keys and signatures consist
of values in V, the value space of Com. Moreover, the signature verification predicate is a
conjunction of equations from E , the class of equations for Proof . We denote the verification
equations over the variables vk, M and Σ by EVer(vk,M,Σ).3

3The parameters of the signature scheme, which determine the verification equations, will be assumed implicitly.
Later we will consider some of the variables as constants. For example, the verification equations over variables M
and Σ considering vk as a constant will be denoted as EVer(vk,·,·)(M,Σ).
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2.2.4 Blind Signatures

A blind signature scheme consists of the algorithms SetupS,KeyGenS and Ver, as defined for digital
signatures, and moreover the interactive protocol Issue↔ Obtain between the signer and a user
allowing the latter to obtain a signature on a message hidden from the signer. Issue takes as input
a signing key sk and Obtain has input the corresponding verification key vk and a messageM . If they
do not abort then the output of Obtain is a signature Σ. Correctness requires that if pp is output
by SetupS and (vk, sk) is output by KeyGenS(pp) then for all M ∈ M, Issue(sk)↔Obtain(vk,M)
does not abort and the output Σ satisfies Ver(vk,M,Σ) = 1.

(Concurrent) security is defined by the following requirements [HKKL07]:

• Blindness. For any p.p.t. algorithm Issue∗ the probability of winning the following game
is negligibly close to 1

2 : Run pp ← SetupS and give pp to Issue∗, which outputs a key vk
and two messages M0,M1 ∈ M. Issue∗ interacts concurrently with Obtain(vk,Mb) and
Obtain(vk,M1−b), where the bit b is chosen randomly. If either instance of Obtain aborts,
define Σ0 = Σ1 = ⊥, otherwise let Σ0 and Σ1 be the respective outputs of Obtain(vk,Mb)
and Obtain(vk,M1−b). Issue∗ is given (Σ0,Σ1) and wins if it outputs the bit b.

• Unforgeability. For any p.p.t. algorithm Obtain∗ and for any polynomial q the probability of
winning the following game is negligible: Run pp ← Setup(1λ) and (vk, sk) ← KeyGenS(pp)
and give vk to Obtain∗. Let Obtain∗ concurrently interact with q = q(λ) instances of
Sign(sk). Obtain∗ wins if it outputs (M1,Σ1, . . . ,Mq+1,Σq+1), with Mi ∈ M, Mi 6= Mj

and Ver(vk,Mi,Σi) = 1 for all i, j with i 6= j.

2.3 Bilinear Groups

A bilinear group is a tuple grp = (p,G1,G2,GT , e,G1, G2) where G1,G2 and GT are cyclic groups
of prime order p, G1 and G2 generate G1 and G2, respectively, and e : G1×G2 → GT is an efficient
non-degenerate bilinear map, i.e.,

∀X ∈ G1 ∀Y ∈ G2 ∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y )ab ,

and e(G1, G2) generates GT . We assume that there exists a probabilistic polynomial-time algorithm
GrpGen that on input 1λ outputs a bilinear group grp for which p is a λ-bit prime.

Bilinear groups are typically instantiated by elliptic curves on which a pairing can be defined as a
bilinear map. Galbraith et al. [GPS08] distinguish 3 types of pairings: For Type 1 we have G1 = G2

and G1 = G2; such groups are called symmetric and we will write (p,G,GT , e,G). If G1 6= G2

and there exists an efficiently computable homomorphism from G2 to G1, we say grp is of Type 2.
Finally, in Type 3 curves we have G1 6= G2 and there are no efficiently computable homomorphisms
between G1 and G2. In such groups it is reasonable to make the SXDH assumption introduced
below (whereas it is wrong in groups of Type 1 and 2). Our new assumptions in Chapter 3 are
reasonable for all types.

Assumption 1 (SXDH). The Symmetric External Diffie-Hellman assumption states that given
(Gr1, G

s
1, G

t
1) for random r, s ∈ Zp, it is hard to decide whether t = rs or t is random; likewise,

given (Gr
′

2 , G
s′
2 , G

t′
2 ) for random r′, s′ ∈ Zp, it is hard to decide whether t′ = r′s′ or t′ is random.
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Assumption 2 (DLIN). The Decision Linear assumption, introduced in [BBS04], in a symmetric
group (p,G,GT , e,G) states that given (Gα, Gβ, Grα, Gsβ, Gt) for random α, β, r, s ∈ Zp, it is hard
to decide whether t = r + s or t is random.

Assumption 3 (SDH). The Strong Diffie-Hellman assumption [BB04] in an asymmetric group
(p,G1,G2,GT , e,G1, G2) states that given (G1, G

x
1 , G

(x2)
1 , . . . , G

(xq)
1 , G2, G

x
2) for a random x ∈ Zp,

it is hard to produce a pair (G
1
x+c

1 , c) ∈ G1 × Zp.

Assumption 4 (HSDH). The Hidden Strong Diffie-Hellman assumption [BW07] in a symmetric

group (p,G,GT , e,G) states that given G,H,Gx and q − 1 triples (G
1

x+ci , Gci , Hci) for random
H ∈ G and ci ∈ Zp, it is hard to produce a new triple (G

1
x+c∗ , Gc

∗
, Hc∗) with c∗ 6= ci for all i.

Throughout the paper, we will assume two fixed generators G and H of G1 and G2, respectively
(with G 6= H when G1 = G2). We call a pair (A,B) ∈ G1 × G2 a Diffie-Hellman pair (w.r.t.
(G,H)), if there exists a ∈ Zp such that A = Ga and B = Ha. Using the bilinear map e, such pairs
are efficiently decidable by checking e(A,H) = e(G,B). We let DH denote the set of DH pairs and
implicitly assume them to be w.r.t. G and H.

2.4 Groth-Sahai Proofs for Pairing-Product Equations

In this section we show how to instantiate Com and Proof from Sections 2.2.1 and 2.2.2. A
compatible signature scheme Sig and a blind signature based on it will be introduced in Chapter 4.

We start by presenting a perfectly binding extractable commitment scheme ComL, which is
computationally hiding under DLIN, and then give an overview of Groth-Sahai proofs introduced
in [GS08]. This is sufficient if they are to be used in a black-box way. In Sections 2.4.2 and 2.4.3
we give an instantiation of Com and Proof over asymmetric groups whose security is based on
the SXDH assumption. As we will prove new properties of these proofs in Sect. 5.3, we will give
the SXDH instantiation in detail.

2.4.1 DLIN Commitments and Proofs

Linear Commitments. For ComL, let grp = (p,G,GT , e,G) be a symmetric bilinear group in
which DLIN holds. SetupL(grp) chooses α, β, t1, t2 ← Zp and outputs

ck :=
(
u1 = (Gα, 1, G),u2 = (1, Gβ, G),u3 = (Gt1α, Gt2β, Gt1+t2)

)
.

ExSetupL additionally outputs the extraction key ek := (α, β). A commitment to X ∈ G with
randomness r = (r1, r2, r3) ∈ RL := Z 3

p is defined as

ComL

(
ck, X, r

)
:=
(∏

urii1,
∏
urii2, X ·

∏
urii3
)

=
(
ur111 · u

r3
31, u

r2
22 · u

r3
32, X ·G

r1+r2 · ur333

)
=
(
Gα(r1+t1r3), Gβ(r2+t2r3), X ·Gr1+r2+t1r3+t2r3

)
,

which is a linear encryption [BBS04] under encryption key (Gα, Gβ) using randomness (r1 + t1r3,

r2+t2r3). ExtrL

(
(α, β), (c1, c2, c3)

)
decrypts the ciphertext by outputting c3 ·c−1/α

1 ·c−1/β
2 . WISetupL
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replaces u33 in ck with Gt1+t2−1, which is indistinguishable by DLIN and which leads to perfectly
hiding commitments.

Groth-Sahai WI Proofs. Groth and Sahai introduce witness-indistinguishable proofs of sat-
isfiability of pairing-product equations. A pairing-product equation (PPE) in a symmetric bilinear
group over variables Y1, . . . , Yn ∈ G is an equation E of the form4

E(Y1, . . . , Yn) :
n∏
i=1

e(Ai, Yi)
n∏
i=1

n∏
j=1

e(Yi, Yj)γi,j = tT ,

determined by Ai ∈ G, γi,j ∈ Zp, for 1 ≤ i, j ≤ n, and tT ∈ GT . Witness indistinguishability (WI)
means that proofs computed with different witnesses (Y1, . . . , Yn) are indistinguishable.

Let ComL = (SetupL,ComL,ExSetupL,ExtrL,WISetupL) denote the commitment scheme from
above. The proof system for a symmetric bilinear group grp is set up by running SetupL(grp) which
produces a perfectly binding commitment key ck. To make a WI proof of satisfiability of an equa-
tion, given a witness (Y1, . . . , Yn) ∈ Gn satisfying E, one first commits to the witness. For every i
one chooses randomness ri ← RL and sets ci := ComL(ck, Yi, ri). Running ProveL(ck,E, (Yi, ri)ni=1)
generates a proof5 π which asserts that the values committed in ci satisfy E. In the DLIN instanti-
ation, the proof is in G9; however, if E is a linear equation (i.e., γi,j = 0 for all i, j), then the proof
reduces to 3 group elements. A proof π for equation E and commitments (ci)ni=1 under ck is verified
by VerifyL(ck,E, (ci)ni=1, π). An honestly computed proof for commitments to values satisfying E is
always accepted by VerifyL (completeness).

Security. Soundness. Given commitments (ci)ni=1 s.t. VerifyL(ck,E, (ci)ni=1, π) = 1 for some π and
the extraction key ek output by ExSetupL, algorithm ExtrL applied to ci for all i yields a vector
(Yi)ni=1 satisfying E.
Witness Indistinguishability. If the commitment key ck output by SetupL is replaced by ck∗ out-
put by WISetupL (which is indistinguishable under DLIN) then ComL commitments are perfectly
hiding; i.e., given c ∈ G3, then for any Y ∈ G there exists an r ∈ RL s.t. c = ComL(ck∗, Y, r).
Given values ((Y1, r1), . . . , (Yn, rn)) and ((Y ′1 , r

′
1), . . . , (Y ′n, r

′
n)) such that for all i = 1, . . . , n we

have ComL(ck∗, Yi, ri) = ComL(ck∗, Y ′i , r
′
i), and moreover (Y1, . . . , Yn) and (Y ′1 , . . . , Y

′
n) both satisfy

E, then ProveL(ck∗,E, (Yi, ri)ni=1) and ProveL(ck∗,E, (Y ′i , r
′
i)
n
i=1) generate the same distribution of

proofs. Thus in the WI setting (i.e., when ck is computed by WISetupL) the commitments and the
proof hide the values in an information-theoretical sense.

Randomizing Groth-Sahai Proofs. As observed in [3] and [BCC+09] and formalized by the
latter, Groth-Sahai WI proofs of knowledge can be randomized. This means that there exists an
algorithm RdComL that on input ck, a commitment c and fresh randomness r′ ∈ RL outputs a
randomization of c under r′, which is a commitment c′ to the same value but under a different
randomness.

A proof π for an equation E and a vector of commitments (ci)ni=1 can be adapted (and ran-
domized itself) to the randomizations c′i = RdComL(ck, ci, r′i) without knowledge of the committed
values: running RdProofL(ck,E, (ci, r′i)

n
i=1, π) computes π′ for equation E and commitments c′i. If

the r′i are chosen uniformly from RL then ((c′i)
n
i=1, π

′) is distributed as[
(r̂1, . . . , r̂n)← RnL :

((
ComL(ck, Yi, r̂i)

)n
i=1
, ProveL

(
ck,E, (Yi, r̂i)ni=1

)]
4For a more concise exposition we will underline the variables of an equation.
5 Note that in this context the word proof can either denominate “proof of satisfiability” (or language-

membership)—which thus includes the commitments—or mean a proof that the content of some given commitments
satisfies a given equation. We adopt the latter diction, and say proof of knowledge when we include the commitments.
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(and therefore by completeness: VerifyL(ck,E, (c′i)
n
i=1, π

′) = 1). Basically, if for all i, ri is the
randomness of the original commitments then c′i = ComL(ck, Yi, ri + r′i), and π′ is distributed as
proofs output by ProveL(ck,E, (Yi, ri+r′i)

n
i=1). (This is shown analogously to Remark 1 in Sect. 2.4.3

below.)

Examples. (1) Proof of two commitments containing the same value. Let Eequal(X1, X2) denote
the equation e(X1, H) e(X2, H

−1) = 1. Given two commitments c = Com(ck,M, r) and c′ =
Com(ck,M ′, r′), Prove(ck,Eequal, (M, r), (M ′, r′)) proves that c and c′ commit to the same value.
(2) Proof of commitments to a DH-pair. Define EDH(X,Y ) as e(X,H) e(G−1, Y ) = 1. A proof for
Equation EDH and commitments cX and dY proves that the pair of committed values is in DH.
Under ComL, the proof is in G3.

2.4.2 SXDH Commitments

We instantiate Com, defined in Sect. 2.2.1, by the commitment scheme based on SXDH given
in [GS08].

Setup on input an asymmetric group grp = (p,G1,G2,GT , e,G1, G2) chooses α1, α2, t1, t2 ← Zp and
returns ck = (u1,u2,v1,v2) with

u1 := (G1, G
α1
1 ) u2 := (Gt11 , G

α1t1
1 ) v1 := (G2, G

α2
2 ) v2 := (Gt22 , G

α2t2
2 ) (2.1)

Value and random space are defined as V := G1 ∪G2 and R := Z2
p.

Com(ck, X, r) is defined as follows: for X ∈ G1, Com(ck, X, r) := (ur111 ·u
r2
21, X ·u

r1
12 ·u

r2
22); for X ∈ G2,

Com(ck, X, r) := (vr111 · v
r2
21, X · v

r1
12 · v

r2
22).

RdCom(ck, c, r′) returns c ◦· Com(ck, 1, r′) = (c1 · u
r′1
11 · u

r′2
21, c2 · u

r′1
12 · u

r′2
22), when c ∈ G2

1 and similarly
for the case when c ∈ G2

2. (“ ◦· ” denotes component-wise multiplication.)

ExSetup constructs ck as in Setup and in addition outputs the extraction key ek := (α1, α2).

Extr(ek, c) is defined as follows. If c ∈ G2
1 then output c2 · c−α1

1 ; if c ∈ G2
2 then output c2 · c−α2

1 .

WISetup produces ck as Setup, but sets u22 and v22 as Gα1t1−1
1 and Gα2t2−1

2 , respectively. This is
indistinguishable by SXDH and results in perfectly hiding commitments.

Security. The scheme is perfectly binding, computationally hiding and randomizable as defined in
Sect. 2.2.1.

Let i be 1 or 2. For X ∈ Gi we have Com(ck, X, r) = (Gr1i · G
tir2
i , X · Gαir1i · Gαitir2i ) = (Gr1+tir2

i ,
X · (Gαii )r1+tir2), which is an ElGamal encryption under public key Gαii and randomness r1 + tir2.
Extr(ek, c) decrypts thus c = (c1, c2) by outputting c2 · c−αi1 . Moreover, Com commitments are ho-
momorphic: Com(ck, X, r) ◦· Com(ck, X ′, r′) = Com(ck, X ·X ′, r+r′); therefore if c = Com(ck, X, r)
then RdCom(ck, c, r′) = Com(ck, X, r + r′).

For ck∗ output by WISetup we have Com(ck∗, X, r) = (Gr1+tir2
i , X · Gαir1+αitir2−r2

i ), which is
uniformly random in G2

i for (r1, r2)← Zp.
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2.4.3 SXDH Groth-Sahai Proofs for Pairing-Product Equations

In order to instantiate Proof , defined in Sect. 2.2.2, we use the proof system introduced in [GS08]
and shown to be randomizable in [BCC+09]. The class of equations E for our proof system are
pairing-product equations (PPE). A PPE over variables X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 is
an equation of the form

E(X1, . . . , Xm; Y1, . . . , Yn) :
n∏
j=1

e(Aj , Yj)
m∏
j=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT , (2.2)

defined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and tT ∈ GT .

Proofs. We define Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
for Xi ∈ G1, Yj ∈ G2 and ri, sj ∈ Z2

p,
and equation E given by the values

(
(Aj)nj=1, (Bi)

m
i=1, (γi,j)i,j ∈ Zm×np , tT ∈ GT

)
. For notational

convenience, let us first define the following two shortcuts6 for Z = (zij)ij ∈ Z2×2
p , ~u ∈ G2×2

1 , ~v ∈
G2×2

2 .

Z ⊗ ~u :=

[
uz11

11 u
z12
21 uz11

12 u
z12
22

uz21
11 u

z22
21 uz21

12 u
z22
22

]
Z ⊗	 ~v :=

[
v−z11

11 v−z21
21 v−z11

12 v−z21
22

v−z12
11 v−z22

21 v−z12
12 v−z22

22

]
(2.3)

Prove chooses Z = ((z11, z12), (z21, z22))> ← Z2×2
p and defines

t11 :=
∑n

j=1

∑m
i=1 ri1γijsj1

t21 :=
∑n

j=1

∑m
i=1 ri2γijsj1

t12 :=
∑n

j=1

∑m
i=1 ri1γijsj2

t22 :=
∑n

j=1

∑m
i=1 ri2γijsj2

(2.4)

The output π = (φ, θ) ∈ G2×2
2 ×G2×2

1 of Prove is then defined as:

φ :=

vt11
11 v

t12
21

(∏m
i=1B

ri1
i

)(∏n
j=1 Y

Pm
i=1 ri1γij

j

)
vt11

12 v
t12
22

vt21
11 v

t22
21

(∏m
i=1B

ri2
i

)(∏n
j=1 Y

Pm
i=1 ri2γij

j

)
vt21

12 v
t22
22

 ◦· (Z ⊗	 ~v)

θ :=

1
(∏n

j=1A
sj1
j

)(∏m
i=1X

Pn
j=1 sj1γij

i

)
1

(∏n
j=1A

sj2
j

)(∏m
i=1X

Pn
j=1 sj2γij

i

)
 ◦· (Z ⊗ ~u)

(2.5)

We write Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1; Z

)
if we want to make the internal randomness Z ∈

Z2×2
p explicit.

If for E we have γij = 0 and Aj = 1 (or Bi = 1) for all i, j then E is called linear. In this case
we can choose Z := 0, which makes all but 2 elements of (φ, θ) equal to 1. The proof is thus in G2

2

(or in G2
1 if all Bi = 1).

Randomization. Randomization of a commitment c = Com(ck, X, r) via RdCom(ck, c, r′) replaces
randomness r by randomness r+ r′; and similarly for d = Com(ck, Y, s). Adaptation of a proof by
RdProof must thus replace the values ri and sj in π = (φ, θ) analogously. We formally define:

RdProof
(
ck,E, (ci, ri)mi=1, (dj , sj)

n
j=1, π

)
: choose Z = ((z11, z12), (z21, z22))> ← Z2×2

p and define
(t11, t12, t21, t22) as in (2.4). Output π′ = (φ′, θ′) ∈ G2×2

2 ×G2×2
1 defined as:

6If we denoted G1 and G2 additively (as was done in [GS08]), the shortcuts would correspond to matrix multipli-
cation: Z ⊗ ~u = Z~u and Z ⊗	 ~v = −Z>~v.
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φ′ := φ ◦·

(∏n
j=1 d

Pm
i=1 ri1γij

j1

)
vt11

11 v
t12
21

(∏m
i=1B

ri1
i

)(∏n
j=1 d

Pm
i=1 ri1γij

j2

)
vt11

12 v
t12
22(∏n

j=1 d
Pm
i=1 ri2γij

j1

)
vt21

11 v
t22
21

(∏m
i=1B

ri2
i

)(∏n
j=1 d

Pm
i=1 ri2γij

j2

)
vt21

12 v
t22
22

 ◦· (Z ⊗	 ~v)

θ′ := θ ◦·

(∏m
i=1 c

Pn
j=1 sj1γij

i1

) (∏n
j=1A

sj1
j

)(∏m
i=1 c

Pn
j=1 sj1γij

i2

)(∏m
i=1 c

Pn
j=1 sj2γij

i1

) (∏n
j=1A

sj2
j

)(∏m
i=1 c

Pn
j=1 sj2γij

i2

)
 ◦· (Z ⊗ ~u)

which has the same distribution as the output of Prove
(
ck,E, (Xi, r

′
i+ri)

m
i=1, (Yj , s

′
j+sj)nj=1

)
, where

r′i and s′j are such that ci = Com(ck, Xi, r
′
i) and dj = Com(ck, Yj , s′j), as we will show now.

Remark 1. In additive notation, the commitments and proofs can be written as follows (cf. the
full version of [GS08]), when the cumulated randomness for all variables is R = (rik) ∈ Zm×2

p and
S = (sjk) ∈ Zn×2

p , and we set Γ = (γij) ∈ Zm×np and define ι1( ~X) := [~0 | ~X ] and ι2(~Y ) := [~0 | ~Y ],
for ~X ∈ Gm

1 and ~Y ∈ Gn
2 .

~c = ι1( ~X) +R~u φ = R>ι2( ~B) +R>Γι2(~Y ) + (R>ΓS − Z>)~v
~d = ι2(~Y ) + S~v θ = S>ι1( ~A) + S>Γ>ι1( ~X) + Z~u

To randomize the commitments and proofs, choose R̂← Zm×2
p , Ŝ ← Zn×2

p , Ẑ ← Z2×2
p and set

~c′ := ~c + R̂~u = ι1( ~X) + (R+ R̂)~u
~d′ := ~d + Ŝ~v = ι2(~Y ) + (S + Ŝ)~v

φ′ := φ+ R̂>ι2( ~B) + R̂>Γ~d + (R̂>ΓŜ − Ẑ>)~v

=
[
R>ι2( ~B) +R>Γι2(~Y ) + (R>ΓS − Z>)~v

]
+ R̂>ι2( ~B) + R̂>Γ

[
ι2(~Y ) + S~v

]
+ (R̂>ΓŜ − Ẑ>)~v

= (R+ R̂)>ι2( ~B) + (R+ R̂)>Γι2(~Y ) +
[
(R+ R̂)>Γ(S + Ŝ)− (Z> + Ẑ> +R>ΓŜ)︸ ︷︷ ︸

=(Z+Ẑ+Ŝ>Γ>R)>=:(Z′)>

]
~v

θ′ := θ + Ŝ>ι1( ~A) + Ŝ>Γ>~c + Ẑ~u

=
[
S>ι1( ~A) + S>Γ>ι1( ~X) + Z~u

]
+ Ŝ>ι1( ~A) + Ŝ>Γ>

[
ι1( ~X) +R~u

]
+ Ẑ~u

= (S + Ŝ)>ι1( ~A) + (S + Ŝ)>Γ>ι1( ~X) + (Z + Ẑ + Ŝ>Γ>R)︸ ︷︷ ︸
=Z′

~u

The output of RdProof
(
ck,E, (ci, r̂i)mi=1, (cj , ŝj)

n
j=1, π

)
using randomness ((ẑ11, ẑ12), (ẑ21, ẑ22))> is

therefore the same as that of Prove
(
ck,E, (Xi, ri + r̂i)mi=1, (Yj , sj + ŝj)

)
when the randomness used

is [
z11 + ẑ11 +

∑∑
ŝj1γijri1 z12 + ẑ12 +

∑∑
ŝj1γijri2

z21 + ẑ21 +
∑∑

ŝj2γijri1 z22 + ẑ22 +
∑∑

ŝj2γijri2

]
, (2.6)

which is uniformly distributed over Z2×2
p if Ẑ is.

Verification. Let ck = (~u, ~v) ∈ G2×2
1 × G2×2

2 be a commitment key, let ~c ∈ Gm×2
1 , ~d ∈ Gn×2

2

be vectors of commitments, and let (φ, θ) ∈ G2×2
2 × G2×2

1 be a proof for an equation E given by
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~A ∈ Gn
1 , ~B ∈ Gm

2 , Γ = (γi,j)i,j ∈ Zm×np , and tT ∈ GT . Verify(ck,E,~c, ~d, (φ, θ)) outputs 1 if and only
if the following 4 equations hold.∏m

i=1 e
(
ci1,

∏n
j=1 d

γij
j1

)
= e(u11, φ11) e(u21, φ21) e(θ11, v11) e(θ21, v21)∏m

i=1 e
(
ci1, Bi

∏n
j=1 d

γij
j2

)
= e(u11, φ12) e(u21, φ22) e(θ11, v12) e(θ21, v22)∏n

j=1 e
(
Aj
∏m
i=1 c

γij
i2 , dj1

)
= e(u12, φ11) e(u22, φ21) e(θ12, v11) e(θ22, v21)∏n

j=1 e(Aj , dj2)
∏m
i=1 e

(
ci2, Bi

∏n
j=1 d

γij
j2

)
= tT e(u12, φ12) e(u22, φ22) e(θ12, v12) e(θ22, v22)

We will show completeness, soundness and witness indistinguishability of this proof system in the
section below.

Groth and Sahai [GS08] show how to turn their witness-indistinguishable proofs into zero-knowledge
proofs. In [9] we show how to even achieve simulation-sound zero knowledge [Sah99], while main-
taining efficiency. (Standard) zero knowledge requires that there exist a simulation setup, which
outputs a trapdoor and a common reference string (CRS) that is indistinguishable from a regu-
lar CRS. Moreover, a proof simulator that is given the trapdoor must be able to produce proofs
without being given a witness that are indistinguishable from proofs output by Prove. Soundness
of the proof system demands that it be hard for an adversary to generate a valid proof of a false
statement. The system is simulation-sound if this is even hard when the CRS is simulated and
when the adversary has access to a proof-simulator oracle for arbitrary (possibly false) statements.

2.4.4 Correctness, Soundness and Witness Indistinguishability

The functionality of the Groth-Sahai proof system is best explained on a more abstract level—
and denoting the groups G1 and G2 additively, as already done in Remark 1. Analogously to the
bilinear map e : G1 × G2 → GT for group elements, we define a bilinear map F for commitments:
F : G2

1 ×G2
2 → G4

T with

F
(
(c1, c2), (d1, d2)

)
:=

[
e(c1, d1) e(c1, d2)

e(c2, d1) e(c2, d2)

]
.

We now extend the two maps e and F to vectors: “ · ” extends e to vectors of group elements and
“ • ” extends F to vectors of pairs of group elements.

· : Gm
1 ×Gm

2 → GT

~X · ~Y :=
m∏
i=1

e(Xi, Yi)

• : Gm×2
1 ×Gm×2

2 → G2×2
T

~c • ~d :=

( ∏m
i=1 e(ci1, di1)

∏m
i=1 e(ci1, di2)∏m

i=1 e(ci2, di1)
∏m
i=1 e(ci2, di2)

)
In this notation, the pairing product equation in (2.2) can then be written as

( ~A · ~Y ) ( ~X · ~B) ( ~X · Γ~Y ) = tT , (2.7)

and the verification equations for a proof (φ, θ) above can then be rewritten as(
ι1( ~A) • ~d

)
◦·
(
~c • ι2( ~B)

)
◦·
(
~c • Γ~d

)
= ιT (tT ) ◦·

(
~u • φ

)
◦·
(
θ • ~v

)
, (2.8)

with ιT : tT 7→
[
1 1
1 tT

]
. In additive notation the commitment keys from (2.1) are written as

u1 := (G1, α1G1) u2 := (t1G1, α1t1G1) v1 := (G2, α2G2) v2 := (t2G2, α2t2G2)
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Using α1 and α2 we can define an inverse of ι1 and ι2. While ιi is an injection from Gi to G2
i ,

κi is a projection from G2
i onto Gi. For c ∈ G2

1 we define κ1(c1, c2) := c2 − α1c1 and for d ∈ G2
2:

κ2(d1, d2) := d2 − α2d1. Analogously to the injections ι1 and ι2, we extend the projections κ1 and
κ2 to vectors of group elements by applying the projection component-wise.

We have κi ◦ ιi is the identity map in Gi and for ck = (~u, ~v) ← Setup, we have κ1(u1) =
κ1(u2) = 0 and κ2(v1) = κ2(v2) = 0 and κ is the inverse of Com(ck, ·)—and is defined as Extr. We
also define an inverse of ιT as κT : G2×2

T → GT with κT (((t11, t12), (t21, t22))>) := t22t
−α1
12 (t21t

−α1
11 )α2 .

The key property of the injections, projections and bilinear maps is that they commute, since we
have:

∀X ∈ G1 ∀Y ∈ G2 : F (ι1(X), ι2(Y )) = ιT (e(X,Y ))

∀ c ∈ G2
2 ∀d ∈ G2

2 : e(κ1(c), κ2(d)) = κT (F (c,d))

This immediately yields soundness of Groth-Sahai proofs as follows. If there exist elements φ and
θ satisfying (2.8) then applying κT to the equation yields(

~A · κ2(~d)
) (
κ1(~c) · ~B

) (
κ1(~c) · Γκ2(~d)

)
= tT

(
0 · κ2(φ)

) (
κ1(θ) · 0

)
= tT ,

since κT ◦ ιT , κ1 ◦ ι1 and κ2 ◦ ι2 are the identity maps and κ1(~u) and κ2(~v) are the zero vectors in
the respective groups. The vectors of group elements κ1(~c) and κ2(~d) thus satisfy (2.7).

Let us now look at how to construct such a proof and how to make it witness indistinguishable.
Given vectors of group elements ~X and ~Y satisfying (2.7) and having defined commitments

~c = ι1( ~X) +R~u ~d = ι2(~Y ) + S~v

let us look at the left-hand side of the verification equation in (2.8):(
ι1( ~A) • ~d

)
◦·
(
~c • ι2( ~B)

)
◦·
(
~c • Γ~d

)
. (2.9)

Plugging in the definitions of ~c and ~d and rearranging terms we get(
ι1( ~A) • ι2(~Y )

)
◦·
(
ι1( ~X) • ι2( ~B)

)
◦·
(
ι1( ~X) • Γι2(~Y )

)
◦·
(
ι1( ~A) • S~v) ◦·

(
R~u • ι2( ~B)

)
◦·
(
ι1( ~X) • ΓS~v

)
◦·
(
R~u • Γι2(~Y )

)
◦·
(
R~u • ΓS~v

)
.

Since e and • commute and ~X and ~Y satisfy (2.7), the first line of the above is equal to ιT (tT ).
Moreover, by bilinearity of • we have ~c • Γ~d = Γ>~c • ~d for all ~c ∈ Gm×2

1 , ~d ∈ Gn×2
2 ,Γ ∈ Zm×np .

Together this implies that the above expression is equal to

ιT (tT ) ◦·
(
~u •

(
R>ι2( ~B) +R>Γι2(~Y ) +R>ΓS~v︸ ︷︷ ︸

:=φ′

))
◦·
((
S>ι1( ~A) + S>Γ>ι1( ~X)︸ ︷︷ ︸

=:θ′

)
• ~v
)
. (2.10)

The expressions φ′ and θ′ defined above satisfy the verification relation since (2.9) equals (2.10).
However, to achieve witness indistinguishability we have to randomize them. When constructing a
proof one chooses Z ← Z2×2

p and sets θ := θ′ + Zu and φ := φ′ − Z>v. Since we have(
u • (φ′ − Z>v)

)
◦·
(
(θ′ + Zu) • v

)
= (u • φ′) ◦· (θ′ • v) ,

the randomized pair still satisfies the verification relation. We ended up with the definition of φ
and θ as in Remark 1.

We have shown (perfect) soundness and (perfect) completeness, what remains is witness indis-
tinguishability. For (u∗,v∗) ← WISetup, u∗1 and u∗2 are linearly independent, as well as v∗1 and
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v∗2; we have thus G2
1 ⊆ 〈u∗1,u∗2〉 and G2

2 ⊆ 〈v∗1,v∗2〉, what makes the commitments perfectly hiding.
Moreover, for every ~A, ~B, ~X, ~Y there exist ∆,Ω,Ξ,Υ such that

ι1( ~A) = ∆u∗ ι1( ~X) = Ξu∗ ι2( ~B) = Ωv∗ ι2(~Y ) = Υv∗

We have thus

θ = S>ι1( ~A) + S>Γ>ι1( ~X) + Z~u∗ =
(
S>∆ + S>Γ>Ξ + Z

)
~u∗

φ = R>ι2( ~B) +R>Γι2(~Y ) + (R>ΓS − Z>)~v∗ =
(
R>Ω +R>ΓΥ +R>ΓS − Z>

)
~v∗

Since Z is uniformly random we can write θ = Θ~u∗ with Θ uniformly random, and φ = Φ~v∗ where
Φ depends on Θ. By perfect completeness, every witness yields a proof with(

ι1( ~A) • ~d
)
◦·
(
~c • ι2( ~B)

)
◦·
(
~c • Γ~d

)
◦·
(
ιT (tT )

)−1 ◦·
(
θ • ~v∗

)−1 =
(
~u∗ • φ

)
.

Conditioned on Θ every two Φ and Φ′ satisfy thus u∗ • (Φ − Φ′)v∗ = 0. It is easily shown that
F (u∗1,v

∗
1), F (u∗1,v

∗
2), F (u∗2,v

∗
1), F (u∗2,v

∗
2) are linearly independent, which implies that if for some ∆:

u∗ • ∆v∗ = 0 then ∆ = 0. Thus every Θ determines one single Φ, which means that, since Θ is
uniformly chosen, for any witness we get a uniform distribution over (φ, θ) conditioned on it being
an acceptable proof.

Security. It follows from the results of [GS08], which we sketched in this section, and Remark 1
that (Prove,Verify,RdProof) is a randomizable witness-indistinguishable proof system for Com from
Sect. 2.4.2, as defined in Sect. 2.2.2.

2.4.5 Batch Verification

While Groth-Sahai proofs are by far the most efficient witness-indistinguishable (and zero-knowl-
edge) proof system that does not resort to random oracles, in particular verification of a proof
needs a high amount of computation. While generation of a proof only requires exponentions in
the two groups G1 and G2, verification requires computation of pairings, which is more expensive.

In [7] we show that by using techniques of batch verification, the number of pairings required to
verify a proof can be reduced considerably.7 Batch cryptography strives to process expensive tasks
in batch rather than individually and was introduced by Fiat [Fia90] and extended in [BGR98].
Ferrara et al. [FGHP09] considered batch verification for pairing-based equations and applied their
results to signature verification.

At the cost of introducing a small soundness error it is possible to achieve a high gain in
efficiency by verifying k equations at once. If the batch-verification algorithm returns 1 then all
equations hold with overwhelming probability. We use the small exponent test by Bellare et al.
[BGR98]: we pick small random exponents r1, . . . , rk, take the i-th equation to the power of ri and
check whether the product of the left-hand sides of the randomized equations equals the product
of their right-hand sides. If the pairings in the product equation contain common elements, we
can then regroup them to minimize the number of pairings. Moreover, we move exponents “into”
the pairing to avoid exponentiations in GT , which are in practice more expensive then those in G1

or G2. Ferrara et al. prove that when the random exponents r1, . . . , rk are `-bit strings then the
probability of accepting an invalid batch is bounded by 2−`.

Batch Verification of Groth-Sahai Proofs. We apply the batch-verification techniques to
the verification equations for Groth-Sahai proofs about pairing-product equations, which are given

7Batch verification of Groth-Sahai proofs was independently suggested in [GSW09b]
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before Sect. 2.4.4 (p. 23). By grouping pairings in the verification equations, we have already
reduced the number of pairings on the left-hand sides of the equation to 3m + 2n; the right-hand
sides contain 16 pairings. To verify all 4 equations in batch, we choose r1, r2, r3, r4 ← {0, 1}` (where
` determines the tradeoff between soundness and efficiency), take the i-th equation to the power of
ri and multiply them. Without loss of generality, we assume n ≤ m (otherwise we could reorder
differently). After rearranging the terms we get the left-hand side∏n

j=1 e
((∏m

i=1 c
γij
i1

)r1(Aj∏m
i=1 c

γij
i2

)r3 , dj1)∏n
j=1 e

((∏m
i=1 c

γij
i1

)r2(Aj∏m
i=1 c

γij
i2

)r4 , dj2)∏m
i=1 e (cr2i1c

r4
i2 , Bi)

and the right-hand side

e(u11, φ
r1
11φ

r2
12) e(u21, φ

r1
21φ

r2
22) e(u12, φ

r3
11φ

r4
12) e(u22, φ

r3
21φ

r4
22)

e(θr111θ
r3
12, v11) e(θr121θ

r3
22, v21) e(θr211θ

r4
12, v12) e(θr221θ

r4
22, v22) tr4T

which requires m + 2n pairings and 2mn + 2m + 4n exponentiations in G1 for the left-hand side,
and for the right-hand side: 8 pairing computations, 8 exponentiations in G1, 8 exponentiations in
G2 and one exponentiation in GT .

If we verify k proofs for the same commitment key (~u, ~v) (but in general different commitments)
at the same time then we can optimize the computation by verifying them in batch. While the cost
of the left-hand side grows linearly in the number of proofs, the right-hand side requires 8 pairings
for any k, since we can regroup pairings of the form e(uij , ·) and e(·, vij).
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Chapter 3

New Assumptions and their Justifications
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In this chapter we present the new assumptions over bilinear groups on which our constructions of
automorphic signatures in Sect. 4 (and thus everything built on top of them) rely. Assumption 7
was introduced in [4], whereas Assumptions 5, 6, and 8 were introduced in [6]. For every assumption
we justify its plausibility.

3.1 Flexible CDH

The Computational Diffie-Hellman assumption (CDH) in a group G generated by G states that
given Ga and Gb for random integers a and b, it is hard to compute Gab. Flexible assumptions give
the solver more liberty in that there is not only one solution to an instance. However, they remain
generically hard, meaning that there does not exist an efficient algorithm that works for any group.

The first new assumption we introduce is a weaker variant of the 1-flexible CDH assumption
[LV08], which is itself a weakening of the 2-out-of-3 CDH assumption [KJP06]. The latter states
that given (G,Ga, Gb), it is hard to output (R,Rab) for an arbitrary non-trivial R (i.e., R 6= 1). To
solve 1-flexible CDH, one must additionally compute Ra. We weaken the assumption further by
defining a solution as (R,Ra, Rb, Rab), and call it the weak flexible CDH assumption.

Assumption 5 (WF-CDH). Given (G,Ga, Gb) ∈ G3 for random a, b← Zp, it is hard to output a
non-trivial tuple (R,Ra, Rb, Rab), i.e., with R ∈ G∗.

In a symmetric bilinear group a solution (R,Ra, Rb, Rab) can be efficiently verified since

e(Ga, Rb) = e(Ra, Gb) e(Ra, Gb) = e(G,Rab) e(R,Gb) = e(G,Rb)

We define a generalization of WF-CDH to asymmetric groups. G will be the generator of G1 and
instead of Gb, we give a random generator H of G2; so a solution (Gr, Gra, Grb, Grab) becomes
(Gr, Gra, Hr, Hrb) and can again be efficiently verified due to the pairing.
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Assumption 6 (AWF-CDH). Given random generators G ∈ G1 and H ∈ G2, and A = Ga for
a← Zp, it is hard to output (Gr, Gra, Hr, Hra) with r 6= 0, i.e., a tuple (R,M,S,N) ∈ (G∗1)2×(G∗2)2

that satisfies

e(A,S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S) (3.1)

The assumption is easily shown to hold in both generic asymmetric and symmetric bilinear groups.
Moreover, if G1 = G2 it becomes WF-CDH, which is implied by the 2-out-of-3 CDH and the 1-
flexible CDH assumptions, while in asymmetric groups it is implied by DDH in G1 (and thus a
fortiori by SXDH), as we show now.

Lemma 1. The AWF-CDH assumption holds in (p,G1,G2,GT , e,G1, G2) if the decisional Diffie-
Hellman problem is hard in G1.

Proof. Suppose there exists an efficient algorithm A that solves the AWF-CDH problem with non-
negligible probability. Let (G,Ga, Gb, Gc) be a DDH instance in G1, i.e., we have to decide whether
c = ab. We choose H ← G2 and run A on input (G,Ga, H), which, when successful, outputs
(Gr, Gar, Hr, Har). We use this to check whether Gc = Gab, since e(Gab, Hr) = e(Gb, Har).

3.2 The DH-SDH Assumption

The q-strong Diffie-Hellman (SDH) assumption in a symmetric bilinear group (p,G,GT , e,G) states
that given (G,Gx, G(x2), . . . , G(xq)) it is hard to output a pair (G

1
x+c , c). Hardness of this problem

implies hardness of the following two problems, where G and K are random generators of the group
and ci and vi are random elements from Zp.

1. Given G,Gx and q − 1 pairs (G
1

x+ci , ci), output a new pair (G
1
x+c , c).

2. Given G,K,Gx and q− 1 triples
(
(K ·Gvi)

1
x+ci , ci, vi

)
, output a new triple ((K ·Gv)

1
x+c , c, v),

i.e., with (c, v) 6= (ci, vi) for all i.

The first implication was shown in [BB04], the second one is proved by the following lemma, which
appears in [4]:

Lemma 2. If SDH is hard then so is Problem 2 above.

Proof. There are two types of solutions (A, c, v) to Problem 2: Either c 6= ci for all i = 1, . . . , q− 1,
or c = ck for some k and v 6= vk. We treat the two types separately:

A New c. Let us first assume that the adversary is more likely to return a solution (A, c, v) with
c 6= ci for all i. Let the (q + 1)-tuple (P, P x, P x

2
, . . . , P x

q
) be an SDH instance. We now

generate a random instance of Problem 2. We randomly choose α, β ← Zp and ci, vi ← Zp,
for i = 1, . . . , q − 1, such that the pairs (ci, vi) are pairwise distinct. We then set

G := Pα[
Qq−1
i=1 (x+ci)] K := Gβ X := Gx

Since
∏q−1
i=1 (x+ ci) is a known polynomial in x and since we are given P (xi) for i = 0, . . . , q in

the SDH instance, we can compute G. The exponent of X in basis P is a known polynomial
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of degree q in x; we can thus compute X. Analogously, we can simulate the elements Ai :=
(K ·Gvi)

1
x+ci , for i = 1, . . . , q − 1, for the instance of Problem 2:

Ai := P
α(β+vi)

[Qq−1
j=1
j 6=i

(x+cj)

]
.

Since Ax+ci
i = Pα(β+vi)

[Qq−1
j=1(x+cj)

]
= Gβ+vi = K ·Gvi , we have Ai = (K ·Gvi)

1
x+ci .

A successful output (A, c, v) of the first type satisfies c 6= ci for all i and

A = (K ·Gv)
1
x+c = G

β+v
x+c = P

α(β+v)
x+c [

Qq−1
i=1 (x+ci)] = P

f(x)
x+c ,

where f is a polynomial defined as

f(x) = α(β + v)
[∏q−1

i=1 (x+ ci)
]

= α(β + v)
[∏q−1

i=1 ((x+ c) + (ci − c))
]

= α(β + v)
[∏q−1

i=1 (ci − c)
]

+ (x+ c)g(x+ c) ,

for some (known) polynomial g of degree at most q− 2. From the SDH instance we can thus
compute B := P g(x+c). Since

A = P
α(β+v)

[Qq−1
i=1

(ci−c)
]

x+c · P g(x+c) ,

we can compute

A′ := (A ·B−1)
1

α(β+v)

[Qq−1
i=1

(ci−c)
]

= P
1
x+c

which yields a solution (A′, c) for the SDH instance.

An Already Known c. Let us now assume that the adversary most likely returns a solution
(A, c, v) with c ∈ {c1, . . . , cq−1} from the input. Again, let us be given an SDH instance
(P, P x, P x

2
, . . . , P x

q
). We generate a random instance of Problem 2: we randomly choose

α, β ← Zp and (ci, vi) ← Zp, for i = 1, . . . , q − 1, such that the pairs (ci, vi) are pairwise
distinct; moreover, we choose a random index k ← {1, . . . , q − 1}, and set

G := P
β

[Qq−1
i=1
i 6=k

(x−ck+ci)

]
K := Gαx−vk X := Gx ·G−ck = Gy

which implicitly defines a new secret exponent y := x− ck. We now have to simulate the Ai
for the instance; we distinguish two cases.

• For i = k, we set Ak := Gα, since then Ay+ck
k = Gαx = K ·Gvk .

• For i 6= k, we set

Ai := P
β((vi−vk)+αx)

[Qq−1
j=1
j 6=i,k

(x−ck+cj)

]
,

and have Ay+ci
i = G(vi−vk)+αx = Gvi−vk ·K ·Gvk = K ·Gvi .

Thus, in both cases we simulated Ai correctly.

A successful output satisfies (c, v) 6= (ci, vi) for all i = 1, . . . , q, and A = (K · Gv)
1
y+c . Since

we assumed that c ∈ {c1, . . . , cq}, and ck is only used in the form of y = x− ck, where x was
uniformly random, the probability that c = ck is 1

q . In this case we have v 6= vk and

A = (K ·Gv)
1
x Ak = (K ·Gvk)

1
x

29



New Assumptions and their Justifications

and thus

Avk ·A−vk = K
vk−v
x = P

vk−v
x

(αx−vk)β

[Qq−1
i=1
i 6=k

(x−ck+ci)

]
= P

f(x)
x

with

f(x) = (vk − v)(αx− vk)β
[∏q−1

i=1
i6=k

(x− ck + ci)
]

= (v − vk)vk β
[∏q−1

i=1
i 6=k

(ci − ck)
]

+ xg(x) ,

for a (known) polynomial g of degree at most q − 2. We can thus compute B := P g(x) from
the SDH instance. Since

Avk ·A−vk = P

1
x

(v−vk)vk β

[∏q−1
i=1
i 6=k

(ci − ck)
]

+ g(x)
.

setting

A′ = (Avk ·A−vk ·B
−1)

1

(v−vk)vkβ

[Qq−1
i=1
i 6=k

(ci−ck)

]
= P

1
x

yields a solution (A′, 0) for the given SDH instance.

Boyen and Waters [BW07] define the hidden SDH (HSDH) assumption which states that Problem 1
is hard when the pairs (G1/(x+ci), ci) in the instance and the solution are substituted with triples
of the form (G1/(x+ci), Gci , Hci), for a fixed H (see Sect. 2.3, p. 18). A triple (A,C,D) of this form
is efficiently decidable since it satisfies the following equations:

e(A,X · C) = e(G,G) e(C,H) = e(G,D)

HSDH is incomparable to SDH: an HSDH instance can be computed from an SDH instance and
an HSDH solution can be computed from an SDH solution, but not the other way round.1

Analogously, we define the double hidden SDH (DH-SDH) assumption by “hiding” the scalars
of Problem 2: instead of directly giving (and requiring in a solution) ci and vi, we substitute them
with exponentiations of two group elements:

Assumption 7 (q-DH-SDH). In a bilinear group (p,G,GT , e,G), given (H,K,X=Gx) ∈ G3 and
q − 1 tuples (

Ai = (K ·Gvi)
1

x+ci , Ci = Gci , Di = Hci , Vi = Gvi , Wi = Hvi
)

for random ci, vi ← Zp, it is hard to output a new tuple (A,C,D, V,W ) ∈ G5 of this form.

Note that a tuple (A,C,D, V,W ) of this form satisfies the following equations:

e(A,X · C) = e(K · V,G) e(C,H) = e(G,D) e(V,H) = e(G,W ) (3.2)

An additional justification of the DH-SDH assumption is the fact that under the Knowledge-of-
Exponent assumption (KEA) [Dam92, BP04], hardness of q-DHSDH follows directly from hardness
of Problem 2, which is implied by SDH. KEA asserts that given (G,H), from an adversary returning
(Gc

∗
, Hc∗) and (Gv

∗
, Hv∗) one can extract c∗ and v∗.

1Note that BB-HSDH, given in Assumption 9 on p. 31 is trivially stronger than both SDH and HSDH.
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3.3 The ADH-SDH Assumption

A quintuple of DH-SDH can only be efficiently verified in symmetric bilinear groups. We now
generalize DH-SDH to asymmetric bilinear groups (ADH-SDH), which will allow for more flexibility
in the choice of groups and will lead to a more efficient instantiation of automorphic signatures in
Chapter 4. The element H will now be chosen from G2 and the other generators from G1; we add
one more generator F ∈ G1 and instead of the elements Ci = Gci we give Bi = F ci . This makes it
possible to include Y = Hx which allows efficient verification of a tuple due to the pairing (if we
also gave Gci , we arrive at an easy problem; see Sect. 3.3.1).

Assumption 8 (q-ADH-SDH). In an asymmetric group let G,F,K ∈ G1, H ∈ G2 and x, ci, vi ∈ Zp
be random. Given (G,F,K,X=Gx; H,Y =Hx) and(

Ai = (K ·Gvi)
1

x+ci , Bi = F ci , Di = Hci , Vi = Gvi , Wi = Hvi
)
,

for 1 ≤ i ≤ q − 1, it is hard to output a tuple ((K ·Gv)
1
x+c , F c, Hc, Gv, Hv) with (c, v) 6= (ci, vi) for

all i.

Note that a tuple (A,B,D, V,W ) of this form satisfies the following equations:

e(A, Y ·D) = e(K · V,H) e(B,H) = e(F,D) e(V,H) = e(G,W ) (3.3)

Assumption 8 is also valid in generic symmetric bilinear groups; in particular, in Sect. 3.3.2 we prove
generic security of ADH-SDH in the symmetric setting (thus, a fortiori it holds when G1 6= G2).

3.3.1 A Note on ADH-SDH

One could be tempted to transfer the DH-SDH assumption to asymmetric groups by adding
Y := H logGX to the instance, which would allow to check validity of a tuple (A,C, V,D,W ).
However, this assumption is wrong, as it succumbs to the following attack: Given an instance
(G,H,K,X, Y, (Ai, Ci, Vi, Di,Wi)

q−1
i=1 ), set A∗ := A−1

1 , C∗ := X−2 ·C−1
1 , D∗ := Y −2 ·D−1

1 , V ∗ := V1,
W ∗ := W1. Then we have e(A∗, Y ·D∗) = e(A−1

1 , (Y ·D1)−1) = e(K · V1, H) = e(K · V ∗, H). The
attack comes from the fact that we can use X and Y to simultaneously build C∗ and D∗. This
is what makes it indispensable to use a different basis for the C, leading to a generically secure
assumption, as proved in the next section.

The q-ADH-SDH assumption is quite similar to the q-BB-HSDH assumption introduced in
[BCC+09], which is another hidden variant of SDH, where both Gx and Hx are given.

Assumption 9 (BB-HSDH). Let x, c1, . . . , cq−1 ← Zp. Then on input G,Gx, F ∈ G1 and H,Hx ∈
G2 and tuples (G

1
x+ci , ci)

q−1
i=1 , it is infeasible to output a tuple (G

1
x+c , F c, Hc) with c 6= ci for all i.

BB-HSDH is however incomparable to ADH-SDH, since while ADH-SDH gives the adversary more
flexibility in his output, BB-HSDH gives him more information as input, since the ci are given
explicitly. Moreover, BB-HSDH is somehow asymmetric, in that the task is to output a tuple that
is easier to construct than a tuple that has the form of the q − 1 input tuples. This is why it is
stronger than both HSDH and hardness of Problem 1 on p. 28. Note that if we had F = G (as
in the original definition of HSDH in [BW07]), the BB-HSDH problem would become easy as the
attack sketched above applies here as well.
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3.3.2 Generic Security of the q-ADH-SDH Assumption

In this section we will prove that ADH-SDH is hard in the generic group model [Sho97] for symmetric
bilinear groups (which implies the asymmetric case). This means that no adversary can break the
assumption using only operations for a generic bilinear group. We model a generic group by
representing each group element as a random encoding and providing the adversary with access to
oracles modelling the group operations G and GT as well as the pairing e : G×G→ GT . We define
[·] : Zp → G and [[·]] : Zp → GT and give the adversary access to the group elements as encodings
of their discrete logarithms: when queried (exp, x), the oracle returns [x]; on (mult, [x], [y]) and
(mult, [[x]], [[y]]) it returns [x + y] and [[x + y]], respectively; finally, a query (pair, [x], [y]) is
answered with [[xy]]. When given a problem instance consisting of group elements [x1], . . . , [xn], all
the adversary can do with the help of the oracle is generate encodings of low-degree polynomials
in Zp[x1, . . . , xn].

To solve the problem the adversary must output the encoding of a solution. The Schwartz-Zippel
theorem [Sch80] states that the probability of a non-zero low-degree polynomial to evaluate to 0 for
randomly chosen x1, . . . , xn is negligible. We thus have to show that the solution is not expressible
as a linear combination of the input polynomials. For convenience we restate the assumption for
symmetric bilinear groups.

(q-ADH-SDH) Given (G,F,H,K,X=Gx, Y =Hx) ∈ G6 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Bi = F ci , Di = Hci , Vi = Gvi , Wi = Hvi

)
,

with ci, vi ← Z∗p for i = 1, . . . , q − 1, it is hard to output a new tuple (A∗, B∗, D∗, V ∗,W ∗)
that satisfies

e(A∗, Y ·D∗) = e(K · V ∗, H) e(B∗, H) = e(F,D∗) e(V ∗, H) = e(G,W ∗) (3.4)

Theorem 1. The q-ADH-SDH assumption holds in generic bilinear groups when q is a polynomial.

Proof. We work with the “discrete-log” representation of all group elements w.r.t. basis G. A q-
ADH-SDH instance is thus represented by the following rational fractions (each lower-case letter
denotes the logarithm of the group elements denoted by the corresponding upper-case letter):

1, f, h, k, x, y = xh,
{
ai = k+vi

x+ci
, bi = cif, di = cih, vi, wi = vih

}q−1

i=1
(3.5)

Considering the logarithms of the GT -elements in (3.4) w.r.t. the basis e(G,G) yields

a∗(xh+ d∗) = (k + v∗)h b∗h = d∗f v∗h = w∗ (3.6)

In a generic group, all the adversary can do is apply the group operation to the elements of its input.
We will show that the only linear combinations (a∗, b∗, d∗, v∗, w∗) of elements in (3.5) satisfying (3.6)
are (a∗ = ai = k+vi

x+ci
, b∗ = bi = cif, d

∗ = di = cih, v
∗ = vi, w

∗ = wi = vih) for some i; which means
all the adversary can do is return a quintuple from the instance. We make the following ansatz for
a∗ (and analogously for b∗, d∗, v∗ and w∗):

a∗ = α+αff+αh h+αk k+αx x+αy xh+
∑
αai

k+vi
x+ci

+
∑
αb,i cif+

∑
αd,i cih+

∑
αv,i vi+

∑
αw,i vih

Since for any v∗ the adversary forms, it has to provide v∗h as well, we can limit the elements used
for v∗ to those of which their product with h is also given: 1, x and vi (for all i). Similarly, plugging
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in the ansätze for b∗ and d∗ in the second equation of (3.6) and equating coefficients eliminates
most of the coefficients. Thus, the last two equations of (3.6) simplify b∗, d∗, v∗ and w∗ to

b∗ = γff +
∑
γb,i cif v∗ = µ+ µxx+

∑
µv,ivi

d∗ = γf h+
∑
γb,i cih w∗ = µh+ µxxh+

∑
µv,ivih

We substitute a∗, d∗, v∗ by their ansätze in the first equation of (3.6), that is a∗(xh+d∗)−v∗h = kh.
After some rearranging we get (for convenience, we omit one h per term, i.e., we symbolically
“divided” the equation by h):

(αγf − µ) 1 + (αfγf ) f + (αhγf ) h + (α+ αxγf − µx) x + (αh + αyγf ) xh +
(3.7a)∑

(αa,iγf ) k+vi
x+ci

+
∑

(αb,iγf + αfγb,i) cif +
∑

(αd,iγf + αhγb,i) cih +
∑

(αw,iγf ) vih +
(3.7b)

(αf ) xf + (αk) xk + (αx) x2 + (αy) x2h +
∑

(αd,i + αyγb,i) cixh +
∑

(αb,i) cixf +
(3.7c)∑

(αv,i) vix +
∑

(αw,i) vixh +
∑

(αγb,i) ci +
∑

(αkγb,i) cik +
∑

(αxγb,i)xci +
(3.7d)∑∑

(αb,iγb,j) cicjf +
∑∑

(αd,iγb,j) cicjh +
∑∑

(αv,iγb,j) vicj +
∑∑

(αw,iγb,j) vicjh +
(3.7e)

(αkγf )︸ ︷︷ ︸
=:λk

k +
∑

(αv,iγf − µv,i)︸ ︷︷ ︸
=:λv,i

vi +
∑

(αa,i)︸ ︷︷ ︸
=:λxa,i

x(k+vi)
x+ci

+
∑∑

(αa,iγb,j)︸ ︷︷ ︸
=:λca,i,j

cj(k+vi)
x+ci

= k

(3.7f)

Comparison of coefficients2 of the two sides of the equation shows that all coefficients in lines
(3.7a)–(3.7e) must be 0, whereas for the last line we have a different situation: adding x(k+vi)

x+ci
and

ci(k+vi)
x+ci

reduces to k + vi (but this is the only combination that reduces); we have thus

for all i : λxa,i = λca,i,i for all i 6= j : λca,i,j = 0 (3.8)
coefficient of k:

∑
λxa,i + λk = 1 coefficient of vi: λxa,i + λv,i = 0 (3.9)

We now solve the equations “all coefficients in Lines (3.7a) to (3.7e) equal 0”, and Equations (3.8)
and (3.9) for the values

(
α, αf , αh, αk, αx, αy, γf , µ, µx, {αa,i, αb,i, αd,i, αv,i, αw,i, γb,i, µv,i}

)
:

The first four terms and the last term in Line (3.7c) and the first two terms in Line (3.7d)
immediately yield: αf = αk = αx = αy = αb,i = αv,i = αw,i = 0 for all i. Now αy = 0 implies
αh = 0 by the last term in (3.7a), and αy = 0 implies αd,i = 0 for all i by the fifth term in (3.7c).
Plugging in these values, the only equations different from “0 = 0” are the following:

αγf − µ = 0 α− µx = 0 (3.10)
αa,i γf = 0 (∀i) αγb,i = 0 (∀i) (3.11)

αa,i(1− γb,i) = 0 (∀i) αa,i γb,j = 0 (∀i 6= j) (3.12)∑q−1
i=1 αa,i = 1 αa,i − µv,i = 0 (∀i) (3.13)

2To do straightforward comparison of coefficients, we actually would have to multiply the equation by
Qq−1
i=1 (x+ci)

first. For the sake of presentation, we keep the fractions and instead introduce new equations for the cases where a
linear combination leads to a fraction that cancels down.
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where the second equation in (3.10) “(3.10.2)” follows from the fourth term in (3.7a) and αx = 0.
(3.11.1) and (3.11.2) follow from the first term in (3.7b) and the third term in (3.7d), respec-
tively. Equations (3.12) are the equations in (3.8); and those in (3.13) are the ones from (3.9)
taking into account that αk = 0 and αv,i = 0 for all i. The variables not yet proved to be 0 are
α, γf , µ, µx, αa,i, γb,i and µv,i for 1 ≤ i ≤ q − 1.

We first show that there exists i∗ ∈ {1, . . . , q − 1} such that αa,j = 0 for all j 6= i∗: assume
there exist i 6= j such that αa,i 6= 0 and αa,j 6= 0; then by (3.12.1) we have γb,i = γb,j = 1, which
contradicts (3.12.2).

This result implies the following: by (3.13.1) we have αa,i∗ = 1 and by (3.12.1) we have γb,i∗ = 1,
whereas for all j 6= i∗: γb,j = 0 by (3.12.2). We have thus shown that αa,i∗ = γb,i∗ = 1 and
αa,j = γb,j = 0 for all j 6= i∗.

This now implies α = 0 (by (3.11.2)) and thus µ = µx = 0 (by (3.10.1) and (3.10.2), respec-
tively). Moreover γf = 0 (by (3.11.1)) and for all i: αa,i = µv,i (by (3.13.2)). The only non-zero
variables are thus αa,i∗ = γb,i∗ = µv,i∗ = 1.

Plugging in our results in the ansätze for a∗, b∗, d∗, v∗ and w∗, we proved that there exists
i∗ ∈ {1, . . . , q − 1} such that a∗ = k+vi∗

x+ci∗
, b∗ = ci∗f , d∗ = ci∗h, v∗ = vi∗ and w∗ = vi∗h. This means

that the only tuples (A∗, B∗, D∗, V ∗,W ∗) satisfying (3.4) and being generically constructable from a
ADH-SDH instance are the tuples from that instance, which concludes our proof of generic security
of ADH-SDH.
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Automorphic Signatures
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In this chapter we instantiate the concept of automorphic signatures in bilinear groups discussed in
Sect. 1.1 (p. 4). We then use one of the schemes to construct a blind signature scheme which was
the first efficient scheme with a round-optimal issuing protocol; the scheme is thus concurrently
secure. Finally, we give generic transformations of a signature scheme to a scheme signing several
messages at once. The results of this chapter appear in [6]. We start with a formal definition of
automorphic signatures.

Definition 1. An automorphic signature over a bilinear group (p,G1,G2,GT , e,G1, G2) is an
EUF-CMA secure signature whose verification keys are contained in the message space. Moreover,
the messages and signatures consist of elements of G1 and G2, and the verification predicate is a
conjunction of pairing-product equations over the verification key, the message and the signature.

4.1 Instantiations

To give a first instantiation of automorphic signatures we start with the following observation:
DH-SDH (Assumption 7, p. 30) states that given G,K,H,X = Gx and tuples of the form(

Ai = (K ·Gvi)
1

x+ci , Ci = Gci , Di = Hci , Vi = Gvi , Wi = Hvi
)
,

it is hard to compute a new such tuple, which immediately yields a weakly secure signature scheme:
consider G,K and H as parameters, X as the verification key, x as the signing key, (Vi,Wi) as a
messages in DH = {(Gv, Hv) | v ∈ Zp}, and (Ai, Ci, Di) as signatures. Given a message (V,W ),
a signer holding the secret key x can choose c and produce the corresponding (A,C,D) without
knowing v.1 DH-SDH then means that given signatures on random messages, it is hard to find a
signature on a new message.

We show how to transform this into a CMA-secure signature scheme by assuming WF-CDH.
We add some more randomness to the signature that lets us map a query for a message chosen

1Note that this is not the case for the q-HSDH assumption (Assumption 4, p. 18): we cannot regard (Gc, Hc) as

the message, since the signer must know c in order to produce G
1

x+c . If the message is a public key, whose exponent is
the secret key, the latter usually cannot be given to the signer, which is precisely the reason for the complex protocol
in [BCC+09].
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by the adversary to a given tuple (Ai, Ci, Di, Vi,Wi) from a DH-SDH instance. WF-CDH then
asserts that the adversary cannot produce a signed new message

(
(A∗, C∗, D∗, R∗, S∗), (M∗, N∗)

)
that maps back to a tuple from the instance (see the proof of Theorem 3 below).

Scheme 1 (Sig1). Setup1 is given a symmetric bilinear group (p,G,GT , e,G) and chooses param-
eters (H,K, T )← G3, which define the message space as DH := {(Gm, Hm) |m ∈ Zp}.

KeyGen1 chooses a secret key x← Zp and sets vk := Gx.

Sign1(x, (M,N)) signs a message (M,N) ∈ DH by choosing c, r ← Zp and outputting(
A := (K · T r ·M)

1
x+c , C := Gc, D := Hc, R := Gr, S := Hr

)
.

Ver1 accepts a signature (A,C,D,R, S) on a message (M,N) ∈ DH for public key X if it satisfies

e(A,X · C) = e(K ·M,G) e(T,R) e(C,H) = e(G,D) e(R,H) = e(G,S) (4.1)

Theorem 2. Under q-DH-SDH and WF-CDH, Sig1 is strongly existentially unforgeable against
adversaries making at most q − 1 adaptive chosen-message queries.

The proof is analogous to that of Theorem 3 below.

Remark 2. (1) The above scheme can be easily extended to a certified signature scheme [BFPW07].
In such a scheme users let their public keys be certified by an authority. A certified signature con-
sists of the user public key, the certificate on it and a signature on the message under the user
public key. Given certified signatures on chosen messages for various public keys, it must be hard
to produce a new certified signature (either with a new or a given user key).

Consider two instances of Sig1 (one for certification, one for signatures) that share parameters
G,K and T but use a different Hi each. The certification authority’s key is Gx, user public keys
are of the form (Gv, Hv

1 ) and a certified signature on a message (Gm, Hm
2 ) is of the form(

((K · T r ·Gv)
1
x+c , Gc, Hc

1, G
r, Hr

1), (Gv, Hv
1 ), (K · T s ·Gm)

1
v+d , Gd, Hd

2 , G
s, Hs

2)
)
.

Security follows analogously to the next construction:
(2) From the certified signature we can construct an automorphic scheme Sig1+1 as follows.2 The
public key is a certification-authority key extended to (Gx, Hx

2 ). An automorphic signature on a
message (Gm, Hm

2 ) is produced by generating a random user key (Gv, Hv
1 ), certifying it and making

a certified signature on the message under that key.
Public keys of Sig1+1 are thus contained in the message space. Security follows from the

following hybrid argument. Forgeries using a new one-time key (Gv, Hv
1 ) are reduced to forgeries

for the 1st-level scheme (the simulator gets a challenge Sig1 key X, chooses h← Zp, sets H2 := Gh

and can thus produce a Sig1+1 key (X,Xh) from X). Forgeries recycling a key from a signing query
are reduced security of the 2nd-level scheme (the simulator sets H1 := Gh, guesses the recycled key
(Gv, Hv

1 ) and sets it to (X,Xh) with X a challenge public key of the 2nd-level scheme). A signature
consists of 12 group elements satisfying 7 PPEs (of which 5 are linear).

In the asymmetric setting (or assuming ADH-SDH rather than DH-SDH in symmetric groups),
we get the following more efficient construction, whose signatures are in G3

1 × G2
2. Note that the

scheme can also be instantiated for G1 = G2. The scheme is similar to Scheme 1 but since an
ADH-SDH instance contains Gx and Hx, the public keys lie in the message space, which avoids
the hybrid construction from Remark 2 to make it automorphic.

2More generally, this way one could transform any certified-signature scheme whose authority keys lie in the
message space into an automorphic signature scheme.
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4.1 Instantiations

Scheme 2 (Sig). Setup. Given grp = (p,G1,G2,GT , e,G,H), choose additional generators
F,K, T ← G1. The message space containing the public key space is DH := {(Gm, Hm) |m ∈ Zp}.

KeyGen. Choose sk = x← Zp and set vk = (Gx, Hx)

Sign. A signature on (M,N) ∈ DH, valid under public key (Gx, Hx), is defined as(
A := (K · T r ·M)

1
x+c , B := F c, D := Hc, R := Gr, S := Hr

)
, for random c, r ← Zp

Ver. (A,B,D,R, S) is valid on a message (M,N) ∈ DH under a public key vk = (X,Y ) ∈ DH iff

e(A, Y ·D) = e(K ·M,H) e(T, S) e(B,H) = e(F,D) e(R,H) = e(G,S) (4.2)

Theorem 3. Assuming q-ADH-SDH and AWF-CDH, Sig is strongly existentially unforgeable
against adversaries making at most q − 1 adaptive chosen-message queries.

Proof. Consider an adversary that after receiving parameters (G,F,K, T,H) and public key (X,Y )
is allowed to ask for q − 1 signatures (Ai, Bi, Di, Ri, Si) on messages (Mi, Ni) ∈ DH of its choice
and outputs (M,N) ∈ DH and a valid signature (A,B,D,R, S) on it, such that either (M,N) was
never queried, or (M,N) = (Mi, Ni) and (A,B,D,R, S) 6= (Ai, Bi, Di, Ri, Si). We distinguish two
kinds of forgers: An adversary is called of Type I if its output satisfies the following

∀ 1 ≤ i ≤ q − 1 :
[
e(T, S · S−1

i ) 6= e(Mi ·M−1, H) ∨ B 6= Bi
]

; (4.3)

otherwise it is called of Type II. We will use the first type to break q-ADH-SDH and the second
type to break AWF-CDH. For convenience we restate the verification relations for a ADH-SDH
solution from (3.3)

e(A, Y ·D) = e(K · V,H) e(B,H) = e(F,D) e(V,H) = e(G,W )

and those for a AWF-CDH solution from (3.1)

e(A,S) = e(M,H) e(M,H) = e(G,N) e(R,H) = e(G,S)

Type I Let
(
G,F,K,X,H, Y, (Ai, Bi, Vi, Di,Wi)

q−1
i=1

)
be a q-ADH-SDH challenge. It thus satisfies

e(Ai, Y ·Di) = e(K · Vi, H) e(Bi, H) = e(F,Di) e(Vi, H) = e(G,Wi) (4.4)

Let A be a forger of Type I. Choose t ← Zp and give parameters (G,F,K, T :=Gt, H) and
the public key (X,Y ) to A. The i-th query for (Mi, Ni) ∈ DH is answered as(

Ai, Bi, Di, Ri := (Vi ·M−1
i )

1
t , Si = (Wi ·N−1

i )
1
t

)
.

It is easily verified that it satisfies (4.2); for the first equation we have Wi = Sti · Ni and
thus e(G,Wi) = e(T, Si) e(G,Ni) = e(T, Si) e(Mi, H) since (M,N) ∈ DH. This implies

that e(K ·Mi, H) e(T, Si) = e(K,H) e(G,Wi)
(4.4)
= e(K · Vi, H)

(4.4)
= e(Ai, Y · Di). Moreover,

(Ai, Bi, Di, Ri, Si) is correctly distributed since vi is uniformly random in the ADH-SDH
instance.

If the adverseray produces a valid signature/message pair ((A,B,D,R, S), (M,N)) then by
the last 2 equations of (4.2), there exist c, r s.t. B = F c, D = Hc, R = Gr, S = Hr, and

e(A, Y ·D) = e(K ·M,H) e(T, S) . (4.5)
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The tuple (A,B,D, V := Rt ·M,W := St · N) satisfies (3.3), since (B,D) and (V,W ) are

Diffie-Hellman pairs and e(K ·V,H) = e(K ·(Gr)t·M,H) = e(K ·M,H) e(T, S)
(4.5)
= e(A, Y ·D).

Moreover, it is a solution for the ADH-SDH instance, since it is a new tuple: assume that for
some i we have B = Bi and W = Wi, that is St ·N = Sti ·Ni. Since (M,N), (Mi, Ni) ∈ DH,
we have e(T, S) e(M,H) = e(T, S) e(G,N) = e(G,St ·N) = e(G,Sti ·Ni) = e(T, Si) e(G,Ni) =
e(T, Si) e(Mi, H). We have thus e(T, S · S−1

i ) = e(Mi ·M−1, H) and B = Bi which contra-
dicts (4.3) and thus the fact that A is of Type I.

Type II Let (G,H, T = Gt) be an AWF-CDH instance; let A be a forger of Type II. Pick F,K ←
G1 and x ← Zp, set X := Gx, Y := Hx and give the adversary parameters (G,F,K, T,H)
and public key (X,Y ). Answer a signing query on (Mi, Ni) ∈ DH by returning a signa-
ture (Ai, Bi, Di, Ri, Si) produced by Sign(x, ·). Suppose A returns ((A,B,D,R, S), (M,N))
satisfying (4.2) s.t. for some i

e(T, S · S−1
i ) = e(Mi ·M−1, H) B = Bi (4.6)

Then (M∗ := Mi ·M−1, N∗ := Ni ·N−1, R∗ := R ·R−1
i , S∗ := S ·S−1

i ) is a AWF-CDH solution:

it satisfies the respective equations in (3.1), since (M∗, N∗) and (R∗, S∗) are both DH pairs

and e(T, S∗) = e(T, S · S−1
i )

(4.6)
= e(Mi ·M−1, H) = e(M∗, H). Moreover, (M∗, N∗, R∗, S∗) is

non-trivial: if M∗ = 1 = R∗ then M = Mi and R = Ri; by (4.6) we also have B = Bi and since
the values M,B and R completely determine A,D, S and N , and thus a message/signature
pair, this means that A returned a message and a signature that it obtained from a query for
this message, which means that A did not break strong unforgeability.

Remark 3. Sig (and thus BSig constructed from it in the next section) can also sign bit strings
(matching thus the standard definition of digital signatures) if we assume a collision-resistant hash
function H : {0, 1}∗ → Zp. Define Sig∗ := (Setup,KeyGen,Sign∗,Ver∗) with

Sign∗(sk,m) := Sign(sk, (GH(m), HH(m)))

Ver∗(vk,Σ,m) := Ver(vk,Σ, (GH(m), HH(m)))

Security against chosen-message attacks follows by a straightforward reduction to security of Sig
and collision resistance of H.

4.2 Blind Automorphic Signatures

We now show how to combine automorphic signatures with the Groth-Sahai (GS) proof system
to construct the first round-optimal blind signature scheme BSig, satisfying the strong security
requirements defined in Sect. 2.2.4 (p. 17). Similarly to Fischlin’s generic construction (which we
discuss in Sect. 6.1.1, p. 66), our blind signatures are defined as a witness-indistinguishable proof
of knowledge of a signature from an underlying scheme, which thus perfectly hides the signature.
We furthermore have to ensure that the signer does not learn the message while signing. In our
scheme the user sends a randomization of the message, on which the signer makes a “pre-signature”.
By adapting the randomness, the user can retrieve a signature on the message, rather than on a
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Obtain(ck, vk, (M,N)). Choose t ← Zp, µ, ν, ψ, χ ← R, set P := Gt, Q := Ht, and send the
following:

cM := Com(ck,M, µ) cN := Com(ck, N, ν) πM := Prove
(
ck,EDH, (M,µ), (N, ν)

)
cP := Com(ck, P, ψ) cQ := Com(ck, Q, χ) πP := Prove

(
ck,EDH, (P,ψ), (Q,χ)

)
U := T t ·M πU := Prove

(
ck,EU , (M,µ), (Q,χ)

)
with Equation EDH(X,Y ) defined as e(G−1, Y ) e(X,H) = 1T

and EU (M,Q) defined as e(T,Q) e(M,H) = e(U,H).

Issue(ck, x). Receive (cM , cN , πM , cP , cQ, πP , U, πU ). If all proofs are valid, choose c, r ← Zp and
send:

A := (K · T r · U)
1

x+c B := F c D := Hc R′ := Gr S′ := Hr

The user sets R := R′ ·P , S := S′ ·Q, and checks whether (A,B,D,R, S) is valid on (M,N) under
pk. If so, he chooses α, β, δ, ρ, σ ← R, sets

c1 := Com(ck, A, α) c2 := Com(ck, B, β) c3 := Com(ck, D, δ)
c4 := Com(ck, R, ρ) c5 := Com(ck, S, σ)

~π ← Prove(ck,EVer, (A,α), (B, β), (D, δ), (R, ρ), (S, σ)), with EVer defined as the equations in (4.2),
and outputs (~c, ~π).

Figure 4.1: Two-move blind signing protocol.

commitment to which the user has to commit again and prove knowledge of the opening, as in
Fischlin’s construction. This increases useability of our blind signatures for applications, such as
anonymous proxy signatures, and also makes them shorter.

To obtain a blind signature on (M,N), the user randomly picks t ← Zp and blinds M by the
factor T t. In addition to U := T t ·M , she sends a GS proof of knowledge of (M,N,Gt, Ht). The
signer now formally produces a signature3 on U , for which we have A = (K · T r · U)1/(x+c) =
(K·T r+t ·M)1/(x+c); thus A is the first component of a signature on (M,N) with randomness r+ t.
The user can complete the signature by adapting randomness r to r + t in the last two signature
components. The blind signature is a GS proof of knowledge of this signature.

Scheme 3 (BSig). SetupB(grp) runs (G,F,K, T,H) ← Setup(grp) and ck ← Setup(grp) and
returns these outputs as common parameters pp. As for Sig, the message space is DH.

KeyGenB is defined as KeyGen.

Issue↔Obtain The blind signing protocol is given in Figure 4.1.

VerB(pp, (X,Y ), (M,N), (~c, ~π)) For (X,Y ), (M,N) ∈ DH, VerB runs Verify(ck,EVer,~c, ~π), with
EVer being the equations in (4.2) over the variables (A,B,D,R, S).

Using soundness of Groth-Sahai proofs, unforgeability is shown by reduction to unforgeability of
Sig, which holds under ADH-SDH and AWF-CDH. In the WI setting, two GS proofs of knowledge
of different signatures on the same message are indistinguishable; moreover, the issuer gets no

3Note that the user does not obtain a signature on U (unless U = M), since it is not an element of the message
space; to produce (U,H logG U ) ∈ DH, the user would have to break AWF-CDH.
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information on the message during the issuing protocol. Together this implies blindness under
DLIN or SXDH, depending on the employed instantiation of GS proofs.

Theorem 4. Under Assumptions ADH-SDH and SXDH (or ASH-SDH, WF-CDH and DLIN for
symmetric groups), scheme BSig is an unforgeable blind-signature scheme.

Proof. The protocol is correct: The signer sends A = (K · T r ·U)
1
x+c = (K · T r+t ·M)

1
x+c , B = F c,

D = Hc, R′ = Gr, S′ = Hr and the user sets R := R′ · P = Gr+t and S := S′ · Q = Hr+t,
which makes (A,B,D,R, S) a valid signature on (M,N). By completeness of GS proofs, the blind
signature (~c, ~π) is accepted by VerB.

Blindness. If we are given two messages from the adversary and run Obtain twice for these mes-
sages (in random order) with the adversary, and then give the two resulting signature/message
pairs, then the adversary cannot relate them to their issuings.

We modify the security game by setting ck←WISetup (leading to perfectly WI commitments
and proofs). This modification is indistinguishable by DLIN or SXDH (depending on the used
Groth-Sahai instantiation). A signature/message pair

(
(~c, ~π), (M,N)

)
that the adversary

gets in the end now perfectly hides the signature, since the commitments are under ck.
Moreover, for every pair (M ′, N ′) ∈ DH, there exists t′ ∈ Zp s.t. U = T t

′ · M ′. By witness
indistinguishability of Groth-Sahai proofs, every such tuple (M ′, N ′, P ′ := Gt

′
, Q′ := Ht′)

leads to the same distribution of (cM , cN , cP , cQ, πM , πP , πU ). The adversary’s view after the
first round of the protocol is thus independent of (M,N).

Unforgeability. After running the protocol q − 1 times with an honest signer, no adversary can
output q different messages and valid blind signatures on them.

We reduce unforgeability to the security of the signature scheme Sig, which follows from
ADH-SDH and AWF-CDH by Theorem 3 (and thus from ADH-SDH and SXDH by Lemma 1).
Given parameters pp′ = (G,F,K, T,H) and a public key (X,Y ) for Sig, we first run (ck, ek)←
ExSetup and give pp = (pp′, ck) to an adversary A against unforgeability of BSig. We then
run the protocol (simulating the signer) with adversary A as follows. Whenever A sends a cor-
rect tuple (cM , cN , πM , cP , cQ, πP , U, πU ), we use ek to extract (M,N,P,Q). Soundness of the
proofs πM , πP , πU ensures that there exist m, t ∈ Zp s.t. M = Gm, N = Hm, P = Gt, Q = Ht

and U = T t · M . We query our Sign oracle for a signature on (M,N). On receiving
(A,B,D,R, S), we give the adversary (A,B,D,R′ :=R · P−1, S′ :=S · Q−1). This perfectly
simulates Issue: let c and r̂ be such that B = F c and R = Gr̂; then A = (K · T r̂ ·M)

1
x+c =

(K · T r̂−t · U)
1
x+c , R′ = Gr̂−t and S′ = H r̂−t, which corresponds to a real Issue reply using

randomness c and r := r̂ − t.
The adversary wins the game if after q− 1 issuings, it outputs q blind signatures on different
messages. We extract the Sig signature on a message which we did not query our own oracle.
By soundness of GS proofs, this is a valid signature and can thus be returned as a forgery.

The round complexity of the scheme is optimal [Fis06]. In the DLIN instantiation, the user sends 22
group elements (GE), since all proofs are for linear equations (which cost only 3 group elements; cf.
Sect. 2.4), and the signer sends 5 GE. Blind signatures consist of 30 GE (~c is in G5×3 and ~π consists
of 9 + 2 · 3 GE). In the SXDH instantiation, the user message is in G17

1 ×G16
2 , the signer message in

G3
1 ×G2

2 and a blind signature is in G18
1 ×G16

2 . Note that the scheme remains automorphic, since
commitments and proofs are composed of group elements and are verified by checking PPEs.
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If we base BSig on a symmetric bilinear group and the scheme Sig1 rather than Sig, we
obtain a round-optimal blind signature scheme which is not automorphic but which is secure under
DH-SDH, WF-CDH and DLIN, thus under weaker assumptions, since ADH-SDH implies DH-SDH.

Remark 4 (Signing Committed Values). The core building block for P-signatures [BCKL08] is
an interactive protocol allowing a user that published a commitment to obtain a signature on the
committed value. If the user publishes (cM , cN , πM ) before running the blind-signature protocol
we get exactly this. Note that this is due to our specific construction which differs from Fischlin’s
where the user only gets a signature on a commitment to the message. We will further discuss
P-signatures in Sect. 6.1.2 (p. 67).

4.3 Automorphic Signatures on Message Vectors

In order to sign vectors of messages of arbitrary length, we proceed as follows. We first show
how to transform any signature scheme whose message space M forms an algebraic group (and
contains the public-key space) into one that signs 2 messages at once—if we exclude the neutral
element from the message space of the transform. The message space will thus be M∗ ×M∗ with
M∗ :=M\ {1}. A signature on a message pair will contain 3 signatures (of the original scheme)
on different linear combinations of the components. At the end of the section we show that 3 are
indeed necessary. Note that DH, the message space for the schemes Sig1 and Sig, is a group when
the group operation is defined as component-wise multiplication.

We then give a straightforward generic transformation from any scheme signing 2 messages
(and whose verification keys lie in the message space) to one signing message vectors of arbitrary
length (Definition 3). Both transformations do not modify setup and key generation and they are
invariant w.r.t. the structure of verification; in particular, if the verification predicate of the original
scheme is a conjunction of PPEs then so is that of the transform.

Definition 2 (Pair transform). Let Sig = (Setup,KeyGen,Sign,Ver) be a signature scheme whose
message space (M, ·) is an algebraic group that contains the verification keys. The pair transform
of Sig with message space M∗ ×M∗ is defined as Sig′ = (Setup,KeyGen,Sign′,Ver′) with

Sign′(sk, (M1,M2)): Set (vk0, sk0)← KeyGen and return

Σ :=
(
vk0, Sign(sk, vk0), Sign(sk0,M1), Sign(sk0,M1 ·M2), Sign(sk0,M1 ·M3

2 )
)
.

Ver′
(
vk, (M1,M2), (vk0,Σ0,Σ1,Σ2,Σ3)

)
: Return 1 if all of the following are 1:

Ver(vk, vk0,Σ0) Ver(vk0,M1,Σ1) Ver(vk0,M1 ·M2,Σ2) Ver(vk0,M1 ·M3
2 ,Σ3)

Theorem 5. If Sig is EUF-CMA secure then so is Sig′.

Proof. Consider an adversary A making q queries on message pairs (M (i)
1 ,M

(i)
2 ) for 1 ≤ i ≤ q and

outputting a new message (M∗1 ,M
∗
2 ) and a valid signature Σ∗ = (vk∗0,Σ

∗
0,Σ

∗
1,Σ

∗
2,Σ

∗
3) on it. Let vk

be a challenge for Sig. We call adversaries Type 1 if vk∗0 6= vk
(i)
0 for all 1 ≤ i ≤ q. Type 1 forgeries

are reduced by giving vk to the adversary as the challenge key and answering signing queries by
choosing (vk0, sk0)← KeyGen, querying vk0 to the signing oracle and using sk0 to complete a Sig′

signature. From the adversary’s output we can return (vk∗0,Σ
∗
0) as a forgery under vk.
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Forgeries of Type 2, i.e., where for some i we have vk∗0 = vk
(i)
0 , are handled as follows. Let

vk be a Sig challenge key. We choose (vk′, sk′) ← KeyGen and i∗ ← {1, . . . , q} and give vk′ to
the adversary. Knowing sk′, we answer the signing queries by running Sign′(sk′, ·) —except for the
i∗-th query: being queried message (M1,M2), we set vk

(i∗)
0 := vk, and use our signing oracle on

messages M1, M1 ·M2 and M1 ·M3
2 to simulate a Sig′ signature. We show that if we guessed

correctly (i∗ = i) then from A’s output we can extract a forgery under vk.
In particular, we show that any valid forgery Σ∗ with vk∗0 = vk on (M∗1 ,M

∗
2 ) must contain a

signature on a message we have not queried to our oracle. We proceed by case distinction: if Σ∗1,
the signature on M∗1 , is a signature on a message we have queried our oracle then M∗1 is either M1,
M1 ·M2 or M1 ·M3

3 .

• M∗1 = M1. In this case, if the message of Σ∗2 (i.e., M∗1 ·M∗2 ) has also been queried, then either

– M∗1 ·M∗2 = M1, thus M∗2 = 1 which is not in the message space and thus the adversary
did not win, or

– M∗1 ·M∗2 = M1 ·M2, thus M∗2 = M2, thus the adversary did not return a valid forgery
since (M∗1 ,M

∗
2 ) = (M1,M2), or

– M∗1 ·M∗2 = M1 ·M3
2 , thus M∗2 = M3

2 , thus Σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M9
2 ,

which we have not queried to our oracle, since M2 6= 1 (see below).

• M∗1 = M1 ·M2. Again, if we queried M∗1 ·M∗2 , then either

– M∗1 ·M∗2 = M1, thus M∗2 = M−1
2 , thus Σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M−2

2 ,
which we have not queried to our oracle, or

– M∗1 ·M∗2 = M1 ·M2, thus M∗2 = 1, which is not a valid message, or

– M∗1 ·M∗2 = M1 ·M3
2 , thus M∗2 = M2

2 , thus Σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M7
2 ,

which we have not queried to our oracle.

• M∗1 = M1 ·M3
2 . Again, if we queried M∗1 ·M∗2 , then either

– M∗1 ·M∗2 = M1, thus M∗2 = M−3
2 , thus Σ∗3 is a valid signature on M∗1 ·(M∗2 )3 = M1 ·M−6

2 ,
which we have not queried to our oracle, or

– M∗1 ·M∗2 = M1 ·M2, thus M∗2 = M−2
2 , thus Σ∗3 is a valid signature on M∗1 · (M∗2 )3 =

M1 ·M−3
2 , which we have not queried to our oracle, or

– M∗1 ·M∗2 = M1 ·M3
2 , thus M∗2 = 1, which is not a valid message.

Note that all the above messages were indeed not queried to the oracle: they are all of the form
M1 ·M i

2 with i /∈ {0, 1, 3}, whereas the messages queried to the Sig oracle are of the form M1 ·M j
2

with j ∈ {0, 1, 3}. If we had M1 ·M i
2 = M1 ·M j

2 for any of the above values of i and j, we would have
M i−j

2 = 1 for i 6= j and thus M2 = 1, which would not have been accepted in a signing request. We
thus showed that any valid message/signature pair the adversary returns contains a forgery.

Definition 3 (Vector transform). Let Sig = (Setup,KeyGen,Sign,Ver) be a signature scheme with
message space M×M, such that M contains the verification keys. If there exists an efficiently
computable injection Inj : {1, . . . , |M|} →M then the vector transform of Sig is defined as Sig′′ =
(Setup,KeyGen, Sign′′,Ver′′) with

Sign′′(sk, (M1, . . . ,Mn)): Set (vk0, sk0)← KeyGen and return

Σ :=
(
vk0, Sign(sk, vk0, Inj(n)),Sign(sk0,M1, Inj(1)), . . . ,Sign(sk0,Mn, Inj(n))

)
.
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Ver′′
(
vk, (M1, . . . ,Mn), (vk0,Σ0,Σ1, . . . ,Σn)

)
: Return 1 if the following are 1:

Ver
(
vk, (vk0, Inj(n)),Σ0

)
For all i ∈ {1, . . . , n} : Ver

(
vk0, (Mi, Inj(i)),Σi

)
Theorem 6. If Sig is EUF-CMA secure then so is Sig′′.

Proof. Let q be the maximal number of the adversary’s signing queries. Let ~M (i) := (M (i)
1 , . . . ,M

(i)
ni )

denote the adversary’s i-th signing query, let Σ(i) := (vk
(i)
0 ,Σ(i)

0 , . . . ,Σ(i)
ni ) denote the responses, and

let the adversary’s final output be
(
(M∗1 , . . . ,M

∗
n∗), Σ∗ = (vk∗0,Σ

∗
0, . . . ,Σ

∗
n∗)
)
. Let vk be a challenge

for Sig. We distinguish two types of forgers and show how to reduce them to EUF-CMA of Sig.

1. ∀i :
(
vk∗0 6= vk

(i)
0 ∨ n∗ 6= ni

)
. Give vk to the adversary and answer the i-th signing query by

setting (vk
(i)
0 , sk

(i)
0 ) ← KeyGen, querying (vk

(i)
0 , Inj(ni)) to the Sign-oracle and using sk

(i)
0 to

sign (M (i)
j , Inj(j)) for all j. If Σ∗ is of Type 1, then ((vk∗0, Inj(n∗)),Σ∗0) is a forgery under vk.

2. ∃i :
(
vk∗0 = vk

(i)
0 ∧ n∗ = ni

)
. Choose i∗ ← {1, . . . , q}, produce (vk′, sk′)← KeyGen and give

the adversary vk′ as challenge. Answer all queries as in the protocol, except for the i∗-th
query: set vk

(i∗)
0 := vk and query signatures on (M (i∗)

j , Inj(j)) for all 1 ≤ j ≤ n∗ to the Sign

oracle and complete the signature using sk′. Suppose Σ∗ is of Type 2 and we guessed correctly
(i∗ = i). Since (M∗1 , . . . ,M

∗
ni) is a valid forgery, for some 1 ≤ j ≤ ni we have M∗j 6= M

(i)
j .

Thus
(
(M∗j , Inj(j)),Σ∗j

)
is a valid forgery under vk for a message we did not query.

We now discuss why the construction in Definition 2 is optimal and why it seems hard to construct
a vector transform directly.

A Discussion on the Vector Transformation. Transforming a signature scheme whose ver-
ification keys lie in the message space to one that signs vectors of messages of arbitrary length
and leaving the structure of verification invariant is somewhat hard. The standard approach to
sign long messages is to hash them and sign the hash. But the resulting scheme would not be
automorphic, so we have to find a different strategy. An idea that comes to mind is the following:
For each signature, the signer first produces a temporary key pair (vk, sk), signs vk with her secret
key and uses sk to sign every component of the vector. An easy attack would be to reorder the
messages of a queried vector. To prevent this shuffling attack, we could let sk sign one transient
key per message component, which will sign the message and its index. To thwart an attack that
returns a truncated message, we also sign the length.

To sign the indices and the length, we need to assume an injection Inj from natural numbers
into the message space as in Definition 3. The above construction however succumbs to a series
of attacks, which come from the fact that verification keys, images under Inj, and message all
have the same form, which is inherent. An adversary could for example query a signature on the
message (Inj(2), Inj(1)) and return a signature on (Inj(1), Inj(2)) by simply reordering the signature
components. If however we start from a signature scheme signing 2 messages, we avoid all these
problems as can be seen by the natural construction in Definition 3 and the straightforward proof
of Theorem 6.

The crucial step is thus that from 1 to 2 messages. If we assume some structure on the message
space (which is the case for our constructions, since messages are elements of an algebraic group),
then we could try to sign several messages at once by signing their product. Again, we first sign
a “one-time” key with the actual key, and use that key to produce the signatures contained in a
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signature of the transform. This prevents the adversary from combining signatures received from
different queries and we therefore effectively only have to handle one-time attacks. As it turns out,
we need to construct the messages we actually sign very carefully to prevent the adversary from
deriving a signature on a new message from a signing-query response. If we only sign one product
of the components, there are trivial attacks. Signing two products seems more promising, but we
show that this do not suffice either:

Concretely, we want to devise a one-time scheme that signs (M1,M2) by signing two linear
combinations of the messages; i.e., a signature on (M1,M2) consists of a signature on (Ma1

1 ·M
a2
2 )

and one on (M b1
1 ·M

b2
2 ), for some fixed (a1, a2, b1, b2) ∈ Z4.

Assume first that (a1, a2) and (b1, b2) are linearly dependent, i.e., b1 = ca1 and b2 = ca2 for some
c and that a1 6= 0 (otherwise signatures would be independent of M1 and thus easily forgeable).
After querying a transform signature on (M1,M2) (and thus receiving signatures on (Ma1

1 ·M
a2
2 )

and (M ca1
1 ·M ca2

2 )), one can produce a forgery as follows: set M∗1 := M1 ·Ma2/a1

2 (M∗2 )−a2/a1 for an
arbitrary M∗2 6= M2. A signature on this message consists thus of a signature on (M∗1 )a1 · (M∗2 )a2 =
Ma1

1 ·M
a2
2 and (M∗1 )ca1 · (M∗2 )ca2 = M ca1

1 ·M ca2
2 , thus the precise two messages for which we have

signatures from the signing query.
Assume now that (a1, a2) and (b1, b2) are linearly independent, i.e., a1b2 − b1a2 6= 0; w.l.o.g.,

assume that b2 6= 0. Querying (M1,M2) yields signatures Σ1 and Σ2 on (Ma1
1 ·M

a2
2 ) and (M b1

1 ·M
b2
2 ),

respectively. Setting M∗1 := M
(b1b2−a1a2)/D
1 · M (b22−a2

2)/D
2 (with D := a1b2 − b1a2) and M∗2 :=

M
a1/b2
1 ·Ma2/b2

2 · (M∗1 )−b1/b2 makes (M∗1 )a1 · (M∗2 )a2 = M b1
1 ·M

b2
2 and (M∗1 )b1 · (M∗2 )b2 = Ma1

1 ·M
a2
2 ,

thus we can reuse the signatures, i.e., produce a forgery (Σ2,Σ1) on (M∗1 ,M
∗
2 ). We have thus shown

that against any scheme signing 2 linear combinations, there are attacks.
Moreover, note that finding three linear combinations leading to a valid scheme is not trivial

either. E.g., choosing M1, M1 ·M2 and M1 ·M2
2 succumbs to the following attack: Setting M∗1 :=

M1 ·M2
2 and M∗2 := M−1

2 , we can recycle and reorder the signatures from the query.

A Direct Triple Transform. As an additional result we give a transformation from a scheme
signing single messages to one signing triples of messages. Again we have to exclude the neutral
element, thus if the message space of the original scheme is M then that of the transform is
M∗×M∗×M∗. Rather than via the detour of the pair and the vector transform, we give a direct
construction: To sign a message (M1,M2,M3), choose a transient key pair, sign the verification
key, and use the signing key to sign the following 7 linear combinations:

M1 ·M2 M1 ·M3 M1 ·M3
2 ·M5

3

M−1
1 ·M8

2 ·M17
3 M2

1 ·M5
2 ·M16

3 M7
1 ·M4

2 ·M14
3 M13

2 ·M21
3

Whereas in the proof of Theorem 5 we had 33 = 27 cases to distinguish, for our triple transform
there are 77 = 823 543 cases. We were able to give a computer-aided proof of unforgeability of the
triple transform.
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Chapter 5

Commuting Signatures and Verifiable En-
cryption
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In this chapter we formally define the notion of commuting signatures and verifiable encryption.
To instantiate the concept we identify several properties of Groth-Sahai proofs (Sect. 5.3). The
results (as well as those of Chapter 7) appear in [8].

5.1 Verifiably Encrypted Signatures

Consider an extractable commitment scheme Com (where committed values can be extracted
using the extraction key), a proof system Proof for Com, which allows to prove that committed
values satisfy an equation, and a compatible signature scheme Sig, that is, whose verification keys,
messages and signatures can be committed to via Com, and validity of a committed signature
can be proven with Proof . (see Sect. 2.2, p. 14, for the formal definitions). From the triple
(Com,Proof ,Sig) one can now derive a verifiable encryption scheme satisfying the definitions
of Rückert and Schröder [RS09], who revisited those of Boneh et al. [BGLS03]—if a proof that a
committed signature is valid on a message M under a key vk (i.e., it satisfies Ver(vk,M, ·)) can
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be simulated (see Sect. 7.4). This is the case for our instantiations1, given in Sections 2.4.2, 2.4.3
and 4.1.

A scheme for verifiably encrypted signatures allows a signer to encrypt a signature under a
trusted third party’s key and give a proof that the plaintext is a valid signature. The classical
application is contract signing between two parties where each one wants to ensure that the other
party signs as well. Both parties first produce a verifiably encrypted signature on the contract,
send it to each other, and then reveal the signature. In case one party refuses, the other one can
call the “adjudicator” who holds the decryption key to retrieve the signature.

Definition 4 (Verifiably encrypted signatures (VES)). A verifiably encrypted signature scheme
is defined as the tuple (Kg,AdjKg,Sig,Vf,Create,VesVf). Kg outputs a signature key pair (vk, sk),
Sig and Vf produce and verify signatures. AdjKg outputs a key pair (apk, ask) for the adjudica-
tor. Create(sk, apk,M) returns a VES Ω which is verified by VesVf(apk, vk,Ω,M). Given a VES,
Adj(ask, apk, vk,Ω,M) returns a signature Σ on M under vk. The security notions from [RS09]
are the following:

• Unforgeability means that no adversary given the public keys and access to a Create and an
Adj oracle can output a VES on a message M that it has never queried to its oracles.

• Abuse freeness states that no malicious adjudicator provided with a Create oracle can output
a valid VES for a message it never queried.

• Extractability means that no malicious signer that can create its own vk and has access to
an Adj oracle can output a valid VES from which cannot be extracted a valid signature.

• Opacity means that no adversary given vk and apk and access to oracles Create and Adj for
messages of its choice, can output a valid pair (M,Σ) if it has never queried Adj on M .

A Straightforward Instantiation. Based on (Com,Proof ,Sig) we might instantiate a VES
scheme as follows. The adjudicator’s key generation AdjKg runs SetupS and (ck, ek) ← ExSetup,
and defines apk as the signature parameters and ck, and sets ask := ek. The signer’s key generation,
signing and verification are defined as Kg :=KeyGenS, Sig :=Sign, and Vf :=Ver. Create(sk, ck,M)
creates a VES on M by setting Σ ← Sign(sk,M), choosing ρ ← R and returning Ω :=

(
cΣ =

Com(ck,Σ, ρ), π̃ ← Prove(ck,EVer(vk,M,·), (Σ, ρ))
)
. Verification VesVf(ck, vk, (cΣ, π̃),M) is defined

as Verify(ck,EVer(vk,M,·), cΣ, π̃). Finally, Adj(ek, ck, vk,Ω,M) checks whether Ω = (cΣ, π̃) is valid
and if so returns Extr(ek, cΣ).

The scheme (Kg,AdjKg, Sig,Vf,Create,VesVf,Adj) almost satisfies the security notions from
Definition 4. The first three notions are reduced to unforgeability of Sig and soundness of Proof
in a straightforward manner. Note in particular that Proof is perfectly sound, so no adversary
even when given the extraction key can make a proof of a false statement (as required by abuse
freeness).

Opacity requires to simulate proofs since an adversary can query Create for a message M and
output a signature on M—which is considered successful as long as it did not query Adj. This
notion can be proved by a reduction with a security loss that is exponential in the number of Adj
calls:2 Let Game 0 be the original game. In Game 1 we abort if the adversary makes an Adj query
for a message it never queried Create for; or if it makes an Adj query for (cΣ, π̃) such that the
committed value Σ was never used to answer one of the Create queries. By strong unforgeability

1Groth-Sahai proofs for pairing-product equations can be simulated if the equations only contain elements from
G1 and G2 but not from GT . This is satisfied by the equations in (4.2) in Sect. 4.1, which constitute the verification
equations for which we make proofs in our instantiation. See Sect. 7.4 (p. 85) for how to simulate such proofs.

2If the adversary is only allowed a constant number of Adj queries, this is sufficient (see also Remark 5 below).
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of Sig and soundness of Proof , the probability of aborting is negligible. In Game 2, when queried
OAdj(ek,ck,vk,·,·)((cΣ, π̃),M), instead of extracting the signature committed to in cΣ, we return the
signature produced when answering OCreate(sk,ck,·)(M); if there have been more such calls then we
guess randomly. (If, in the worst case, the adversary queries Create qC times and Adj qA times on
the same message then the probability of correctly simulating Game 2 is 1/qqAC .) Game 3 is Game 2
but replacing ck by ck∗ output by WISetup. Game 3 can now be simulated by a challenger playing
the unforgeability game against Sig: Given the trapdoor for Groth-Sahai proofs in the WI setting,
the challenger simulates the commitments and proofs to answer Create queries, i.e., without using
signatures. When queried Adj on a message M , it asks its own Sign oracle for a signature on M and
returns it (or returns a signature it had already returned, depending on the guess, which is made
as in Game 2). A successful adversary outputs a signature on M for which it has never queried Adj
(and thus never made the challenger query Sign for it) and can therefore be used to break strong
unforgeability of Sig.

A Fully Secure Instantiation. The security reduction for opacity can be made tight if outputs
of Create are non-malleable (i.e., from a VES Ω returned by Create on M , one cannot produce a
different valid Ω′ for M): the adversary can then make Adj queries only for VES received from a
Create query, and in the reduction the challenger need not guess the correct signature to answer Adj
queries. Non-malleability is easily achieved by replacing Ω by (Ω, Sign(sk,Ω))—possibly hashing Ω
to the message space first—in the definition of Create and adding a check of the second component
to VesVf. Non-malleability then follows from strong unforgeability of Sig.

Remark 5. In our application to delegatable credentials, we require somewhat different properties
from the triple (Com,Proof ,Sig). On the one hand, we do not require opacity, since no adver-
sary can query extraction of committed values—the exponential reduction of the straightforward
instantiation is thus irrelevant.

On the other hand, we require that the verification keys are inM (i.e., Sig is automorphic) and
that we can commit to verification keys and messages (for which we will introduce a commitment
scheme ComM) and prove validity of an encrypted signature, possibly on an encrypted message
or under an encrypted key. We moreover require that two verifiably encrypted signatures are
indistinguishable, i.e., it is hard to decide whether two VES encrypt the same signature. This
property is implied by witness-indistinguishability of Proof , and is not required for VES.

5.2 Definition of Commuting Signatures

Recall the primitives introduced in Sect. 2.2. Let

Com = (Setup,Com,RdCom,ExSetup,Extr,WISetup)

be an extractable commitment scheme with value space V and randomness space R; let

Proof = (Prove,Verify,RdProof)

be a randomizable WI proof system for Com for a class E ; and let

Sig = (SetupS,KeyGenS,Sign,Ver)

be a strongly unforgeable signature scheme with message spaceM that is compatible with Com and
Proof , i.e., the components of verification keys, messages and signatures lie in V and the verification
equations lie in E . We extend (Com,Proof ,Sig) by the following functionalities presented in the
introduction (p. 9; see also Figure 1.1) and formally defined in Definition 5 below:
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• ComM is a randomizable extractable commitment scheme with the same commitment keys
as Com and whose message space is that of Sig.

• AdPrC and AdPrCM are algorithms that, given a message/signature pair of which one is
committed and proven valid, produce a proof of validity when both are committed.

• AdPrDC and AdPrDCM are algorithms that, given a committed message/signature pair and
a proof, as well as the randomness for one of the commitments, return an adapted proof; in
particular, AdPrDC returns a proof that a signature is valid on a committed message and
AdPrDCM returns a proof that a committed signature is valid on a given message.

• SigCom takes a ComM commitment and a signing key, and produces a committed signature
on the committed message and a proof of validity. SmSigCom simulates SigCom and is given
a signature instead of the signing key.

• AdPrCK is given a proof of validity for a committed signature and a committed message and
adapts it to a proof for when the verification key is also committed. AdPrDCK, given the
randomness of the committed verification key adapts a proof to when the key is given in the
clear.

AdPrC denotes thus adapting a proof when committing (to a signature) and AdPrDC when decom-
mitting. A subscript M denotes proof adaption when (de)committing to a message and K when
(de)committing to a verification key. SigCom denotes signing committed values and SmSigCom
simulates SigCom.

Definition 5. A system of commuting signatures and verifiable encryption consists of an ex-
tractable commitment scheme Com, a (randomizable) WI proof system Proof for Com, a compat-
ible signature scheme Sig and the functionalities ComM,RdComM,ExtrM,AdPrC,AdPrDC,AdPrCM,
AdPrDCM,AdPrCK,AdPrDCK,SigCom, and SmSigCom defined below.

ComM. On input pp = (ck,ppS) returned by Setup and SetupS, respectively, a message M ∈ M
and µ ∈ RM, algorithm ComM outputs a commitment C ∈ CM, the space of commitments.
RdComM takes inputs pp, C and µ′ ← RM and outputs a randomized commitment C′. On
input ek output by ExSetup, and C, ExtrM outputs the committed value M .

We require that ComM := (Setup,ComM,RdComM,ExSetup,ExtrM,WISetup) is a randomiz-
able extractable commitment scheme that is perfectly binding and computationally hiding as
defined in Sect. 2.2.1. Moreover, it must be compatible with Proof , i.e., the components of
M ∈ M are contained in V, Prove and RdProof accept inputs from RM and Verify accepts
ComM commitments as inputs.

In the following we assume that ck ← Setup, ppS ← SetupS, (vk, sk) ← KeyGenS(ppS), M ∈ M
and µ ∈ RM. We let pp := (ck, ppS).

AdPrC(pp, vk,C, (Σ, ρ), π̄). If Verify(ck,EVer(vk,·,Σ),C, π̄) = 1 then the algorithm outputs π that is
distributed as [

Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ)
)]

,

where M and µ are such that C = ComM(pp,M, µ).

AdPrDC(pp, vk,C, (Σ, ρ), π). If Verify(ck,EVer(vk,·,·),C,Com(ck,Σ, ρ), π) = 1, the algorithm outputs
π̄ which is distributed as [

Prove(ck,EVer(vk,·,Σ), (M,µ))
]
,

where M and µ are such that C = ComM(pp,M, µ).
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AdPrCM(pp, vk, (M,µ), cΣ, π̃). If Verify(ck,EVer(vk,M,·), cΣ, π̃) = 1 then it outputs π which is dis-
tributed as [

Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))
]
,

where Σ and ρ are such that cΣ = Com(ck,Σ, ρ).

AdPrDCM(pp, vk, (M,µ), cΣ, π). If Verify(ck,EVer(vk,·,·),ComM(pp,M, µ), cΣ, π) = 1, the algorithm
outputs π̃ which is distributed as[

Prove(ck,EVer(vk,M,·), (Σ, ρ))
]
,

where Σ and ρ are such that cΣ = Com(ck,Σ, ρ).

AdPrCK(pp, (vk, ξ),C, cΣ, π). If Verify(ck,EVer(vk,·,·),C, cΣ, π) = 1, the algorithm outputs π̂ which
is distributed as [

Prove(ck,EVer(·,·,·), (vk, ξ), (M,µ), (Σ, ρ))
)]

,

where M,µ,Σ and ρ are such that C = ComM(pp,M, µ) and cΣ = Com(ck,Σ, ρ).

AdPrDCK(pp, (vk, ξ),C, cΣ, π̂). If Verify(ck,EVer(·,·,·),Com(ck, vk, ξ),C, cΣ, π̂) = 1, the algorithm
outputs π which is distributed as[

Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))
)]

,

where M,µ,Σ and ρ are such that C = ComM(pp,M, µ) and cΣ = Com(ck,Σ, ρ).

SigCom(pp, sk,C). If C ∈ CM then the algorithm outputs a commitment to a signature and a proof
of validity (cΣ, π) which is distributed as[

Σ← Sign(sk,M); ρ← R :
(
Com(ck,Σ, ρ), Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

)]
,

where M and µ are such that C = ComM(pp,M, µ).

SmSigCom(pp, ek, vk,C,Σ). Assume (ck, ek) ← ExSetup. If Ver(vk,ExtrM(ek,C),Σ) = 1 then the
algorithm outputs (cΣ, π) which is distributed as[

ρ← R :
(
Com(ck,Σ, ρ), Prove(ck,EVer(vk,·,·), (M,µ), (Σ, ρ))

)]
,

where M and µ are such that C = ComM(pp,M, µ). 3

We denote the algorithms of the system that extend Com,Proof ,Sig and ComM by

Algs := (AdPrC,AdPrDC,AdPrCM,AdPrDCM,AdPrCK,AdPrDCK,SigCom,SmSigCom) .

Remark 6. When we verify a signature Σ on a message M running Ver(vk,M,Σ), we implicitly
assume that Ver also checks whether M ∈M. Analogously, we assume that when verifying a proof
of validity by running Verify on EVer and C, it checks whether C ∈ CM, too.

Definition 5 implies that running ComM on M and then SigCom yields the same output (meaning
the output is distributed identically) as running Σ← Sign(sk,M) and then ComM on M , Com on
Σ and Prove for EVer(vk,·,·); or running Sign, then ComM on M and Prove for EVer(vk,·,Σ), and then
Com on Σ and AdPrC; or running Sign, then Com on Σ and Prove for EVer(vk,M,·), and then ComM
on M and AdPrCM. And similar statements hold for sequences of algorithm executions including
decommitments and proof adaptation. This means that the diagram in Figure 1.1 (p. 9) commutes.

3Note that SmSigCom is not trivial: given ek it might recover the message M but not the randomness µ used for
C. The difference to AdPrC is that SmSigCom does not get π̄ as input but ek instead.
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5.2.1 Black-Box Results

We immediately get the following properties of commuting signatures, which follow from the secu-
rity of the used building blocks and the fact that all algorithms perfectly commute.

Unforgeability. Extractability of Com and ComM, perfect soundness of Proof , strong unforge-
ability of Sig and commutativity of SigCom with SmSigCom and signing and verifiably encrypting
implies the following notion unforgeability, defined as the intractability for a p.p.t. adversary A of
winning the following game:

Run (ck, ek) ← ExSetup and (vk, sk) ← KeyGenS(SetupS); provide A with (ck, ek, vk)
and access to a SigCom oracle that on input C, a commitment to a message, out-
puts SigCom(ck, sk,C). Let Ci be the value submitted in the i-th oracle call and
(ci, πi) be the response; define Mi := ExtrM(ek,Ci) and Σi := Extr(ek, ci). Then
A wins if it outputs (C∗, c∗, π∗) such that Verify(ck,EVer(vk,·,·),C∗, c∗, π∗) = 1 and(
ExtrM(ek,C∗),Extr(ek, c∗)

)
/∈
{

(M1,Σ1), . . . , (Mn,Σn)
}

.

This unforgeability notion is reduced to strong unforgeability of Sig. On receiving vk, run (ck, ek)←
ExSetup and give (ck, ek, vk) to the adversary. Answer a query for C as follows: using ek, extract
M , and query it to the signing oracle to receive Σ; then run (cΣ, π)← SmSigCom(ck, ek, vk,C,Σ)
and return (cΣ, π). Since by Definition 5, SmSigCom and SigCom both commute with ComM, Com
and Prove, this perfectly simulates the adversary’s oracle. If the adversary wins the game, we return
ExtrM(ek,C∗) and Extr(ek, c∗) which yields a valid forgery (M,Σ) by perfect soundness of Proof .

Note that providing the adversary, who is given the extraction key, with a signing oracle would
be redundant: to obtain a signature on a message it suffices to commit to it, submit it to the
SigCom oracle and use ek to extract a signature from the reply. The notion is thus stronger than
unforgeability of P-signatures [BCKL08], where the adversary is only given a signing oracle.

Indistinguishability. The message in C remains hidden to a signer running SigCom, in a com-
putational sense: replacing ck by ck∗ ← WISetup is computationally indistinguishable and results
in perfectly hiding outputs of Com and ComM.

Blind Signatures. Given a system of commuting signatures and verifiable encryption, we can
easily build a round-optimal blind-signature scheme in the common reference string (CRS) model
in a black-box way. The CRS is a commitment key ck ← Setup. To get a signature on a message
M , a user chooses µ ← RM and sends the commitment C := ComM(pp,M, µ) to the signer.
The latter uses SigCom to produce and send (cΣ, π), a committed signature on M and a proof of
validity. The user can produce a proof π̃ ← AdPrDCM(ck, vk, (M,µ), cΣ, π), which asserts validity
of the committed signature on M . The blind signature is defined as (cΣ, π̃) and is verified by
Verify(ck,EVer(vk,M,·), cΣ, π̃).

This yields a simpler and generically more efficient construction than that from [Fis06], in which
a blind signature consists of a commitment to a signature on C, a commitment to C, proofs of
validity of the committed values, and a proof that C opens to M .

5.3 Additional Properties of Groth-Sahai Proofs

We identify five properties of Groth-Sahai proofs for pairing-product equations (PPE) that will al-
low us to instantiate commuting signatures. We will refer to the instantiation given in Sections 2.4.2
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and 2.4.3. The first property is that proofs are constructed independently of the right-hand side of
the equation; if the equation does not contain pairings of two variables, i.e., γij = 0 for all i, j, then
they are even independent of the committed values. Given two independent (i.e., with no common
variables) equations, and commitments and proofs for them, then the product of the proofs is a
proof for the “product of the equations” and the concatenated vectors of commitments. The fourth
property states that if we change a committed value by exponentiation then we can adapt the
proof. And lastly, given commitments and a proof for an equation, if we commit to a constant of
the equation then we can turn the proof into a proof for the set of commitments extended by the
new commitment and the equation where the constant is now a variable.

For convenience we restate some equations of Sect. 2.4. A PPE E is defined as

E(X1, . . . , Xm; Y1, . . . , Yn) :
n∏
j=1

e(Aj , Yj)
m∏
j=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT . (5.1)

Prove
(
(~u, ~v),E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
is defined by choosing Z ← Z2×2

p defining for 1 ≤ k, ` ≤ 2:
tk` :=

∑n
j=1

∑m
i=1 rikγijsj`, and outputting

φ :=

vt11
11 v

t12
21

(∏m
i=1B

ri1
i

)(∏n
j=1 Y

Pm
i=1 ri1γij

j

)
vt11

12 v
t12
22

vt21
11 v

t22
21

(∏m
i=1B

ri2
i

)(∏n
j=1 Y

Pm
i=1 ri2γij

j

)
vt21

12 v
t22
22

 ◦· (Z ⊗	 ~v)

θ :=

1
(∏n

j=1A
sj1
j

)(∏m
i=1X

Pn
j=1 sj1γij

i

)
1

(∏n
j=1A

sj2
j

)(∏m
i=1X

Pn
j=1 sj2γij

i

)
 ◦· (Z ⊗ ~u)

(5.2)

5.3.1 Independence of Proofs

In general, proofs are independent of the right-hand side of the equation; moreover, proofs for linear
equations are independent of the committed values.

Lemma 3. For any equation E as in (5.1) the output of Prove(·,E, ·, ·) is independent of tT .

Proof. The result follows by inspection of the proof definition in (5.2), or, more generally, the one
in Remark 1 (p. 22), which also encompasses other instantiations of Groth-Sahai proofs.

For concreteness, we will give the proofs of the next lemmas for the SXDH instantiation, but
we note that they also hold for the other instantiations.

Lemma 4. Proofs for equations for which γij = 0 for all i and j depend only on the randomness
of the commitments, but not on the committed values.

Proof. If for an equation E for all i and j we have γij = 0 then for all k and ` also tk,` = 0. The
proof in (5.2) then simplifies to

φ :=

[
1

∏m
i=1B

ri1
i

1
∏m
i=1B

ri2
i

]
◦· (Z ⊗	 ~v) θ :=

[
1

∏n
j=1A

sj1
j

)
1

∏n
j=1A

sj2
j

)] ◦· (Z ⊗ ~u)

which does not contain values Xi and Yj .
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5.3.2 Proofs for Composed Equations

Groth-Sahai proofs are homomorphic w.r.t. the equations in the following sense.4 Given equations

E :
n∏
i=1

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT

E′ :
n′∏
i=1

e(A′i, Y
′
i )

m′∏
i=1

e(X ′i, B
′
i)

m′∏
i=1

n′∏
j=1

e(X ′i, Y
′
j )γ
′
i,j = t′T

and a proof π for commitments (~c, ~d) for equation E and a proof π′ for commitments (~c′, ~d′) for
equation E′, then π′′ := π ◦· π′ is a proof for commitments ((~c,~c′), (~d, ~d′)) and equation E′′ defined
as follows (for arbitrary t′′T ∈ GT ):

E′′ :
n∏
i=1

e(Ai, Yi)
n′∏
i=1

e(A′i, Y
′
i )

m∏
i=1

e(Xi, Bi)
m′∏
i=1

e(X ′i, B
′
i)

m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j
m′∏
i=1

n′∏
j=1

e(X ′i, Y
′
j )γ
′
i,j = t′′T

Lemma 5. Let E,E′ and E′′ be defined as above. If π = Prove(ck,E, (Xi, ri)mi=1, (Yj , sj)
n
j=1; Z)

and π′ = Prove(ck,E′, (X ′i, r
′
i)
m′
i=1, (Y

′
j , s
′
j)
n′
j=1; Z ′) then

π ◦· π′ = Prove(ck,E′′, (Xi, ri)mi=1, (X
′
i, r
′
i)
m′
i=1, (Yj , sj)

n
j=1, (Y

′
j , s
′
j)
n′
j=1; Z + Z ′) .

Proof. Equation E′′ over (X1, . . . , Xm, X
′
1, . . . , X

′
m′ ; Y1, . . . , Yn, Y

′
1 , . . . , Y

′
n′) is determined by the

constants ~A′′ := ( ~A, ~A′), ~B′′ := ( ~B, ~B′) and Γ′′ := ((Γ, 0), (0,Γ′))>. The proof π′′ = (φ′′, θ′′) :=
π ◦· π′ looks as follows (with t′′k` := tk` + t′k`)

φ′′ :=

vt′′11
11 v

t′′12
21

(∏m
i=1B

ri1
i

)(∏m′

i=1(B′i)
r′i1
)(∏n

j=1 Y
Pm
i=1 ri1γij

j

)(∏n′

j=1(Y ′j )
Pm′
i=1 r

′
i1γ
′
ij
)
v
t′′11
12 v

t′′12
22

v
t′′21
11 v

t′′22
21

(∏m
i=1B

ri2
i

)(∏m′

i=1(B′i)
r′i2
)(∏n

j=1 Y
Pm
i=1 ri2γij

j

)(∏n′

j=1(Y ′j )
Pm′
i=1 r

′
i2γ
′
ij
)
v
t′′21
12 v

t′′22
22


◦· ((Z + Z ′) ⊗	 ~v)

θ′′ :=

1
(∏n

j=1A
sj1
j

)(∏n′

j=1(A′j)
s′j1
)(∏m

i=1X
Pn
j=1 sj1γij

i

)(∏m′

i=1(X ′i)
Pn′
j=1 s

′
j1γ
′
ij
)

1
(∏n

j=1A
sj2
j

)(∏n′

j=1(A′j)
s′j2
)(∏m

i=1X
Pn
j=1 sj2γij

i

)(∏m′

i=1(X ′i)
Pn′
j=1 s

′
j2γ
′
ij
)

◦· ((Z + Z ′)⊗ ~u)

which is a proof for (~c,~c′, ~d, ~d′) for E′′ with internal randomness Z + Z ′.

5.3.3 Changing the Committed Value and Adapting Proofs

We give a special case which we require to randomize commitments to non-trivial messages in
Sect. 5.5.1 (p. 63). We start with some notation. Let ~w ∈ Gm×n, Z ∈ Zm×np and k ∈ Zp. Then by

4The homomorphic property of Groth-Sahai proofs for linear equations was noted independently in [DHLW10].
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~wk we denote componentwise exponentiation, and by k ·Z we denote standard scalar multiplication,
i.e.,

if ~w = (wij)1≤i≤m
1≤j≤n

then ~wk = (wkij)1≤i≤m
1≤j≤n

if Z = (zij)1≤i≤m
1≤j≤n

then k · Z = (k zij)1≤i≤m
1≤j≤n

Consider equation E∗(X,Y ) : e(X,Y ) = tT ; given a proof π for E∗, Com(ck, X, r) and Com(ck, Y, s),
then πk is a proof for e(X,Y ) = tkT and Com(ck,Xk, k · r) and Com(ck, Y, s).

Lemma 6. If π = Prove
(
ck,E∗, (X, r), (Y, s); Z

)
then πk = Prove

(
ck,E∗, (Xk, k · r), (Y, s); k · Z

)
.

Proof. By (2.3) on p. 21, we have (Z ⊗ ~u)k = (k · Z)⊗ ~u and (Z ⊗	 ~v)k = (k · Z) ⊗	 ~v for Z ∈ Z2×2
p

and k ∈ Zp. The proof Prove(ck,E∗, (X, r), (Y, s); Z) is defined as

π1 =

[
vr1s111 vr1s221 Y r1vr1s112 vr1s222

vr2s111 vr2s221 Y r2vr2s112 vr2s222

]
◦· (Z ⊗	 ~v) π2 =

[
1 Xs1

1 Xs2

]
◦· (Z ⊗ ~u)

so we have

πk1 =

[
vkr1s111 vkr1s221 Y kr1vkr1s112 vkr1s222

vkr2s111 vkr2s221 Y kr2vkr2s112 vkr2s222

]
◦·
(
(k · Z) ⊗	 ~v

)
πk2 =

[
1 (Xk)s1

1 (Xk)s2

]
◦·
(
(k · Z)⊗ ~u

)
which is the definition of Prove

(
ck,E∗, (Xk, k · r), (Y, s); k · Z

)
.

5.3.4 Committing to Constants and Adapting Proofs

Given a proof for an equation, one can commit to one of the constants and adapt the proof.
Consider an equation E(X1, . . . , Xm; Y1, . . . , Yn) as in (5.1) and a proof (φ, θ) for commitments
(c1, . . . , cm; d1, . . . ,dn). Some calculation shows that (φ, θ) is also a proof for equation

E′( ~X,Ak; ~Y ) :
n∏
i=1
i 6=k

e(Ai, Yi)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j e(Ak, Yk) = tT

and commitments (c1, . . . , cm,Com(ck, Ak, 0); d1, . . . ,dn). This yields the following result.

Lemma 7. Let π ← Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
and for all i, j let ci = Com(ck, Xi, ri)

and dj = Com(ck, Yj , sj). Then RdProof
(
ck,E′, (ci, 0)mi=1, (Com(ck, Ak, 0), r), (dj , 0)nj=1, π

)
yields a

proof that is distributed as the output of Prove
(
ck,E′, (Xi, ri)mi=1, (Ak, r), (Yj , sj)

n
j=1

)
. An analogous

result holds for committing to a constant Bk ∈ G2.

5.4 Instantiation of Commuting Signatures

In Sect. 4.2 on p. 39, we constructed a blind signature scheme BSig from the scheme Sig (Sect. 4.1,
p. 37) as follows. The user, who wishes to obtain a signature on a message (M,N) ∈ DH :=
{(Gm, Hm) |m ∈ Zp}, chooses a random t ← Zp and blinds the first message component by the
factor T t. The user then sends the following: U := T t ·M , commitments cM and cN to M and N ,
respectively, and commitments cP and cQ to Gt and Ht, respectively; moreover, proofs πM , πP and
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πU of well-formedness of (M,N), (P,Q) and U , respectively: πM proves that e(M,H) = e(G,N);
πP proves that e(P,H) = e(G,Q) and πU proves that U = T t ·M , or, equivalently, e(U,H) =
e(T,Q) e(M,N).

The signer replies with a “pre-signature” on U (which is constructed as a signature on U , but
on a message that lacks the second component):

A := (K · T r · U)
1
x+c B := F c D := Hc R′ := Gr S′ := Hr

We have A = (K·T r·U)1/(x+c) = (K·T r+t ·M)1/(x+c), which is the first component of a signature on
(M,N) with randomness r + t. Knowing t, the user can fabricate an actual signature on (M,N)
from this “pre-signature” by setting R := R′ · Gt = Gr+t and S := S′ · Ht = Hr+t. Then
(A,B,D,R, S) is a signature on (M,N) with randomness (c, r+ t). To prevent linking a signature
to the signing session, the blind signature is defined as a Groth-Sahai proof of knowledge of the
signature. Now to turn this into a commuting signature, there are two key observations.

1. The values (cM , cN , πM , cP , cQ, πP , U, πU ) which the user sends to the signer can actually be
considered as a commitment to the message (M,N), which is extractable and randomizable,
and which perfectly hides the message when the values are produced using a key ck∗ ←
WISetup.

2. Since Com is homomorphic, the values cP and cQ from the newly defined commitment to
(M,N) can be used by the signer to produce commitments on the actual signature components
R and S. Moreover, we show how πP and πU can be used to produce a proof of validity of
the committed values using the results from Lemmas 3, 4, 5 and 7 from the last section.

For the blind signature scheme BSig in Sect. 4.2, the values cP , cQ, πP and πU are mainly used
in the proof of unforgeability, when the simulator needs to extract the message, query it to its
signing oracle and then use the values P and Q to turn the signature into a pre-signature. We show
that all these values can be directly used by the signer to produce commitments to the signature
components and even a proof of validity.

5.4.1 Commitments to Messages

We define a commitment on a message (M,N) ∈ DH as the values (cM , cN , πM , cP , cQ, πP , U, πU )
the user sends to the signer in the issuing protocol for the blind signature scheme BSig. We
then show how to randomize a commitment and how to extract the committed value. Since the
committed values are the messages of Sig, in addition to ck the algorithms also get the signature
parameters ppS = (F,K, T ) as input. The randomness space is RM := Z9

p.

ComM has inputs pp = (ck, F,K, T ), (M,N) ∈ DH and (t, µ, ν, ρ, σ) ∈ Zp × R4 ∼= Z9
p. We define

the following equations:

EDH(M,N) : e(G−1, N) e(M,H) = 1T (5.3)

EU (M,Q) : e(T−1, Q) e(M,H−1) = e(U,H)−1 (5.4)

ComM(pp, (M,N), (t, µ, ν, ρ, σ)) defines P = Gt and Q = Ht, computes

cM := Com(ck,M, µ) cN := Com(ck, N, ν) πM ← Prove
(
ck,EDH, (M,µ), (N, ν)

)
cP := Com(ck, P, ρ) cQ := Com(ck, Q, σ) πP ← Prove

(
ck,EDH, (P, ρ), (Q, σ)

)
U := T t ·M πU ← Prove

(
ck,EU , (M,µ), (Q, σ)

)
54



5.4 Instantiation of Commuting Signatures

and returns C = (cM , cN , πM , cP , cQ, πP , U, πU ).

CM(pp), the space of valid ComM commitments under parameters pp = (ck,ppS) is defined
as follows (with C1 := G2

1, C2 := G2
2, P := G2×2

1 ×G2×2
2 ):

CM(pp) :=
{

(cM , cN , πM , cP , cQ, πP , U, πU ) ∈ (C1 × C2 × P)2 ×G1 × P ∼= G17
1 ×G16

2 |
Verify(ck,EDH, cM , cN , πM ) ∧Verify(ck,EDH, cP , cQ, πP )∧Verify(ck,EU , cM , cQ, πU )

}
.

RdComM, on input (ck,ppS), C and randomness (t′, µ′, ν ′, ρ′, σ′) ∈ RM, first defines

ĉP := cP ◦· Com(ck, Gt
′
, 0) ĉQ := cQ ◦· Com(ck, Ht′ , 0) U ′ := U · T t′

This replaces randomness t by t+ t′. Then it sets

c′M := RdCom(ck, cM , µ′) π′M ← RdProof(ck,EDH, (cM , µ′), (cN , ν ′), πM )
c′N := RdCom(ck, cN , ν ′) π′P ← RdProof(ck,EDH, (ĉP , ρ′), (ĉQ, σ′), πP )
c′P := RdCom(ck, ĉP , ρ′) π′U ← RdProof(ck,EU , (cM , µ′), (ĉQ, σ′), πU )
c′Q := RdCom(ck, ĉQ, σ′)

which replaces randomness (µ, ν, ρ, σ) by (µ + µ′, ν + ν ′, ρ + ρ′, σ + σ′). Finally, it returns
C′ = (c′M , c

′
N , π

′
M , c

′
P , c

′
Q, π

′
P , U

′, π′U ) ∈ CM(pp).

ExtrM, on input ek and C = (cM , cN , πM , cP , cQ, πP , U, πU ) returns
(
Extr(ek, cM ),Extr(ek, cN )

)
.

Theorem 7. ComM is a randomizable extractable commitment scheme that is perfectly binding
and computationally hiding.

Proof. The commitment C = (cM , cN , πM , cP , cQ, πP , U, πU ) is binding by the binding property of
SXDH commitments. A correctly constructed commitment contains valid proofs; in particular, we
have e(U,H) = e(T t, H) e(M,H) = e(T,Q) e(M,H), thus (5.4) is satisfied.

The scheme is computationally hiding as defined Sect. 2.2.1 (p. 14). Let ck∗ ←WISetup. Then
for every (M,N) ∈ DH there exists t s.t. U = T t ·M . Moreover there exist µ, ν, ρ and σ s.t. cM =
Com(ck,M, µ), cN := Com(ck, N, ν), cP := Com(ck, Gt, ρ), and cQ := Com(ck, Ht, σ). So for every
C and every (M,N) ∈ DH there exists κ := (t, µ, ν, ρ, σ) ∈ RM s.t. C = ComM(ck∗, (M,N), κ).

Moreover, RdComM randomizes a commitment. When (U, cP , cQ) is replaced by (U ′, ĉP , ĉQ) in
the first step, t is replaced by t+ t′ (since the commitments are homomorphic, ĉP is a commitment
to P ·Gt′ and c′Q commits to Q ·Ht′ ; note that, by Lemma 4, πP and πU do not depend on t but
only on the randomness of the commitments—which is not changed in the first step.) In the second
step, (µ, ν, ρ, σ) is replaced by (µ+ µ′, ν + ν ′, ρ+ ρ′, σ + σ′).

5.4.2 Making Committents to a Signature on a Committed Message and a Proof of
Validity

We show how the signer can use the values in C to produce a proof of knowledge

(cA, cB, cD, cR, cS , πA, πB, πR) ∈ C1 × C1 × C2 × C1 × C2 × (P)3 ∼= G18
1 ×G16

2
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of a signature (A,B,D,R, S) (i.e., a verifiably encrypted signature) on the message committed in
C. The proofs πA, πB and πR attest that the values committed in (cA, cB, cD, cR, cS) and cM from
C satisfy the verification equations in (4.2) (p. 37), respectively, i.e.,

EA(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1T
ER(R; S) : e(G−1, S) e(R,H) = 1T

(5.5)

In the blind signature BSig from Sect. 4.2, on receiving C, the signer checks the proofs contained
in it, and then produces a pre-signature by choosing c, r ← Zp and computing

A := (K · T r · U)
1
x+c B := F c D := Hc R′ := Gr S′ := Hr

The user knowing t s.t. U = T t ·M can turn these values into a signature by setting R := R′ ·Gt
and S := S′ ·Ht. Since the commitments are homomorphic, the signer can—without knowledge of
the values P = Gt and Q = Ht, but knowing the commitments cP and cQ—make commitments to
R and S:

cR := cP ◦· Com(ck, R′, 0) = Com(ck, R, ρ) cS := cQ ◦· Com(ck, S′, 0) = Com(ck, S, σ) (5.6)

The signer then chooses α, β, δ ← R, and makes the remaining commitments:

cA := Com(ck, A, α) cB := Com(ck, B, β) cD := Com(ck, D, δ) (5.7)

The vector ~cΣ := (cA, cB, cD, cR, cS) is thus a commitment to the actual signature (A,B,D,R, S).
It remains to construct proofs πA, πB and πR that the committed values satisfy the 3 equations
in (5.5)—without knowledge of µ, ρ and σ, the randomness of the commitments cM , cR and cS ,
respectively! This can be done using the following observations:

1. Equation ER(R; S) is actually EDH(R; S) from (5.3). Since by (5.6) cR and cP have the
same randomness ρ, and cS and cQ have the same randomness σ, and since by Lemma 4, a
proof for the equation EDH is independent of the committed values, we can set πR := πP .

2. Lemmas 3 and 4 yield that proofs for Equation EU only depend on the randomness of the
commitments. Since cS = Com(ck, S, σ) and cQ = Com(ck, Q, σ) have the same randomness,
πU is not only a proof for EU (M ;Q) but also for EU (M ;S) for cM and cS . Moreover, define

EA†(A; D) : e(A, Y ) e(A,D) = 1T (5.8)

and let πA† ← Prove(ck,EA† , (A,α), (D, δ)), which can be computed by the signer who chose
α and δ. Since the product of the left-hand sides of EU (M ;S) (Equation (5.4)) and EA†(A;D)
is the left-hand side of EA(A,M ; S,D), by Lemma 5 we have πA := πU ◦· πA† is a proof for
EA.

The remaining proof πB can be constructed regularly, since randomness (β, δ) is known to the signer.
Finally, to get a random proof of knowledge, the signer randomizes all commitments and proofs
using RdCom and RdProof as defined in Sect. 2.4.3. Algorithm SigCom is summarized in Figure 5.1.
We now formally prove that the output of SigCom is distributed as required by Definition 5.

Theorem 8. SigCom, as defined in Figure 5.1, is commuting.
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SigCom(ck, sk,C). Parse C as (cM , cN , πM , cP , cQ, πP , U, πU ) and sk as x. If πM , πP and πU are
valid then choose c, r ← Zp and α, β, δ, ρ′, σ′ ← Z2

p and compute the following values:

A := (K · T r · U)
1

x+c cB := Com(ck, F c, β) cR := cP ◦· Com(ck, Gr, ρ′)
cA := Com(ck, A, α) cD := Com(ck, Hc, δ) cS := cQ ◦· Com(ck, Hr, σ′)

π′A := πU ◦· Prove(ck,EA† , (A,α), (Hc, δ); 0) (with EA† being Equation (5.8))
πA ← RdProof(ck,EA, (cA, 0), (cD, 0), (cM , 0), (cS , σ′), π′A)
πR ← RdProof(ck,ER, (cR, ρ′), (cS , σ′), πP ) πB ← Prove(ck,EDH, (F c, β), (Hc, δ))

Return (cA, cB , cD, cR, cS , πA, πB , πR).

Figure 5.1: Making commitments to a signature and proving knowledge.

Proof. The algorithm SigCom optimizes the steps discussed informally above by constructing and
randomizing cR and cS in one step. Moreover, cA, cB and cD need not be randomized since SigCom
chooses their randomness; in addition, being produced “freshly”, πB need not be randomized
either. We formally prove that the output of the algorithm is correctly distributed. Recall that
Prove(. . . ;Z) denotes the output of Prove when Z ∈ Z2×2

p is the employed internal randomness.
Let C = (cM , cN , πM , cP , cQ, πP , U, πU ) and let (M,N) ∈ DH and rand := (t, µ, ν, ρ, σ) ∈ RM

be such that C = ComM(ck, (M,N), rand); in particular, since ComM is perfectly binding, we have
U = T t ·M and

cM = Com(ck,M, µ) cN = Com(ck, N, ν) cP = Com(ck, Gt, ρ) cQ = Com(ck, Ht, σ)

Let moreover ZM , ZP and ZU be such that

πM := Prove
(
ck,EDH, (M,µ), (N, ν); ZM

)
πP := Prove

(
ck,EDH, (Gt, ρ), (Ht, σ); ZP

) πU := Prove
(
ck,EU , (M,µ), (Ht, σ); ZU

)
Correctness. Let c, r, α, β, δ, ρ′, σ′ be the values chosen by SigCom. We have

cA = Com(ck, (K · T r+t ·M)
1
x+c , α) cB = Com(ck, F c, β) cD = Com(ck, Hc, δ)

cR = Com(ck, Gt+r, ρ+ ρ′) cS = Com(ck, Ht+r, σ + σ′)

where the first equation follows from the definition of U and the last two from the homomor-
phic property of Com. Let (A,B,D,R, S) be the values committed in (cA, cB, cD, cR, cS), which
compose a valid signature; in particular

(A,B,D,R, S) = Sign(x, (M,N); (c, r + t)) .

Define π′A as in Figure 5.1 and let π′R := πP . In the discussion above, using Lemma 5, we showed
the following:

π′A = Prove
(
ck,EA, (A,α), (M,µ), (S, σ), (D, δ); ZU

)
π′R = Prove

(
ck,EDH, (P, ρ), (Q, σ); ZP

)
Let ZA, ZB and ZR be the randomness used by RdProof and Prove in the construction of πA, πB
and πR, respectively. By the properties of RdProof (cf. Remark 1 on p. 22) we have the following:

πA := Prove(ck,EA, (A,α), (M,µ), (S, σ + σ′), (D, δ); ZU + ZA + Z ′)
πR := Prove(ck,ER, (R, ρ+ ρ′), (S, σ + σ′); ZP + ZR + Z ′′)
πB := Prove(ck,EDH, (B, β), (D, δ); ZB)

57



Commuting Signatures and Verifiable Encryption

where the Z ′ is defined by α, µ and σ′ and Z ′′ is defined by ρ and σ (cf. equation (2.6) in Remark 1).
The resulting output (cA, cB, cD, cR, cS , πA, πB, πR) of SigCom is thus the same as the values

constructed the following way:

(A,B,D,R, S) := Σ = Sign(x, (M,N), (ĉ, r̂))

(cA, cB, cD, cR, cS) := Com(ck, (A,B,D,R, S), (α̂, β̂, δ̂, ρ̂, σ̂))

πA := Prove
(
ck,EA, (A, α̂), (M,µ), (S, σ̂), (D, δ̂); ẐA

)
πB := Prove

(
ck,EB, (B, β̂), (D, δ̂); ẐB

)
πR := Prove

(
ck,ER, (R, ρ̂), (S, σ̂); ẐR

)
when (α̂, β̂, δ̂, ρ̂, σ̂, ẐA, ẐB, ẐR) are defined as

ĉ = c r̂ = r + t α̂ = α β̂ = β δ̂ = δ

ρ̂ = ρ+ ρ′ σ̂ = σ + σ′ ẐA = ZU + ZA + Z ′ ẐB = ZB ẐR = ZP + ZR + Z ′′

All these values are uniformly random since c, r, α, β, δ, ρ′, σ′, ZA, ZB, and ZR are chosen uniformly
and independently at random by SigCom.

Instantiation of SmSigCom. This algorithm is similar to SigCom but instead of the signing key sk
it is directly given a signature (A,B,D,R, S). It proceeds like SigCom but starting from a signature
instead of producing a pre-signature: choose α, β, δ, ρ′, σ′ ← R and set cA, cB and cD as in (5.7);
use ek to extract P and Q from C and set

cR := cP ◦· Com(ck, R · P−1, ρ′) = Com(ck, R, ρ+ ρ′)

cS := cQ ◦· Com(ck, S ·Q−1, σ′) = Com(ck, S, σ + σ′)

Now πA, πB and πR can be computed as in SigCom in Figure 5.1.

5.4.3 Instantiations of Proof Adaptation for Committing and Decommitting

We define equations E eA and EĀ and recall EA, which all represent the first verification equation in
(4.2) but with different group elements being variables.

EA(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K,H)

E eA(A; S,D) : e(T−1, S) e(A, Y ) e(A,D) = e(K ·M,H)

EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

Recall equations EB and ER from (5.5). Then we have

EVer((X,Y ), · , · )((M,N), (A,B,D,R, S)) ≡ EA(A,M ; S,D) ∧ EB(B; D) ∧ ER(R; S)

EVer((X,Y ),(M,N), · )(A,B,D,R, S) ≡ E eA(A; S,D) ∧ EB(B; D) ∧ ER(R; S)

EVer((X,Y ), · ,(A,B,D,R,S))(M,N) ≡ EĀ(M)

Since the product of the left-hand sides of E eA and EĀ is the left-hand side of EA, by Lemma 5 we
have

πA = π eA ◦· πĀ , (5.9)
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which allows us to implement the algorithms AdPrC, AdPrCM, AdPrDC and AdPrDCM, defined in
Sect. 5.2. AdPrC transforms a proof π̄ for C and Σ into a proof π for C and a commitment to Σ
and AdPrDC does the converse. AdPrCM transforms a proof π̃ for M and cΣ into a proof π for a
commitment to M and cΣ whereas AdPrDCM does the converse.

Equation (5.9) lets us transform πĀ (and π eA) into πA and thus proofs π̄ for EVer(vk,·,Σ) (and
proofs π̃ for EVer(vk,(M,N),·)) into proofs π for EVer(vk,·,·). Likewise, it lets us transform proofs π
into proofs π̄ or π̃. Note that when a proof for an equation is multiplied with a freshly generated
proof, it is uniformly distributed: by Lemma 5, if Z is the internal randomness of the given proof
and Z ′ that of the freshly generated proof then the randomness of the product of proofs is Z +Z ′.
However, when an algorithm reuses a proof from the input it must be randomized first.

AdPrC
(
pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π̄

)
.

The proof π̄ is a proof for equation EĀ. The algorithm sets

π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ))
πB ← Prove(ck,EB, (B, β), (D, δ))
πR ← Prove(ck,ER, (R, ρ), (S, σ))

for EB and ER as defined in (5.5). It then returns π := (π eA ◦· πĀ, πB, πR).

AdPrCM
(
pp, vk, ((M,N), (t, µ, ν, ρ, σ)), (cA, cB, cD, cR, cS), π̃

)
.

The proof π̃ is of the form (π eA, πB, πR). The algorithm sets

πĀ ← Prove(ck,EĀ, (M,µ))
π′B ← RdProof(ck,EB, (cB, 0), (cD, 0), πB)
π′R ← RdProof(ck,ER, (cR, 0), (cS , 0), πR)

(5.10)

and returns π := (π eA ◦· πĀ, π′B, π′R).

AdPrDC
(
pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π

)
.

The proof π is of the form (πA, πB, πR). The algorithm sets

π eA ← Prove(ck,E eA, (A,α), (S, σ), (D, δ))

and returns π̄ := πA � π eA (where “�” denotes componentwise division, that is: replace all
the components of the second argument by their inverses and then multiply them with those
of the first argument).

AdPrDCM
(
pp, vk, ((M,N), (t, µ, ν, ρ, σ)), (cA, cB, cD, cR, cS), π

)
.

The proof π is of the form (πA, πB, πR). The algorithm computes πĀ, π
′
B and π′R as in (5.10)

and returns π̃ := (πA � πĀ, πB, πR).

Instantiation of AdPrCK and AdPrDCK. In applications (such as the credentials in Chapter 7)
where the signer is to remain anonymous, she makes a commitment

cvk :=
(
cX = Com(ck, X, ξ), cY = Com(ck, Y, ψ), πX = Prove(ck,EDH, (X, ξ), (Y, ψ))

)
to her public key vk = (X,Y ) ∈ DH and proves that the values in cΣ are a valid signature on
the value (M,N) in C under the public key that is committed in cvk. The verification equations
representing EVer(·, · , · )((X,Y ), (M,N), (A,B,D,R, S)), defined in (4.2) (p. 37) are the following:

E bA(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y )e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1T
ER(R; S) : e(G−1, S) e(R,H) = 1T
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Given a commitment C to a message, a commitment cΣ = (cA, cB, cD, cR, cS) to a signature, and
a proof π = (πA, πB, πR) of validity, πA can be adapted to π bA using Lemma 7 from Sect. 5.3 setting

π bA ← RdProof
(
ck,E bA, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0), ψ), (cD, 0), πA

)
. (5.11)

To adapt a proof to a decommitment of cvk, we have to reset the randomness of cY to 0. AdPrDCK
does thus the converse: it sets

πA ← RdProof
(
ck,E bA, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0),−ψ), (cD, 0), π bA) .

To get a random proof, both AdPrCK (and AdPrDCK) also randomize the adapted proof (π bA, πB, πR)
(and (πA, πB, πR)) before outputting it.

Remark 7. For concreteness, we show how a proof πA for equation EA is transformed into a proof
π bA for equation E bA for the SXDH instantiation of Groth-Sahai proofs in detail. The definitions of
π bA and E bA are given in Figure 5.2 on the next page. RdProof in (5.11) chooses Z ′ ← Z2×2

p and sets

π bA,1 := πA,1 ◦· (Z ′ ⊗	 ~v) π bA,2 := πA,2 ◦·

[
cψ1

A,1 cψ1

A,2

cψ2

A,1 cψ2

A,2

]
◦· (Z ′ ⊗ ~u)

Let Z ∈ Z2×2
p denote the randomness in πA. We define

Ẑ :=

[
z11 + z′11 + α1ψ1 z12 + z′12 + α2ψ1

z21 + z′21 + α1ψ2 z22 + z′22 + α2ψ2

]
.

Then, substituting πA by its definition from Figure 5.2, we have

π bA,1 =

[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦· ((Z + Z ′) ⊗	 ~v)

=

[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦·

[
vα1ψ1

11 vα1ψ2
21 vα1ψ1

12 vα1ψ2
22

vα2ψ1
11 vα2ψ2

21 vα2ψ1
12 vα2ψ2

22

]
◦· (Ẑ ⊗	 ~v)

π bA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦·

[
(uα1

11u
α2
21 )ψ1 (Auα1

12u
α2
22 )ψ1

(uα1
11u

α2
21 )ψ2 (Auα1

12u
α2
22 )ψ2

]
◦· ((Z + Z ′)⊗ ~u)

=

[
1 T−σ1Aδ1+ψ1

1 T−σ2Aδ2+ψ2

]
◦· (Ẑ ⊗ ~u) ,

which is a proof for equation E bA when Z bA := Ẑ (which is uniformly random since Z ′ was chosen
uniformly random).

We summarize the results of this section in the following theorem.

Theorem 9. Under the ADH-SDH and the SXDH assumption,
(
Com,Proof ,Sig,ComM,AdPrC,

AdPrDC,AdPrCM,AdPrDCM,AdPrCK,AdPrDCK, SigCom,SmSigCom
)

is a system of commuting sig-
natures and verifiable encryption as defined in Definition 5.

For concreteness, we give the form of the various proofs discussed in this section in the SXDH
instantiation in Figure 5.2.
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C Proofs contained in a ComM commitment, for equations

EP = EM = EDH(M,N) : e(G−1, N) e(M,H) = 1T
EU (M,Q) : e(T−1, Q)e(M,H−1) = e(U,H)−1

πM,1 =
[
1 Hµ1

1 Hµ2

]
◦· (ZM ⊗	 ~v) πP,1 =

[
1 Hρ1

1 Hρ2

]
◦· (ZP ⊗	 ~v) πU,1 =

[
1 H−µ1

1 H−µ2

]
◦· (ZU ⊗	 ~v)

πM,2 =
[
1 G−ν1

1 G−ν2

]
◦· (ZM ⊗ ~u) πP,2 =

[
1 G−σ1

1 G−σ2

]
◦· (ZP ⊗ ~u) πU,2 =

[
1 T−σ1

1 T−σ2

]
◦· (ZU ⊗ ~u)

πA Proof for equation EA(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K,H)

πA,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1H−µ1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2H−µ2vα2δ1
12 vα2δ2

22

]
◦· (ZA ⊗	 ~v) πA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦· (ZA ⊗ ~u)

π eA Proof for equation E eA(A; S,D) : e(T−1, S) e(A, Y ) e(A,D) = e(K ·M,H)

π eA,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
◦· (Z eA ⊗	 ~v) π eA,2 =

[
1 T−σ1Aδ1

1 T−σ2Aδ2

]
◦· (Z eA ⊗ ~u)

πA† Proof for equation EA†(A; D) : e(A, Y ) e(A,D) = e(K ·M,H) e(T, S)

πA†,1 =
[
vα1δ1

11 vα1δ2
21 (Y D)α1vα1δ1

12 vα1δ2
22

vα2δ1
11 vα2δ2

21 (Y D)α2vα2δ1
12 vα2δ2

22

]
◦· (ZA† ⊗	 ~v) πA†,2 =

[
1 Aδ1

1 Aδ2

]
◦· (ZA† ⊗ ~u)

πĀ Proof for equation EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

πĀ,1 =
[
1 H−µ1

1 H−µ2

]
◦· (ZĀ ⊗	 ~v) πĀ,2 =

[
1 1
1 1

]
◦· (ZĀ ⊗ ~u)

π bA Proof for equation E bA(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y )e(A,D) = e(K,H)

π bA,1 :=

[
v
α1(ψ1+δ1)
11 v

α1(ψ2+δ2)
21 (Y D)α1H−µ1v

α1(ψ1+δ1)
12 v

α1(ψ2+δ2)
22

v
α2(ψ1+δ1)
11 v

α2(ψ2+δ2)
21 (Y D)α2H−µ2v

α2(ψ1+δ1)
12 v

α2(ψ2+δ2)
22

]
◦· (Z bA ⊗	 ~v)

π bA,2 :=
[
1 T−σ1Aψ1+δ1

1 T−σ2Aψ2+δ2

]
◦· (Z bA ⊗ ~u)

Figure 5.2: Overview of different variants of the proof for the first verification equation.
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5.5 Commuting Signatures on Several Messages

Automorphic Signatures on Two Messages. Applying the “pair transformation” from Sect.
4.3 (p. 41) to Sig (Scheme 2, p. 37) from Sect. 4.1 we get the following automorphic signature
scheme5 that signs two messages at once—if we restrict the message space to

DH∗ := {(Gm, Hm) |m ∈ Z∗p} = DH \ {(1, 1)} .

Sig∗ := (SetupS,KeyGenS, Sign∗,Ver∗), where Sign∗(sk, (V,W ), (M,N)) for (V,W ), (M,N) ∈ DH∗
is defined as follows: pick a key pair (vk∗, sk∗)← KeyGenS and output6(
vk∗, Sign(sk, vk∗), Sign(sk∗, (M,N)), Sign(sk∗, (V,W ) ◦· (M,N)), Sign(sk∗, (V,W )3 ◦· (M,N))

)
.

Ver∗
(
vk, (V,W ), (M,N),Σ

)
parses Σ as (vk∗,Σ0,Σ1,Σ2,Σ3) and outputs

Ver(vk, vk∗,Σ0)

· Ver(vk∗, (M,N),Σ1) · Ver(vk∗, (V,W ) ◦· (M,N),Σ2) · Ver(vk∗, (V,W )3 ◦· (M,N),Σ3) .

Sig∗ is unforgeable under ADH-SDH and AWF-CDH by Theorems 5 and 3.
Applying the vector transform (Definition 3), Sig∗ can easily be extended for arbitrary many

messages. The scheme however has message spaceM∗ := DH∗. In this section, we define random-
izable, extractable commitments to elements from M∗, and show how to make commitments to
a signature and a proof of validity on a clear and a committed message from M∗. We define the
following:

Committing to M∗ Elements. We define Com∗M that has the same properties as ComM, but
with value space M∗ rather than M. By C∗M we denote the commitment space and by R∗M the
space of randomness. Our instantiation is given in Section 5.5.1.

Partially Blind Automorphic Signatures. Since Sig∗ signs two messages, we can define a
variant of SigCom that gets one message in the clear and one committed message. Based on Sig∗

and Com∗M, we define PSigCom that is given a message M ∈ M∗ and a Com∗M commitment and
outputs a proof of knowledge of a Sig∗ signature on M and the committed value:

PSigCom((ck,ppS), sk,M,C). If M ∈M∗ and C ∈ C∗M then the algorithm outputs a commitment
to a signature and a proof of validity (cΣ, π) which is distributed as[
Σ← Sign∗(sk, (M,V )); ρ← R :

(
Com(ck,Σ, ρ), Prove(ck,EVer∗(vk,(M,·),·), (V, ν), (Σ, ρ))

)]
,

where V and ν are such that C = Com∗M(ck, V, ν).

Note that if in the construction of a blind signature in Sect. 5.2.1 (p. 50) we replace Sig, ComM
and SigCom by Sig∗, Com∗M and PSigCom, we obtain partially blind signatures [AF96] (where the
signer controls part of the message), which are automorphic.

5In Sect. 7.3.1, we give a variant of the scheme Sig with messages in Zp × DH (required by our application to
credentials in Chapter 7) which does not increase the size of a signature.

6Exponentiation of a DH pair is defined componentwise: (M,N)k := (Mk, Nk).
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5.5.1 Commitments to Non-trivial Messages

We instantiate Com∗M, with message spaceM∗ := DH∗ = {(Gm, Hm) |m ∈ Zp\{0}}. To guarantee
that the committed value is not (1, 1), Com∗M must contain additional elements. Intuitively, given
(M,N) ∈ M∗ if we choose l ← Z∗p and publish W = N l then W 6= 1 only if N 6= 1. We add a
commitment cL to Gl and a proof πW that e(Gl, N) = e(G,W ), which proves well-formedness of
W . In the WI setting W, cL, cN and πW perfectly hide N .

Randomization of a Com∗M commitment is a bit trickier than for ComM commitments. Since
l must be from Z∗p, we randomize it multiplicatively, that is, we choose l′ ← Z∗p and replace l by
l · l′, which is then again in Z∗p. This also enables randomization of W as W ′ := W l′ which without
knowledge of N cannot be done additively. (The component U of a ComM commitment (p. 54)
could be randomized additively, since U = T t ·M and T is public.) Finally, Lemma 6 (p. 53) shows
how to adapt cL and πW to the new value l · l′.

We define Com∗M by extending ComM from Sect. 5.4.1 (p. 54):

Com∗M(pp, (M,N), (κ = (t, µ, ν, ρ, σ), η, l)). If (M,N) ∈ DH∗, (κ, η, l) ∈ RM×R×Z∗p =: R∗M then
define

W := N l cL := Com(ck, Gl, η) πW ← Prove(ck,EW , (Gl, η), (N, ν))

with EW (L; N) : e(L,N) = e(G,W ), and output
(
ComM(ck, (M,N), κ),W, cL, πW

)
.

The space of valid commitments is

C∗M :=
{

(C,W, cL, πW ) | C ∈ CM ∧ W 6= 1 ∧ Verify(ck,EW , cL, cN , πW )} .

Com∗M is shown to be binding and computationally hiding analogously to ComM. In partic-
ular, if ck∗ is output by WISetup then for every (M,N) ∈ DH∗, given (C,W, cL, πW ), there
exists (κ, η, l) such that C = ComM(ck∗, (M,N), κ), W = N l, cL = Com(ck∗, Gl, η) and πW ←
Prove(ck,EW , (Gl, η), (N, ν)) with κ = (t, µ, ν, ρ, σ).

Using the results from Sect. 5.3 on properties of Groth-Sahai proofs, we define RdCom∗M by
extending RdComM:

RdCom∗M(pp, (C,W, cL, πW ), (κ′, η′, l′)) returns a commitment (C′,W ′, c′L, π
′
W ) that is equivalent to

the output of Com∗M(pp, (M,N), (κ+κ′, l′ ·η+η′, l ·l′)) computed as C′ := RdComM(pp,C, κ′)
and

W ′ := W l′ c′L := RdCom(ck, (cl
′
L), η′) π′W ← RdProof(ck,EW , (cl

′
L, η
′), (cN , ν ′), πl

′
W )
)

RdCom∗M works as follows: the part C of a commitment is randomized by RdComM which replaces
κ by κ + κ′. Now W is replaced by W l′ , which implicitly replaces l by l · l′. Setting ĉL := cl

′
L,

we get ĉL = Com(ck, Ll
′
, l′ · η) and by Lemma 6, we have that π̂W := πl

′
W is a proof for EW and

(ĉL, cN ). In W ′, ĉL and π̂W , randomness l was thus consistently replaced by l · l′. The final step
is to set c′L = RdCom(ck, ĉL, η′) and π′W ← RdProof(ck,EW , (ĉL, η′), (cN , ν ′), π̂W ). Note that c′L is
thus a commitment to Ll

′
under randomness l′ · η + η′.

If (κ′, η′, l′) is uniformly chosen from R∗M then the randomness after randomization is also
uniform in R∗M.
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5.5.2 Making Commitments to a Signature on a Public and a Committed Message
and a Proof of Validity

We now give an instantiation of PSigCom defined at the beginning of the section. We start by giving
a variant of SigCom that has inputs (ck, sk, (V,W ),C) with (V,W ) ∈M∗ and C ∈ C∗M and outputs
a proof of knowledge of a signature on (V,W ) ◦· (M,N), where (M,N) is the message committed in
C. The verification of a signature on such a product Ver′((X,Y ), (V,W ), (M,N), (A,B,D,R, S))
is done by checking the following equations: EA′ , defined as

EA′(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K · V,H) ,

and EB, ER as defined in (5.5) on p. 56. Since the left-hand sides of EA′ and EA from (5.5) are
equivalent, by Lemma 3 both equations have the same proofs: πA = πA′ . The only thing that
changes w.r.t. SigCom is thus the value A of the pre-signature.

SigCom′(ck, x, (V,W ),C). This variant is defined as SigCom in Figure 5.1, except that A is defined
as A := (K · T r · U · V )

1
x+c .

Proof adaptation to a committed verification key by AdPrCK can also be applied to outputs of
SigCom′, since proofs only depend on the left-hand sides of the equations they prove. Let E bA′ be
EA′ as defined above but with Y being a variable. Since EA′ and EA, as well as E bA and E bA′ ,
have the same left-hand sides, AdPrCK, which transforms a proof for EA into a proof for E bA, also
transforms a proof for EA′ into one for E bA′ .

PSigCom first creates a temporary key pair (vk′, sk′), signs vk′ with the secret key sk, commits
to vk′ and the signature and proves validity. It then uses SigCom′ to create commitments to
signatures on the linear combinations of the clear message (V,W ) and the message committed in
C. The output is a commitment to a signature consisting of vk′, the signature Σ0 on vk′ and the
signatures Σ1,Σ2 and Σ3 on the linear combinations of the messages.

PSigCom(ck, sk, (V,W ),C).

• ((X ′, Y ′), x′)← KeyGenS; (ξ′, ψ′)← R2

cX := Com(ck, X ′, ξ′); cY := Com(ck, Y ′, ψ′); πX := Prove(ck,EDH, (X ′, ξ′), (Y ′, ψ′))

• Σ0 ← Sign(sk, (X ′, Y ′)); σ0 ← R5

cΣ0 := Com(ck,Σ0, σ0); π0 ← Prove(ck,EVer(vk,·,·), (X ′, ξ′), (Y ′, ψ′), (Σ0, σ0))

• (cΣ1 , π
′
1)← SigCom(ck, x′,C); π1 ← AdPrCK(ck, ((X ′, Y ′), (ξ′, ψ′)),C, cΣ1 , π

′
1)

(cΣ2 , π
′
2)← SigCom′(ck, x′, (V,W ),C); π2 ← AdPrCK(ck, ((X ′, Y ′), (ξ′, ψ′)),C, cΣ2 , π

′
2)

(cΣ3 , π
′
3)← SigCom′(ck, x′, (V,W )3,C); π3 ← AdPrCK(ck, ((X ′, Y ′), (ξ′, ψ′)),C, cΣ3 , π

′
3)

• Return
(
cΣ = (cΣ0 , cX , cY , cΣ1 , cΣ2 , cΣ3), π = (π0, πX , π1, π2, π3)

)
A proof of knowledge of a signature (cΣ, π) under vk on the message pair (V,W ) ∈M∗ and (M,N),
which is given as a commitment C ∈ C∗M is then verified by checking the following:

Verify(ck,EVer(vk,·,·), (cX , cY ), cΣ0 , π0), Verify(ck,EDH, cX , cY , πX),

Verify(ck,EVer(·,·,·), (cX , cY ),C, cΣ1 , π1), Verify(ck,EVer′(·,(V,W ),·,·), (cX , cY ),C, cΣ2 , π2),

Verify(ck,EVer′(·,(V,W )3,·,·), (cX , cY ),C, cΣ3 , π3) .
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AdPrC∗K
(
ck, ((X,Y ), (ξ, ψ)), (V,W ),C, (cΣ0 , cX′ , cY ′ , cΣ1 , cΣ2 , cΣ3), (π0, πX , π1, π2, π3)

)
transforms

a proof of validity of a signature committed in cΣ on (V,W ) and the content of C into a proof for
when the verification key (X,Y ) is committed as well.

Let cΣ0 = (cA0 , cB0 , cD0 , cR0 , cS0) and π0 = (π0A , π0B , π0R). Analogously to AdPrCK (p. 59),
AdPrC∗K sets

π̂0A ← RdProof
(
ck,E bA, (c0A , 0), (cX′ , 0), (c0S , 0), (Com(ck, Y, 0), ψ), (c0D , 0), π0A

)
and outputs a randomization of π̂ :=

(
(π̂0A , π0B , π0R), πX , π1, π2, π3

)
.
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Chapter 6

Applications of Automorphic Signatures
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In this chapter we describe applications of automorphic signatures, which we defined and instanti-
ated in Chapter 4. Combining them with Groth-Sahai proofs (Sect. 2.4) we show how to instantiate
the following primitives in a black-box way: the round-optimal blind signatures by Fischlin [Fis06];
the non-interactive anonymous credentials by Belenkiy et al. [BCKL08]; and group signatures sat-
isfying the BSZ model, for which we use the construction by Groth [Gro07].

The second part of the chapter is dedicated to anonymous proxy signatures. We start by
presenting the model that we defined in [1] and give the first efficient instantiation, which makes
use of the full power of automorphic signatures. We then show how to achieve stronger anonymity
definitions and conclude by giving an instantiation in detail. The results of this chapter appear
in [6].

6.1 Black-Box Applications of Automorphic Signatures

6.1.1 Round-Optimal Blind Signatures

In [Fis06], Fischlin gives a generic construction for concurrently executable blind-signature schemes
with optimal round complexity in the common reference string (CRS) model. The construction
relies on commitment, encryption and signature schemes and generic NIZK proofs for NP-languages.
In the signature-issuing protocol, the user first sends a commitment to the message to the signer
(issuer), who responds with a signature on the commitment. The user then constructs the blind
signature as follows: she encrypts the commitment and the signature and adds a NIZK proof that
the signature is valid on the commitment and that the committed value is the message.
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Following [HKKL07], Abe and Ohkubo [AO09] replace the NIZK proof in Fischlin’s construc-
tion by a witness-indistinguishable proof and concretely suggest Groth-Sahai (GS) proofs. (Note
that GS commitments on group elements can be “decrypted” using the extraction key.) To be
compatible, the signature scheme must have messages and signatures consisting of group elements
and verification must amount to evaluating pairing-product equations. However, they only men-
tion the highly inefficient scheme from [Gro06] as a feasibility result and leave open the problem
of an efficient construction. Automorphic signatures satisfy all the compatibility requirements and
enable thus an efficient instantiation of round-optimal blind signatures; it suffices to construct a
commitment scheme such that commitments lie in the message space of the signature (or are vectors
of messages) and correct opening is verifiable by PPEs (as has been done in [AHO10] since).

We directly constructed a scheme in Sect. 4.2 which has smaller blind signatures than an
instantiation of the generic construction: in the end of our issuing protocol, the user holds a
signature on the message rather than on a commitment to it. To make this possible, the user
sends a randomization of the message to the issuer in addition to the commitment. From this, the
issuer makes a “pre-signature” and sends it to the user, who turns it into an actual signature on
the message by adapting the randomness. The blind signature is then a GS proof of knowledge of
a signature on the message (rather than a commitment), which avoids encrypting (committing to)
the commitment and proving that the commitment opens to the message. The size of our signature
is around 30 group elements (depending on the GS instantiation) and the two messages sent during
issuing are even smaller.

6.1.2 P-Signatures and Anonymous Credentials

In order to realize non-interactive anonymous credentials, Belenkiy et al. [BCKL08] introduce a
new primitive called P-signature. It extends a signature and a commitment scheme by the following
functionalities: an interactive protocol Issue↔Obtain between a signer and a user allows the latter
to obtain a signature on a value the signer only knows a commitment to; and the holder of a
message and a signature on it can produce a commitment to the message and a proof of knowledge
of the signature. The commitments and proofs are instantiated with the Groth-Sahai methodology;
the compatible signature scheme is the one discussed in Sect. 1.1. Using an automorphic signature
instead has the following advantages: the signatures and messages being group elements, they can
be extracted in the security reduction, which avoids notions like F -unforgeability. Moreover, a
small modification of the signature-issuing protocol of our blind signatures (cf. Remark 4, p. 41)
yields an efficient Issue↔Obtain protocol (whereas the one in [BCKL08] resorts to generic secure
multiparty computation).

6.1.3 Fully-Secure Group Signatures

In order to implement the model for group signatures by [BSZ05], Groth [Gro07] uses the follow-
ing ingredients to achieve CCA-anonymity:1 a strong one-time signature scheme2 Sigot and the
tag-based encryption scheme [MRY04] Enctb by Kiltz [Kil06]. A tag-based encryption scheme is
a public-key encryption scheme whose encryption and decryption algorithms take as additional

1A group-signature scheme is CCA-anonymous if no adversary can decide which of two users created a group
signature, even if he can query opening of any other group signature.

2More precisely, the scheme must be strongly unforgeable against weak one-time chosen-message attacks, which
means that if an adversary makes a single chosen-message query before receiving the public key it can neither output a
new signed message nor a new signature on the queried message. The signatures Groth uses are the weak Boneh-Boyen
signatures from [BB04].
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argument a tag. Kiltz’ scheme is selective-tag weakly CCA-secure, i.e., an adversary outputting a
tag t∗ (before receiving the public key) and two messages and getting an encryption of one of them
under t∗ cannot decide which one was encrypted—even when provided with an oracle decrypting
any ciphertext with tag t 6= t∗.

In Groth’s group-signature scheme a user produces a signature key pair (vk, sk) and is enrolled
by the issuer who gives her a certificate cert on vk. Now to make a group signature on a message
M , the user holding (cert, vk, sk) generates a key pair (vkot, skot) for Sigot, makes a signature
sig on vkot under vk and produces a Groth-Sahai WI proof of knowledge ξ of (cert, vk, sig) s.t.
cert is a valid certificate on vk and sig is a signature on vkot valid under vk. She produces an
Enctb-ciphertext C encrypting sig under tag vkot and adds a Groth-Sahai NIZK proof ζ that the
encrypted value sig is the same as in the commitment contained in ξ. Using skot, she finally makes
a signature sigot on (M, vkot, ξ, C, ζ) and outputs the group signature σ = (vkot, ξ, C, ζ, sigot). To
verify σ, check whether sigot, the proofs ξ and ζ, and the ciphertext C are valid. The opener holds
a key enabling her to extract (cert, vk, sig) from ξ. The key vk allows to determine the signer and
sig acts as a non-frameable proof of correct tracing.

Using automorphic signatures to instantiate the schemes for cert and sig immediately yields a
group signature scheme secure in the BSZ-model. More concretely, in [4] we suggested to substitute
the certified-signature scheme used by Groth, which is based on the “q-U Assumption”, by one based
on the more natural DH-SDH (Sect. 3.2). Our replacement however used Waters signatures [Wat05]
which entail a dramatic increase of the public-key size. This can be avoided by using instead the
certified-signature scheme given in Remark 2 (p. 36), which is based on DH-SDH as well.

6.2 Anonymous Proxy Signatures

6.2.1 The Model

Anonymous proxy signatures (APS) generalize group signatures in that everyone can become a
group manager by delegating his signing rights to other users who can then anonymously sign
in his name; moreover, received rights can be re-delegated. To make it possible that an opening
authority can trace the anonymous delegators and signers, the users have to register with an issuing
authority when joining the system. We give a brief overview of our model defined in [1].

Algorithm Setup establishes the public parameters and also outputs a key for the issuer. Users
generate key pairs using KeyGen and run a protocol Reg with the issuer and their opener when
joining the system. To delegate to Bob, Alice runs Delgt on Bob’s public key, which produces a
warrant she gives to Bob. With this warrant, Bob can either sign or re-delegate to Carol, in which
case Carol can again re-delegate or produce a proxy signature with PSign on behalf of Alice, which
is verifiable by Ver on Alice’s verification key.

Anonymity ensures that from a proxy signature one cannot tell who actually signed (or re-
delegated), thus Bob and Carol remain anonymous. Anonymity is formalized as follows: The
adversary gets the parameters and the issuing key (and can therefore register and delegate users);
it then outputs: a public key (of the original delegator), two secret keys and warrants for them
and a message. If the warrants are both valid and of equal length, the adversary is given a proxy
signature using one of them and has to decide which one.

In case of dispute, Alice’s opener can revoke the anonymity of the intermediate delegators and
the proxy signer: given a proxy signature it outputs a list of users representing the delegation chain,
and a proof of correctness of opening. The notion of unforgeability is defined analogously to that of
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group signatures in [BSZ05]. Traceability asserts that every valid proxy signature can be opened to
registered users and non-frameability guarantees that no adversary, even when colluding with the
issuer, openers and other users, can produce a signature, a list of users and a proof that accuses
an honest user of a delegation or a signing she did not perform.

A Generic Construction. Our generic construction in [1] proving feasibility of the model is as
follows. Assume an EUF-CMA-secure signature scheme, an encryption scheme with indistinguish-
able ciphertexts under chosen-ciphertext attack [RS92], and a simulation-sound zero-knowledge
proof system for NP languages [Sah99].

Setup chooses a key pair for the signature scheme and a common reference string (CRS) for the
NIZK proof system. The verification key and the CRS are defined as the public parameters and
the signing key is given to the issuer. When enrolling, a user Ui chooses a signing/verification key
pair and obtains a signature certi on her verification key vki from the issuer. Ui’s opener chooses
a key pair for the encryption scheme, of which the user adds the encryption key to her public key
pki and the opener keeps the decryption key as opening key.

A warrant warr1→2 from user U1 to user U2 is a signature on (vk1, vk2) valid under vk1.
U2 re-delegates to U3 by sending warr1→2 and warr2→3, a signature on (vk1, vk2, vk3) under
vk2. Additionally, in each delegation step, the delegators’ certificates are also passed on. Given
a warrant (warr1→2,warr2→3), U3 proxy-signs a message M on behalf of U1 as follows: first
produce a signature sig on (vk1, vk2, vk3,M) using sk3; then define the plain proxy signature
as (warr1→2, vk2, cert2,warr2→3, vk3, cert3, sig). In general we say that a plain proxy signature
Σ = (warr1→2, . . . , vkk, certk, sig) on message M is valid under key vk1 if:

• ∀i : certi is a signature on vki valid under the issuer’s verification key;
• ∀i : warri→i+1 is a signature on (vk1, . . . , vki+1) valid under vki; (VerPPS)
• sig is a signature on (vk1, . . . , vkk,M) valid under vkk.

Now to transform this into an anonymous proxy signature, the signer encrypts Σ under the public
key of U1’s opener (contained in vk1) and adds a NIZK proof that the plaintext satisfies the
verification relations of a plain proxy signature in (VerPPS). Due to her decryption key, the opener
can retrieve the plain signature and thus trace the delegators and the signer. The warrants and sig
are non-frameable proofs of correct tracing.

6.2.2 Concrete Instantiations

Restricting the model to CPA-anonymity (where the adversary trying to break anonymity is not
given access to an opening oracle), the building blocks can be instantiated as follows: define en-
cryption to be Groth-Sahai (GS) commitments (which can be “decrypted” due to extractability)
and use GS proofs to show that the verification relations are satisfied by the committed values.
For this to work however, the plain proxy signatures must fit the GS framework; meaning that the
EUF-CMA signature scheme’s verification keys, messages and signatures must be group elements
satisfying pairing-product equations, and the signing keys must lie in the message space; in short,
they must be automorphic signatures. In [3] we gave a CPA-anonymous instantiation of APS which
is however fairly inefficient due to the used signature scheme (its public keys contain several com-
mitments to each bit of the corresponding secret key). Moreover, we only considered one general
opener and there is a maximum number of consecutive re-delegations. These limitations are easily
overcome by using automorphic signatures.

In the next section, we show how to make the above scheme CCA-anonymous and thus fully
satisfy the security model defined in [1]. In Sect. 6.2.4 we discuss how to sign one message on
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behalf of several delegators and in Sect. 6.2.5 we show how to achieve anonymity of the delegator
or the delegatee w.r.t. each other. (The model in [1] only considers anonymity towards the verifier.)
In all our constructions, public attributes can be easily included as messages for the signatures in
delegation. The delegators can thus specify for which tasks they delegate signing rights.

6.2.3 CCA-Anonymous Proxy Signatures

CCA-anonymity (i.e., anonymity against adversaries provided with an opening oracle) of Groth’s
group signatures [Gro07] (sketched in Sect. 6.1.3, p. 67) is proved as follows: modify the security
game by substituting the opener’s commitment key by one that results in perfectly hiding commit-
ments and perfectly WI proofs; due to the additional encryptions contained in a group signature,
opening queries for all but the challenge signature can still be simulated. So a break of anonymity
can be used to break the security of the tag-based encryption scheme.

We transform the anonymous proxy signature scheme given in the previous section into one
satisfying CCA-anonymity analogously. Let Sigot denote the weak Boneh-Boyen signatures from
[BB04] and let Enctb denote Kiltz’ tag-based encryption scheme from [Kil06]. Suppose a proxy
signer holds W := (vk1, (warri, certi, vki)ki=2) and skk. To make a signature, she first chooses keys
(vkot, skot) ← KeyGenot and signs vkot (instead of M) with her personal key skk yielding sig. She
makes commitments ~c to the elements of W and sig, and adds a WI proof πj for each equation Ej
in (VerPPS) in Sect. 6.2.1, which are satisfied by W and sig—as in the original scheme.

In addition, for 2 ≤ i ≤ k she computes an Enctb-encryption Ci of warri under tag vkot and,
as in [Gro07], she makes a Groth-Sahai NIZK proof ζi that the plaintext of Ci is the value com-
mitted in cwarri . She computes sigot := Signot(skot, (vkot,M,~c, ~π, ~C, ~ζ)) and outputs the signature
(vkot,~c, ~π, ~C, ~ζ, sigot). A signature is valid if sigot is valid under vkot, the proofs πj are valid for all
j, and the proofs ζi and the ciphertexts Ci are valid for all i. Given a valid signature, the opener
returns the values (vki,warri)ki=1 extracted from the commitments ~c using the extraction key.

The proof for CCA-anonymity is analogous to that for Groth’s group signatures. Let Game 0
denote the game for CCA-anonymity defined in [1]. The adversary A controls the issuer and the
users and has on opening oracle simulating an honest opener. After the first phase A returns a
public key pk for an original delegator, two user secret keys and two valid warrants of equal length
from pk to the users, as well as a message. A receives an anonymous proxy signature produced with
one of the secret keys and the corresponding warrant. After a second phase of opening queries, A
has to decide which key/warrant pair was used.

In Game 1, the opening queries are simulated by decrypting ~C, checking for which users the
warrants are valid and returning their registered keys together with the warrants. Soundness of the
proofs ~ζ guarantees perfect simulation. In Game 2, we replace the opener’s commitment key by a
witness-indistinguishable key and in Game 3 we simulate the proofs in ~ζ. The unforgeability of the
one-time signature Sigot prevents the adversary from querying opening of a proxy signature which
is different from the challenge but contains the same vkot. We can thus use an adversary winning
Game 3 to break selective-tag weak CCA security of Enctb (see Sect. 6.1.3, p. 67) since we only
have to answer decryption queries for tags vk′ot 6= vkot.

6.2.4 Multiple Original Delegators

If in anonymous proxy signatures, we allow delegation to take the form of a tree (whose leaves
represent original delegators, and delegation goes from the leaves to the root) rather than a list, we
can define proxy signatures on behalf of several originators. For example, consider three original
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delegators O, P , Q, the first of which delegates to A who re-delegates to B. User B is also delegated
by P and re-delegates the rights for both O and P to C. Moreover Q delegates to C. Now C can
produce a signature on behalf of O, P and Q.

In general, we define a multi-originator signature (MOS) recursively (for simplicity we assume
the verification keys contain their certificates): A (plain) MOS consists of a signature on the
message, the proxy signer’s verification key and a list of objects del for the signer (which represent
the delegations to her). A del for user U is either a warrant from an originator for U or a warrant
from a user U ′, the verification key of U ′ and a list of del’s for U ′. A (plain) signature on behalf
of a set of originators is valid if the signature on the message is valid, all warrants are valid and it
contains a warrant from each of the originators. As for the single-originator case, a plain signature
is anonymized by committing to its components and adding proofs of validity.

In the above example, a signature by C on behalf of O, P and Q has the following form (we let
ξU1→U2 denote cU1→U2 ‖πU1→U2 , and ξM denote a commitment to sig and a proof of validity):{

ξM , cC ,
{{
ξB→C , cB, {{ξA→B, cA, ξO→A}, ξP→B}

}
, ξQ→C

}}
.

6.2.5 Anonymous Proxy Signatures with Enhanced Anonymity Guarantees

We briefly sketch how to instantiate the extended model of APS discussed at the end of Sect. 1.1.
A formal description can be found in the end of this section.

Blind Delegation. Using our blind automorphic signatures from Sect. 4.2, we can define blind
delegation: instead of directly signing the delegatee’s public key, the delegator runs a blind issuing
protocol with the delegatee. In the end, the latter holds an actual warrant and continues as in the
original APS scheme. The identity of the delegatee remains thus hidden to the delegator.

Delegator Anonymity. Due to the modularity of Groth-Sahai proofs (for each equation its
proof only depends on the commitments to the variables appearing in it), the “anonymization”
of a signature need not be delayed until the proxy signing: warrants can be anonymized by the
delegators already and randomized in each delegation step (which prevents linkability of signatures
and delegations). However, we need to revise the way warrants are defined, since the present
scheme requires knowledge of the identities of all previous delegators to construct them. We follow
the general approach by [BCC+09], who associate an identifier id to each original delegation. A
warrant from the user at level i in the delegation chain to the next one is then a signature on
(H(id‖ i), vki+1) under vki, where H : {0, 1}∗ → G is a collision-resistant hash function.3 The hash
value prevents combining different warrants and reordering within a warrant.

Consider the following situation (again we simplify our exposition by assuming the certificate
from the issuer is contained in the user public key, and by omitting the hash values): Oliver (the
original delegator), owning vkO, delegated to Alice by giving her a signature warrO→A on her key
vkA. Alice re-delegates to Bob sending him (warrO→A, vkA,warrA→B). Bob can now delegate to
Carol without revealing Alice’s identity : He makes commitments cO→A, cA and cA→B to warrO→A,
vkA and warrA→B, respectively. He makes a trivial commitment cB = Com(ck, vkB, 0) to his own
key, and the following proofs: πO→A for cO→A containing a valid warrant from vkO to the content
of cA, and πA→B for cA→B containing a valid warrant from the content of cA to the content of cB.
He sends w̃arr := (vkO, cA, cO→A, πO→A, cB, cA→B, πA→B) and a warrant warrB→C to Carol.

3Since id and i are publicly known, H(id‖ i) ∈ G will be considered a constant in the Groth-Sahai proofs.
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Now, Carol produces a signature on behalf of Oliver on M as follows (re-delegation works
analogously): make a signature sig on M valid under vkC ; randomize the commitments and adapt
the proofs in w̃arr, in particular, set c′B := RdCom(ck, cB, ρB); make commitments to warrB→C ,
vkC and sig, and proofs of validity of warrB→C and sig. Note that for the first proof the randomness
of the related commitments—in particular c′B—is required. Since cB was a trivial commitment,
the randomness of c′B is ρB which was chosen by Carol (cf. Sect. 2.4).

Remark 8. (1) Note that delegator-anonymous delegation is compatible with blind delegation:
instead of simply sending warrB→C , Bob runs the interactive blind-issuing protocol with Carol,
upon which she obtains warrB→C and continues as above.
(2) Bob could also hide his own identity to Carol as follows: he sends (hiding) commitments to
his own key and to warrB→C , and in addition a trivial commitment to Carol’s key and proof of
validity of warrB→C . Carol randomizes what Bob sent her, commits to a signature on the message
and proves validity. In the next section, we formally describe an instantiation of anonymous proxy
signatures with delegator anonymity.

6.2.6 An Anonymous Proxy Signature Scheme with Delegator Anonymity

We formally describe an instantiation of anonymous proxy signatures with delegator anonymity as
discussed in Remark 8 (2).

Building Blocks. To instantiate APS with delegator anonymity, we will use the following building
blocks that were introduced in Sections 2.4 and 4.1, respectively. We can instantiate them over
asymmetric bilinear groups in which SXDH holds, or over symmetric groups in which DLIN is hard.

• Commitments: ExSetup(·) takes as input the asymmetric (or symmetric) bilinear group and
outputs a commitment key ck ∈ G3

1 × G3
2 (or ck ∈ G5) and an extraction key ek ∈ Z 2

p .
On inputs a commitment key, a group element, and randomness from R := Z 2

p (or R :=
Z 3
p ), Com(·, ·, ·) outputs a commitment consisting of 2 (or 3) group elements. RdCom(·, ·, ·)

takes a commitment key, a commitment and fresh randomness, and outputs a randomized
commitment to the same value; Extr(·, ·) outputs the committed value on input ek and a
commitment.

• Groth-Sahai proofs: Prove(·, ·, ·) produces a proof in G4
1×G4

2 (for the DLIN instantiation, the
proofs are in G3 for linear equations, and in G9 for general equations) on inputs a commitment
key, the description of a PPE and a vector of pairs of committed values / randomness. On
inputs the commitment key, the equation description, a vector of commitments and a proof,
Verify(·, ·, ·) outputs a value in {0, 1}. The algorithm RdProof(·, ·, ·) takes as inputs a commit-
ment key, an equation description, a vector of pairs of commitments and fresh randomness,
and a proof; and outputs a new proof adapted to the randomizations of the commitments.

• Automorphic signatures: let Sig = (SetupS,KeyGenS,SignS,VerS) denote Scheme 2 from
Sect. 4.1 (p. 37) and Sig′ be the pair transformation of Sig (Definition 2, p. 41). For
vk = (X,Y ), msg = (M,N) and Σ = (A,C,D,R, S), let EVer(vk,msg,Σ) denote the equations
in (4.2) and e(M,H) = e(G,N). (We implicitly assume fixed parameters (G,F,K, T,H).)
Analogously, let EVer′(vk,(msg1,msg2),Σ) be the verification relations for a signature of the pair
transform on 2 DH-pairs.

We now formally describe the scheme.
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Setupaps(1λ)

• Generate a bilinear group grp for security parameter λ.

• Run SetupS(grp) to get parameters ppS.

• Run KeyGenS(ppS) to produce a key pair (ipk, ik). Return the public parameters pp :=
(ppS, ipk) and the issuer’s key ik.

Regaps is a protocol between a new user, the issuer and the user’s opener.

• The user runs (vk, sk) ← KeyGenS(ppS) and produces a signature (possibly via an external
PKI4) Σpki on vk. She sends (vk,Σpki) to the issuer and vk to the opener.

• The issuer checks Σpki, produces cert ← SignS(ik, vk), sends cert to the user, and writes
(vk,Σpki) to its register.

• The opener runs (ck, ek) ← ExSetup(grp) and sends ck to the user. It sets the opening key
as ok := (vk, ck, ek).

• The user sets his public key upk = (vk, ck) and his secret key usk = (upk, sk, cert).

Delgtaps(usk, [warr],upk)

• Set k = 0 if this is an original delegation (i.e., there is no optional argument warr), otherwise
let k be s.t. this is the k-th intermediate delegation. Parse usk as

(
(vkk, ckk), skk, certk

)
and

the delegatee’s public key upk as (vkk+1, ckk+1).

• If k = 0 then choose an identifier id, compute warr0→1 ← Sign′S
(
sk0, (H(id ‖ 1), vk1)

)
and

return (ck0, id, vk0,warr0→1).

• If k = 1 then do the following:

− Parse warr as (ck, id, vk0,warr0→1).

− Compute warr1→2 ← Sign′S
(
sk1, (H(id‖2), vk2)

)
.

− Choose ξ, γ, ω1, ω2 and compute the following commitments and proofs:
cwarr0→1 ← Com(ck,warr0→1, ω1, cvk1 ← Com(ck, vk1, ξ),
ccert1 ← Com(ck, cert1, γ),
cwarr1→2 ← Com(ck,warr1→2, ω2, cvk2 ← Com(ck, vk2, 0),
πcert1 ← Prove

(
ck,EVer(ipk,·,·), ((vk1, ξ1), (cert1, γ)

)
,

πwarr0→1 ← Prove
(
ck,EVer′(vk0,(H(id‖1),·),·),

(
(vk1, ξ), (warr0→1, ω1

))
,

πwarr1→2 ← Prove
(
ck,EVer′(·,(H(id‖2),·),·),

(
(vk1, ξ), (vk2, 0), (warr1→2, ω2

))
.

− Return warr ′ :=
(
ck, id, vk0, (cwarr0→1 , πwarr0→1 , cvk1 , ccert1 , πcert1),

cwarr1→2 , πwarr1→2 , cvk2

)
.

• Otherwise, do the following:

− Parse warr as
(
ck, id, vk0, (cwarr(i−1)→i , πwarr(i−1)→i , cvki , ccerti , πcerti)

k−1
i=1 ,

cwarr(k−1)→k , πwarr(k−1)→k , cvkk

)
.

− Compute warrk→(k+1) ← Sign′S
(
skk, (H(id‖k + 1), vkk+1)

)
.

4To achieve strong notions of non-frameability, it is necessary to assume an external public-key infrastructure
(PKI) (cf. [BSZ05])
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Applications of Automorphic Signatures

− Choose randomness for commitments and randomization: Pick ξi, γi, ωi for 1 ≤ i ≤ k
and ωk+1.

− Randomize the commitments and adapt the proofs in warr:
For 1 ≤ i ≤ k: c′warr(i−1)→i

← RdCom(ck, cwarr(i−1)→i , ωi), c′vki
← RdCom(ck, cvki , ξi),

π′warr(i−1)→i
← RdProof

(
ck,EVer′(·,(H(id‖i),·),·),

((cvki−1
, ξi−1), (cvki , ξi), (cwarr(i−1)→i , ωi)), πwarr(i−1)→i

)
.

For 1 ≤ i ≤ k − 1: c′certi ← RdCom(ck, ccerti , γi),
π′certi ← RdProof

(
ck,EVer(ipk,·,·),

(
(cvki , ξi), (ccerti , γi)

)
, πcerti

)
.

− Compute the following commitments and proofs:
ccertk ← Com(ck, certk, γk), cwarrk→(k+1)

← Com(ck,warrk→(k+1), ωk+1),
cvkk+1

← Com(ck, vkk+1, 0),
πcertk ← Prove

(
ck,EVer(ipk,·,·), ((vkk, ξk), (certk, γk)

)
πwarrk→(k+1)

← Prove
(
ck,EVer′(·,(H(id‖k+1),·),·),((vkk, ξk), (vkk+1, 0), (warrk→(k+1), ωk+1))

)
.

− Return warr ′ =
(
ck, id, vk0, (c′warr(i−1)→i

, π′warr(i−1)→i
, c′vki

, c′certi , π
′
certi)

k−1
i=1 ,

(c′warr(k−1)→k
, π′warr(k−1)→k

, c′vkk
, ccertk , πcertk), cwarrk→(k+1)

, πwarrk→(k+1)
, cvkk+1

)
.

PSignaps(usk,warr,msg) Signing is done similarly to delegation, where the message now plays
the rôle of vkk+1. Since the message is public, it is not committed to; moreover, ck and
vk0 are part of the verification key and need thus not be included in the signature (see (6.1)
below).

Veraps(upk,msg,Σ)

• Parse upk as (vk0, ck) and parse the signature Σ as(
id, (cwarr(i−1)→i , πwarr(i−1)→i , cvki , ccerti , πcerti)

k
i=1, csig, πsig

)
. (6.1)

• Return 1 if all of the following return 1, otherwise return 0.

− Verify
(
ck,EVer(ipk,·,·), (cvki , ccerti), πcerti

)
, for 1 ≤ i ≤ k;

− Verify
(
ck, EVer′(vk0,(H(id‖i),·), ·), (cvk1 , cwarr0→1), πwarr0→1

)
;

− Verify
(
ck, EVer′(·,(H(id‖i),·),·), (cvki−1

, cvki , cwarr(i−1)→i), πwarr(i−1)→i

)
, for 2 ≤ i ≤ k;

− Verify
(
ck, EVer′(·,(H(id‖k+1),msg),·), (cvkk , csig), πsig

)
.

Openaps(ok,msg,Σ) Parse ok as (vk, ck, ek), parse Σ as (6.1) and check if it is valid. If so
then set vki ← Extr(ek, cvki) and warr(i−1)→i ← Extr(ek, cwarr(i−1)→i) for 1 ≤ i ≤ k, and
sig ← Extr(ek, csig). Return

(
(vk1, . . . , vkk), (warr0→1, . . . ,warr(k−1)→k, sig)

)
, where the sec-

ond component is the proof.

This concludes our description of a proxy signature scheme based on automorphic signatures where
the signers and the delegators are anonymous w.r.t. the verifier, and the delegatees are anonymous
w.r.t. the delegators.

74



Chapter 7

Non-interactively Delegatable Anonymous
Credentials
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Our main application of commuting signatures and verifiable encryption is a black-box construction
of a delegatable anonymous credential scheme with a non-interactive delegation protocol. The
scheme borrows the idea of combining Groth-Sahai proofs and automorphic signatures from the
instantiation of anonymous proxy signatures in the previous chapter. This primitive is similar to
delegatable credentials in that it enables to prove knowledge of a certification chain, but there is
no mutual anonymity of the users in the delegation protocol. Commuting signatures now allow
to define a delegation protocol where both delegator and delegatee remain anonymous w.r.t. each
other. Moreover, the protocol is non-interactive, that is, a user can publish a pseudonym (a
commitment to the user public key), which can be used by the delegator to produce a credential
for the user—as it would be in the non-anonymous case with public keys instead of pseudonyms.

We start by presenting the model for delegatable credentials defined in [BCC+09]. In Sect. 7.2
we give our instantiation of it, and compare it to that from [BCC+09] in the subsequent section.
The results of this chapter appear in [8].

7.1 The BCCKLS Model

The system parameters are set up by a trusted party. Every user holds a secret key sk, of which
she can publish pseudonyms Nym. Any user can be the originator of a credential by publishing
a pseudonym NymO as the public key. To issue or delegate a credential, the issuer and the user
(both known to each other under their respective pseudonyms) run a protocol at the end of which
the user holds a credential. The holder can produce a credential proof for a particular pseudonym
which proves that the owner of that pseudonym holds a credential rooted at some public key NymO.
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Thus, if user U was issued a credential under pseudonym NymA, she can make a credential proof
for any other pseudonym Nym′A.

In our non-interactive instantiation we have the following: To delegate (or to issue) a credential
to a user known to the delegator under NymU , the delegator produces (without interacting with the
user) a ready credential proof for NymU . The user can turn this credential proof into a credential,
which (as in the BCCKLS model) she can use to make a credential proof for another pseudonym.

A (non-interactively) delegatable anonymous credential system consists of the following al-
gorithms:1 SetupC generates the parameters, KeyGenC generates secret keys, of which NymGen
outputs pseudonyms. Issue produces a credential proof for another user (delegation/issuing), from
which that user can obtain an actual credential by running Obtain. With CredProve, a user makes
a credential proof for one of his own pseudonyms; and proofs are verified by CredVerify. In detail:

SetupC(1λ) outputs the system parameters pp.

KeyGenC(pp) creates a user secret key sk.

NymGen(pp, sk) outputs a new pseudonym Nym and auxiliary information aux related to Nym.

Issue(pp,NymO, skI ,NymI , auxI , cred,NymU , L) : skI ,NymI and auxI are the issuer’s secret key,
pseudonym and auxiliary information. cred is a level L credential for the issuer rooted at
NymO, and NymU is the pseudonym of the delegated user. If L = 0 then cred = ε. The
algorithm outputs credproof .

Obtain(pp,NymO, skU ,NymU , auxU ,NymI , L, credproof ) : skU ,NymU and auxU are the user’s se-
cret key, pseudonym and auxiliary information. NymO and NymI are the originator’s and
the issuer’s pseudonym, and credproof is a proof that the user behind NymU holds a level L
credential from NymO. The algorithm outputs a credential cred.

CredProve(pp,NymO, cred, sk,Nym, aux, L) takes a level L credential cred from NymO for Nym,
and sk,Nym and aux, and outputs a credproof for Nym.

CredVerify(pp,NymO, credproof,Nym, L) verifies a level L credproof for a pseudonym Nym rooted
at NymO.

Note that CredProve outputs a credproof for the user that runs it, while Issue outputs a credproof for
a different user. Security is defined by correctness, anonymity and unforgeability, which we sketch
below. For a formal security definition we refer to Appendix A of the full version of [BCC+09].

Correctness. A credential is proper if for all user pseudonyms, CredProve outputs a proof that is
accepted by CredVerify. Run honestly, Issue and Obtain must produce a proper credential.

Anonymity. Anonymity means that an adversary interacting with honest users cannot distinguish
the real game from an ideal game in which the pseudonyms, credentials and proofs are independent
of users’ identities and credentials. Formally, there exists a simulator (SimSetupC, SimCredProve,
SimIssue, SimObtain) with the following properties: SimSetupC outputs parameters that are indistin-
guishable from those produced by Setup and a trapdoor sim. Under theses parameters the outputs
Nym of NymGen are distributed independently of sk.

SimCredProve gets sim instead of cred, sk and aux and outputs credproof that is indistinguish-
able from outputs of CredProve. SimIssue has input sim instead of skI , auxI and cred and cannot
be distinguished from Issue by an adversary interacting with it. SimObtain gets sim instead of
skU and auxU and cannot be distinguished from Obtain by an adversary interacting with it. All
indistinguishability notions hold against adversaries who are given sim.

1Since, as opposed to [BCC+09], we consider non-interactive delegation, Issue and Obtain are not interactive
algorithms; the output of Issue is credproof which is an additional input to Obtain.
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Note that for the case of non-interactive delegation, this means: SimIssue produces credproof
that is indistinguishable from outputs of Issue. And SimObtain is obsolete, since the issuer does not
interact with it.

Unforgeability. An adversary breaks unforgeability if he produces a proof that some Nym has
a credential although such a credential has never been issued to any pseudonym of the owner of
Nym. To formalize the notion of “owner”, we define an extraction algorithm that extracts from
a pseudonym a user identity vk, which is uniquely defined by the secret key. Moreover, from a
credential proof it extracts the identities that represent the underlying delegation chain. We say that
a forgery occurs if the adversary produces a credential for authority vk0 from which are extracted
(vk1, . . . , vkL−1, vkL) such that vkL−1 is the identity of an honest user who never delegated a level
L credential rooted at vk0 to vkL. Unforgeability is formalized as follows:
(I) There exists ExSetupC that outputs parameters pp (distributed as those from SetupC) and an
extraction key ek. Under pp pseudonyms are perfectly binding for sk and ExtractC, using ek,
extracts the identity vk from a pseudonym. Given a level L credproof , ExtractC outputs the chain
of L identities.
(II) No adversary A can output a valid credential from which an unauthorized chain of identities
can be extracted. A is given the parameters and the extraction key, and has oracles to add
honest users, request pseudonyms from them, request issuings between honest users, request proofs
and it can run Issue and Obtain with the simulator who plays the role of honest users. When
A requests Issue for (NymO,NymI ,NymU , cred, L), the simulator extracts vkO, vkI , vkU from the
pseudonyms and adds (vkO, L+ 1, vkI , vkU ) to a list ValidCredentialChains. The adversary wins if
it outputs a valid triple (NymO, credproof ,Nym), from which can be extracted (vk0, . . . , vkL) s.t.
(vk0, i, vki−1, vki) /∈ ValidCredentialChains for some i and vki−1 is an honest user identity.

7.2 Our Instantiation

In the instantiation from [BCC+09] the system parameters are a Groth-Sahai (GS) commitment key
and parameters for an authentication scheme. Each user holds a secret key x for the authentication
scheme. A pseudonym is made up of two GS commitments to Hx and Ux (from which x cannot
be extracted), respectively, for parameters H and U . To issue and delegate, the issuer and the
user jointly compute a proof of knowledge of an authenticator on the user’s secret key, which is
valid under the issuer’s secret key. The authors define a complex interactive two-party protocol for
this. A credential is then a chain of pseudonyms and committed authenticators with GS proofs of
validity.

We replace the authentication scheme by an automorphic signature scheme. A non-anonymous
credential for vkL rooted at vk0 is a chain of public keys and signatures (Σ1, vk1,Σ2 . . . , vkL−1,ΣL),
where Σi is a signature on vki under vki−1. To achieve anonymity, the public keys and signatures
in the credential are committed to and proofs of validity are added. Using commuting signatures,
given a commitment to a public key, the issuer can directly make a commitment to a signature on
it and a validity proof. This is what enables non-interactive delegation.

Commuting Signatures with Partially Public Messages. To instantiate credentials, merely
signing user public keys does not suffice. The issuer of a credential might want to add public
information to the credential, such as attributes. For delegatable credentials it is also required to
include the originator’s pseudonym and the delegation level in each certificate to prevent combining
different credentials and changing the order within a credential.
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In Sect. 7.3.1, we give an automorphic signature scheme Sig′′, where in addition to the message,
the signer can specify some public value. The message space of Sig′′ is Zp ×M. Our scheme only
extends the parameters of pp by one group element, but is otherwise as efficient as Sig, in particular,
Sig- and Sig′′ signatures have the same size. For Sig′′ we also define an algorithm VK that on
input a signing key outputs the corresponding verification key, which allows us to comply with the
formal definition of credentials in [BCC+09]. In Sect. 7.3.2, we define SigCom′′, which is SigCom
adapted to Sig′′ and thus has the public part of the message as additional input. Moreover, we
show that all the other algorithms defined in Definition 5 and instantiated in Sect. 5.4 work equally
for Sig and Sig′′.

For our instantiation, we assume a collision-resistant hash function H : CM × N→ Zp.

More Intuition. We informally describe how our algorithms work. SetupC generates a key for
Com and parameters for Sig′′, KeyGenC outputs a signing key for Sig′′, and given a secret key,
NymGen outputs a commitment to the corresponding verification key and the used randomness as
auxiliary information. A level L credential proof from Nym0 to NymL has the form

credproof = (c1, π1,Nym1, c2, π2, . . . ,NymL−1, cL, πL) ,

where ci is a commitment to a signature Σi on the public value H(Nym0, i) and the key committed
in Nymi, valid under the key committed in Nymi−1; and πi is a proof of validity of Σi. We call it
a credential if it is valid on a trivial NymL, i.e., when NymL = Com(ck, vkL, 0).

CredProve takes a credential and turns it into a credential proof by randomizing all its compo-
nents, but using aux s.t. NymL = Com(ck,VK(sk), aux) for the last component. CredVerify verifies
a credproof by checking the proofs contained in it. Given a level L credential, Issue extends it by
one level and makes a credential proof for NymL+1: if it is not an original issuing, it first makes a
credproof for the issuer’s pseudonym NymI ; using SigCom′′ it produces (cL+1, πL+1) for NymL+1,
and turns πL+1 into a proof for the committed verification key NymI by running AdPrCK on ran-
domness auxI . Obtain turns a credential proof into a credential by adapting the randomness to
make it valid for a trivial NymL.

Algorithm Specification. We now formally define the algorithms of our scheme Cred.

SetupC(1λ). Run ck← Setup; ppS ← Setup′′S; return pp := (ck, ppS), which defines Ver′′,M,RM, CM

KeyGenC(pp). Parse pp (ck,ppS); run (vk, sk)← KeyGen′′S(ppS); return sk

NymGen(pp, sk). Choose aux← RM; return
(
Nym :=ComM(pp,VK(sk), aux), aux

)
Issue(pp,NymO, skI ,NymI , auxI , cred,NymU , L).
• If NymI 6= ComM(pp,VK(skI), auxI) or NymU /∈ CM then abort

• Case L = 0: if cred 6= ε or NymO 6= NymI then abort

Case L > 0: set credproof ← CredProve(pp,NymO, cred, skI ,NymI , auxI , L)
and abort if it fails

• (cL+1, πL+1)← SigCom′′
(
pp, skI ,H(NymO, L+ 1),NymU

)
π′L+1 ← AdPrCK

(
pp, (VK(skI), auxI),NymU , cL+1, πL+1

)
• Case L = 0: return (c1, π

′
1)

Case L > 0: return credproof ‖(NymI , cL+1, π
′
L+1)
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Obtain(pp,NymO, skU ,NymU , auxU ,NymI , L; credproof ).
• Case L = 0: if NymO 6= NymI then abort; parse credproof  (c1, π1)

Case L > 0: parse credproof  credproofL ‖(NymL+1, cL+1, πL+1);
if NymL+1 6= NymI then abort

• If NymU 6= ComM(pp,VK(skU ), auxU ) or CredVerify(pp,NymO, credproof,NymU , L+ 1) = 0
then abort

• Parse pp (ck,ppS);

π′L+1 ← RdProof
(
ck,EVer′′(·,H(NymO,L+1),·,·), (NymI , 0), (NymU ,−auxU ), (cL+1, 0), πL+1

)
• Case L = 0: return (c1, π

′
1)

Case L > 0: return credproofL ‖(NymL+1, cL+1, π
′
L+1)

CredProve(pp,NymO, cred, sk,Nym, aux, L).
• If Nym 6=ComM(pp,VK(sk), aux) or CredVerify

(
pp,NymO, cred,ComM(pp,VK(sk), 0), L

)
= 0

then abort

• Parse pp (ck,ppS) and cred (c1, π1,Nym1, c2, π2, . . . ,NymL−1, cL, πL)

• For i = 1 . . . L, pick νi ← RM, γi ← R. Set Nym0 :=NymO, ν0 :=0, NymL :=Nym, νL :=aux

• For i = 1 . . . L do

Nym′i := RdComM(pp,Nymi, νi); c′i := RdCom(ck, ci, γi)
π′i ← RdProof

(
ck,EVer′′(·,H(NymO,i),·,·), (Nymi−1, νi−1), (Nymi, νi), (ci, γi), πi

)
• Return (c′1, π

′
1,Nym′1, c

′
2, π
′
2, . . . ,Nym′L−1, c

′
L, π

′
L)

CredVerify(pp,NymO, credproof,Nym, L)
• Parse pp (ck,ppS), credproof  (c1, π1,Nym1, . . . , cL, πL),

let Nym0 := NymO, NymL := Nym

• If ∀ 1 ≤ i ≤ L : Verify
(
ck,EVer′′(·,H(NymO,i),·,·),Nymi−1,Nymi, ci, πi

)
= 1 and Nymi ∈ CM,

then return 1

Theorem 10. Let (Com,Proof ,Sig′′,ComM,Algs) be a commuting signature system where
(Com,Proof) is randomizable, extractable and composable zero-knowledge2 and Sig′′ is automor-
phic. Let moreover H be a collision resistant hash function. Then Cred as defined above is a
secure delegatable anonymous credential scheme.

Instantiating the commuting signature as described in Sect. 7.3, the resulting credential scheme is
secure under ADH-SDH and SXDH.

Proof sketch. We refer to the full version of [BCC+09] for the formal definition of the model,
which is quite involved. Since the overall construction of our scheme is similar to the BCCKLS
construction, in particular the use of (randomizable and simulatable) Groth-Sahai proofs to commit
to a delegation chain and prove validity, our scheme is proved to satisfy the security definitions
analogously. The proof is a lot simpler though, since our certificates are on public keys and one
can extract a complete certification chain from our credentials, avoiding thus partial-extractability
notions. Moreover, our construction does not make use of interactive secure two-party protocols.
We give a sketch of the security proof, highlighting the differences.

2A proof system is composable zero-knowledge if for a simulated CRS simulated proofs are indistinguishable from
regular proofs even if the distinguisher is given the simulation trapdoor.
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Correctness. Correctness of our scheme follows by a straightforward argument from correctness
and completeness of the underlying building blocks.
Anonymity. A witness-indistinguishability based definition of anonymity is an immediate conse-
quence of perfectly hiding commitments and proofs, when ck is produced by WISetup: pseudonyms
Nym then information-theoretically hide the committed value and the proofs in credproof do not
contain information either. We thus define SimSetupC using WISetup. The algorithms CredProve,
Issue and Obtain can be simulated without knowledge of any private information; this follows from
the zero-knowledge property of Groth-Sahai proofs; in particular, in the witness-indistinguishable
(WI) setting, given the simulation trapdoor sim of GS proofs, we can make perfectly hiding com-
mitments and proofs for any equation with certain properties—which are satisfied by ours. (See
Sect. 7.4.)

Our simulator SimCredProve is the exact analogue of SimProve, defined in the anonymity proof
of the BCCKLS scheme: it constructs a simulated certificate chain from NymO to NymI of length
L, by simulating the intermediate pseudonyms, i.e., the ComM commitments (cf. Sect. 7.4.2), the
commitments in ci, and the proofs πi. SimIssue is defined as SimCredProve for L + 1 except that
it sets NymL to be NymI . Since Obtain does not interact with the issuer, SimObtain is the empty
algorithm. Our proof is considerably simpler than that of [BCC+09], due to the fact that Issue
readily outputs a credential rather than engaging in a two-party protocol with Obtain. All we need
to do is simulate GS commitments and proofs. In Sect. 7.4 we discuss how to simulate the proofs
output by SimCredProve and SimIssue. These algorithms must simulate proofs for equations for
which some of the commitments (NymO and NymI) are given, which was not considered in the
simulations defined in [GS08].
Unforgeability. Soundness and extractability of GS proofs, unforgeability of Sig′′ and sim-
ulatability of SigCom′′ imply that our scheme is unforgeable in the sense of [BCC+09]: (I) We
define ExSetupC as SetupC in which we substitute Setup by ExSetup. This generates an identically
distributed key ck (which leads to perfectly binding commitments) and an extraction key ek that
allows to extract the committed chain of verification keys (“identities”) and certificates from a
credential.

The notion defined in (II) is reduced to unforgeability of Sig′′: given a verification key vk and
a signing oracle, we simulate the game as follows: we guess which honest user the adversary will
“frame”; we compute the parameters with ExSetupC, and use extraction, the signing oracle and
SmSigCom to simulate Issue for that user. (This is done analogously to the reduction for unforge-
ability in Sect. 5.2.1, p. 50.) Let (Nym0, credproof ,NymL) be a successful forgery, thus when we ex-
tract (vk0,Σ1, vk1, . . . ,ΣL, vkL) from it then for some i: (vk0, i, vki−1, vki) /∈ ValidCredentialChains
and vki−1 is honest. If we guessed correctly (i.e., vki−1 = vk) then we can return the Sig′′

forgery (vki,Σi), since (by collision resistance of H) we have never queried our signing oracle on
(H(Nym, i), vki) for any Nym of vk0.

Optimizing the Black-Box Construction for Concrete Commuting Signatures. When
using our implementation of commuting signatures (Sect. 5.4), we can make the following opti-
mizations. In the instantiation we haveM⊆ G1×G2 for an asymmetric bilinear group. A ComM
commitment to a message (M,N) ∈ M is defined as cM := Com(ck,M, µ), cN := Com(ck, N, ν),
πN ← Prove(ck,EDH, (M,µ), (N, ν)) and additional components which enable the signer to make
a committed signature on (M,N) and a proof of validity by running SigCom. These additional
components are however not required for the Nym’s contained in the credential, where giving
(cM , cN , πM ) is sufficient. Analogously, the “public keys” NymO at which a credential is rooted
can also be given in the reduced form.
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7.2 Our Instantiation

7.2.1 A Comparison to the BCCKLS Instantiation

The Certification Scheme. The key building block of a delegatable credential scheme is a
certification scheme signing (or authenticating) user keys and some public information. The au-
thenticators on user secret keys in the BCCKLS instantiation [BCC+09] are in G8

1 × G3
2 and are

verified by evaluating 16 pairings. Our certificates on a user verification key (and a public value) are
in G3

1×G2
2 and verified by evaluating 7 pairings. Proving validity of a committed certificate requires

Groth-Sahai proofs (of which one is in G2×2
1 × G2×2

2 for the SXDH instantiation) for 8 equations
for the BCCKLS instantiation and 3 equations for ours. The pseudonyms in [BCC+09] consist of
two Groth-Sahai commitments and one proof, and are thus in G6

1×G6
2, as are the pseudonyms con-

tained in our credentials. The pseudonyms enabling non-interactive delegation are the size of two
optimized pseudonyms and 3 G1 elements.3 If we use WI Groth-Sahai proofs (without considering
simulatability), we have the following: a tuple (ci, πi,Nymi) representing one level in a credential
is in G54

1 ×G44
2 for the BCCKLS instantiation, whereas it is in G24

1 ×G22
2 for ours. We now analyze

how the actual simulatable schemes are instantiated

Simulating Proofs. Proofs for homogeneous equations (i.e., with right-hand side 1T ) can be sim-
ulated directly. To make the type of inhomogeneous equations used in [BCC+09] and our instanti-
ation simulatable, a Groth-Sahai proof is augmented by one commitment in G2

1, one commitment
in G2

2 and one proof from G4
1 ×G2

2 (see Sect. 7.4.2, p. 87).
Groth and Sahai only consider simulation of a proof of satisfiability of equations; the simulator

can thus make the commitments himself. In contrast, to simulate Issue and CredProve, we have
to simulate proofs for which some commitments, like Nym are given to the simulator. To make a
proof of knowledge of an authenticator, Belenkiy et al. add extra commitments to the message and
to the key and a simulatable proof of equality of the committed values. After some optimization
the cost for such a commitment and a proof is G8

1 ×G8
2.

In our construction we employ a different strategy. In Sect. 7.4.1 we show that for certain types
of equations Groth-Sahai proofs can be simulated even if some of the commitments are fixed before,
without any additional cost. We then show that all our equations are of this type, which makes
the extra commitments and proofs obsolete. Of our 3 equations only 1 is inhomogeneous. We show
that the additional commitment and proof needed for simulatability can be used for all levels of the
credential. A level L credential proof (c1, π1, . . . ,NymL−1, cL, πL) consists thus of 24L elements
from G1 and 22(L−1)+20 elements from G2. The extra commitments and proofs in the BCCKLS
instantiation have to be added at each level; a credential proof is thus in G62(L−1)+80

1 ×G52(L−1)+54
2 .

We conclude that the size of our credentials is less than half the size of BCCKLS credentials.

Delegation. Most importantly, issuing and delegation in our scheme are substantially more ef-
ficient than in the BCCKLS scheme. In the latter, besides a credential proof for his pseudonym
NymI , the issuer first sends a GS proof of knowledge of the first 6 components of the authenticator,
which do not depend on the message, i.e., the user secret key. The issuer and the user then run a
two-party protocol to jointly compute the last component, using a homomorphic encryption scheme
and interactive ZK proofs that blinding values are in the correct ranges.

The authors suggest using Paillier encryption [Pai99] based on an RSA modulus of size at least
23kp2. Using the NIST recommendations from 2007 [NIS07] for k = 128 bits of security, the RSA
modulus N must be at least 23072; Paillier ciphertexts are thus of size N2 ≥ 26144. Since the
interactive proofs of knowledge of plaintexts and values lying in certain intervals are not given

3Note that if the size of pseudonyms is to be minimized, users could publish Nym = (cM , cN , πM ) and send the
remaining elements (cP , cQ, πP , U, πUS ) as a first step in Obtain. See Sect. 7.4.2 for why πUS is in G2

1.
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explicitly, it is not clear how many rounds of interaction the protocol requires and how many
elements are sent in each of them.

In our issuing protocol this part corresponds to simply running SigCom and AdPrCK and sending
(in addition to the credproof ) the triple (NymI , cL+1, π

′
L+1), which is in G24

1 × G22
2 . For 128-bit

security, using e.g. the groups suggested by Barreto and Naehrig [BN05], elements of G1 and G2

are represented by 256 and 512 bits, respectively. The size of a triple above is then less than 3
Paillier ciphertexts for comparable security parameters.

Security. Concerning the assumptions on which security is based, they are both non-interactive,
“q-type” assumptions and part of the generalized “Uber-Assumption” family [Boy08]. What is
more, both are comparable variants of the strong Diffie-Hellman assumption [BB04], as we argued
in Sect. 3.3.1 (p. 31).

7.3 Commuting Signatures with Partially Public Messages

7.3.1 Automorphic Signatures on an Integer and a Message

The scheme Sig from Sect. 4.1 can be adapted to sign a value from Zp and an element from DH
at the same time, as it is required for our application to delegatable credentials. Note that while
this requires one extra element in the parameters it does not increase the size of a signature.

Intuition. ADH-SDH states that given a public key (Gx, Hx) and “weak signatures” ((K · V )
1
x+c ,

F c, Hc) on random messages (V,W ) ∈ DH, it is hard to forge such a signature on a new message.
Now to turn this into a CMA secure scheme (Scheme 2, p. 37), we implicitly define a trapdoor
commitment TCom((M,N), r) := M · T r with opening (Gr, Hr). The actual signature is then a
weak signature on TCom((M,N), r) together with the opening (Gr, Hr). AWF-CDH implies that it
is hard to open a TCom commitment in two different ways, thus TCom is computationally binding.

In order to sign a message pair consisting of an integer value v and a DH-pair (M,N), we replace
TCom by TCom′′ having an additional parameter L. We define TCom′′(v, (M,N), r) := Lv ·M · T r
and the opening as (Gr, Hr), as for TCom. TCom′′ is also computationally binding by AWF-
CDH: Consider an adversary producing (v, (M,N), (Gr, Hr)) and (v′, (M ′, N ′), (Gr

′
, Hr′)) with

(v,M,N) 6= (v′,M ′, N ′) and TCom′′(v, (M,N), r) = TCom′′(v′, (M ′, N ′), r′); then the case r 6= r′

is reducible to AWF-CDH—as for TCom—and r = r′ is reducible to CDH, which is implied by
AWF-CDH (see the proof of Theorem 11 below). Replacing TCom by TCom′′ in Sig we get the
following.

Scheme 4 (Sig′′). Setup′′S has input grp = (p,G1,G2,GT , e,G,H) and outputs grp and additional
generators F,K,L, T ← G1. The message space is DH := {(Gm, Hm) |m ∈ Zp}.

KeyGen′′S chooses x← Zp and outputs (vk = VK(x), sk = x), with VK(x) := (Gx, Hx)

Sign′′ has inputs a secret key x and a message (v, (M,N)) ∈ Zp×DH. It chooses random c, r ← Zp
and outputs (

A := (K · Lv ·M · T r)
1
x+c , B := F c, D := Hc, R := Gr, S := Hr

)
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Ver′′ on inputs a public key (X,Y ) ∈ DH, a message (v, (M,N)) ∈ Zp × DH and a signature
(A,B,D,R, S) outputs 1 (and 0 otherwise) iff the following hold:

e(A, Y ·D) = e(K · Lv ·M,H) e(T, S) e(B,H) = e(F,D) e(R,H) = e(G,S) (7.1)

Theorem 11. Assuming q-ADH-SDH and AWF-CDH, Sig′′ is strongly existentially unforgeable
against adversaries making at most q − 1 adaptive chosen-message queries.

Proof. Consider an adversary that after receiving parameters (G,F,K,L, T,H) and public key
(X,Y ) is allowed to ask for q−1 signatures (Ai, Bi, Di, Ri, Si) on messages (ui, (Mi, Ni)) ∈ Zp×DH
of its choice and then outputs (u, (M,N)) ∈ Zp × DH and a valid signature (A,B,D,R, S) on it,
such that either (u, (M,N)) was never queried, or (u, (M,N)) = (ui, (Mi, Ni)) and (A,B,D,R, S) 6=
(Ai, Bi, Di, Ri, Si). We distinguish three kinds of forgers: An adversary is called of Type I if its
output satisfies the following:

∀ 1 ≤ i ≤ q − 1 :
[
e(T, S · S−1

i ) 6= e(Lui ·Mi · L−u ·M−1, H) ∨ B 6= Bi
]

(7.2)

An adversary is called of Type IIa if its output satisfies

∃ 1 ≤ i ≤ q − 1 :
[
e(T, S · S−1

i ) = e(Lui ·Mi · L−u ·M−1, H) ∧ B = Bi ∧ S 6= Si
]

(7.3)

otherwise it is called of Type IIb. We will use the first type to break q-ADH-SDH, Type IIa to
break AWF-CDH and Type IIb to break CDH, which is implied by AWF-CDH.

Type I Let
(
G,F,K,X,H, Y, (Ai, Bi, Vi, Di,Wi)

q−1
i=1

)
be a q-ADH-SDH challenge. It satisfies thus

e(Ai, Y ·Di) = e(K · Vi, H) e(Bi, H) = e(F,Di) e(Vi, H) = e(G,Wi)

Let A be a forger of Type I. Choose t, l ← Zp and give parameters (G,F,K,L :=Gl, T :=
Gt, H) and the public key (X,Y ) to A. The i-th signing query for (u, (Mi, Ni)) ∈ Zp × DH
is answered as(

Ai, Bi, Di, Ri := (Vi ·G−l·ui ·M−1
i )

1
t , Si = (Wi ·H−l·ui ·N−1

i )
1
t

)
.

It is easily verified that it satisfies (7.1); and it is correctly distributed since vi = logG Vi
is uniformly random in the ADH-SDH instance. If the adverseray produces a valid pair(
(A,B,D,R, S), (u, (M,N))

)
then by the last 2 equations of (7.1), there exist c, r s.t. B =

F c, D = Hc, R = Gr, S = Hr, and

e(A, Y ·D) = e(K · Lu ·M,H) e(T, S) . (7.4)

The tuple (A,B,D, V := Gl·u · M · Rt,W := H l·u · N · St) satisfies (3.3) on p. 31, since
(B,D) and (V,W ) are Diffie-Hellman pairs and e(K · V,H) = e(K · Lu · M · (Gr)t, H) =

e(K·Lu ·M,H) e(T, S)
(7.4)
= e(A, Y ·D). Moreover, it is a solution for the ADH-SDH instance,

since it is a new tuple: assume that for some i we have B = Bi and W = Wi, that is
H l·u ·N · St = H l·ui ·Ni · Sti . Since (M,N), (Mi, Ni) ∈ DH, we have e(T, S) e(Lu ·M,H) =
e(T, S) e(G,H l·u ·N) = e(G,H l·u ·N · St) = e(G,H l·ui ·Ni · Sti ) = e(T, Si) e(G,H l·ui ·Ni) =
e(T, Si) e(Lui ·Mi, H). We have thus e(T, S · S−1

i ) = e(Lui ·Mi · L−u ·M−1, H) and B = Bi
which contradicts (7.2) and thus the fact that A is of Type I.
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Type IIa Let (G,H, T = Gt) be an AWF-CDH instance; let A be a forger of Type IIa. Pick
F,K ← G1 and l, x ← Zp, set X := Gx, Y := Hx and give the adversary parameters
(G,F,K,L :=Gl, T,H) and public key (X,Y ). Answer a signing query on (ui, (Mi, Ni)) ∈
Zp×DH by returning a signature (Ai, Bi, Di, Ri, Si) produced by Sign(x, ·). SupposeA returns(
(A,B,D,R, S), (u, (M,N))

)
satisfying (7.1) s.t. e(T, S · S−1

i ) = e(Lui ·Mi · L−u ·M−1, H),
B = Bi and S 6= Si for some i. Then (M∗ := Lui ·Mi · L−u ·M−1, N∗ := H l·ui ·Ni ·H−l·u ·
N−1, R∗ := R ·R−1

i , S∗ := S ·S−1
i ) is a AWF-CDH solution: (S∗,M∗), (M∗, N∗) and (R∗, S∗)

satisfy the respective equations in (3.1), and since S 6= Si it is non-trivial.

Type IIb Let (G,H,L := Gl) be a CDH instance, i.e., we have to produce H l. Let A be a
forger of Type IIb. Pick F,K, T ← G1 and x ← Zp, set X := Gx, Y := Hx and give the
adversary parameters (G,F,K,L, T,H) and public key (X,Y ). Answer a signing query on
(ui, (Mi, Ni)) ∈ Zp ×DH by returning a signature (Ai, Bi, Di, Ri, Si) produced by Sign(x, ·).
Suppose A returns

(
(A,B,D,R, S), (u, (M,N))

)
satisfying (7.1) of Type IIa, i.e., e(T, S ·S−1

i )
= e(Lui ·Mi ·L−u ·M−1, H), B = Bi and S = Si for some i; which implies Lui ·Mi = Lu ·M .
We first show that u 6= ui: Suppose u = ui; then by the above we have M = Mi, and
moreover B = Bi and S = Si. Since these values completely determine A,D,R and N , we
have (A,B,D,R, S, u,M,N) = (Ai, Bi, Di, Ri, Si, ui,Mi, Ni), which means that A did not
break strong unforgeability.
From Lui ·Mi = LuM we have Lu−ui = Mi·M−1 and since u 6= ui we have L = (Mi·M−1)

1
u−ui ,

which for m := logGM = logH N, mi := logGMi = logH Ni can be written as G
mi−m
u−ui . Thus

(Ni ·N−1)
1

u−ui = H
mi−m
u−ui is a CDH solution.

7.3.2 Verifiably Encrypting a Signature on a Public Integer and a Committed Message

A commitment to a signature on an integer v and a message committed in C is of the form
(cA, cB, cD, cR, cS) and a proof of validity is (πA′′ , πB, πR) for equations EB and ER as in (5.5) on
p. 56 and EA′′ defined as

EA′′(A,M ; S,D) : e(T−1, S) e(A, Y )e(M,H−1) e(A,D) = e(K · Lv, H) . (7.5)

Note that the left-hand sides of EA′′ and EA from (5.5) are equal. By Lemma 3 (p. 51), proofs are
independent of the right-hand side of the equation, thus πA′′ is defined like πA. This also holds for
proofs about all other equations such as E eA,EĀ and E bA and their variants for Sig′′, since going
from Sig to Sig′′ only affects the right-hand sides of the equations.

Proofs for EVer(··· ) and EVer′′(··· ) are thus the same for all combinations of keys, messages and
signatures given as commitments or in the clear. This means that the proof-adaptation algorithms
AdPrC,AdPrCM,AdPrCK,AdPrDC,AdPrDCM and AdPrDCK defined in Sect. 5.4.3 can all be used
for proofs about committed Sig′′ signatures as well. The only functionality that has to be slightly
adapted is SigCom. We define SigCom′′(ck, sk, v,C) as SigCom in Figure 5.1, except that A is
defined as A := (K · Lv · T r · U). We do not need to modify SmSigCom, since Σ is given as input to
it.

Note that if in the construction of a blind signature in Sect. 5.2.1 we replace Sig and SigCom
by Sig′′ and SigCom′′, respectively, we obtain partially blind signatures [AF96], where the signer
controls part of the message.
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7.4 Simulating Proofs for Fixed Commitments

Groth and Sahai [GS08] show that pairing-product equations with a right-hand side tT of the form

tT = e(P1, Q1) · · · e(Pn, Qn) (7.6)

can be simulated: in the witness-indistinguishability setting (i.e., when ck∗ ← WISetup; cf. Sect.
2.4.2), given as simulation trapdoor sim the values (α1, t1, α2, t2) used to construct ck∗ one can
construct commitments and proofs of validity for an equation of the above form without knowing a
witness, i.e., elements that satisfy the equation.

Equations with right-hand side 1T (“homogeneous equations”) can be simulated directly, since
they have a trivial witness. Equations with a non-trivial right-hand side as in (7.6) must be
transformed to a new set of equations to be simulatable: in the original equation the values Pi
are replaced by variables Vi (which makes the equation homogeneous) and for each i we add the
multi-scalar multiplication equation4 V d

i · P
−d
i = 1, where the commitment for d will be a trivial

commitment to 1 (Since the randomness for the commitment of d is 0, we can check that the
committed value is 1, which gives us Vi = Pi from the additional equations, and thus soundness of
the construction.) In the simulation, we can now set all variables from G1 and G2 to 1 (which is a
satisfying witness for our transformed (homogeneous) PPE), and can thus give commitments and
proofs. The additional equations can be simulated, since given the trapdoor sim, the commitment
to d can be trapdoor-opened to 0 (see [GS08] for the details).

In Sect. 7.4.2 we show that modifying our verification equations for commuting signatures does
not interfere with its functionality; thus we get simulatability, as required for anonymity of our
credentials.

7.4.1 Simulating Proofs of Knowledge with Given Commitments.

Groth and Sahai show that given sim in the WI setting, for any simulatable PPE, a simulator can
produce commitments and a proof of validity. However, they do not consider the case where some
of the commitments are given to the simulator, which means the simulator cannot produce them
itself and in particular, it does not know their randomness.

To satisfy the simulation-based anonymity notions for delegatable credentials, simulations of this
kind are required: for example, SimCredProve must produce a credential proof from a given NymO

for a given Nym without being given a credential nor sk and aux for Nym. In the construction of
[BCC+09], simulation for fixed commitments is solved in the following way. For every commitment
that could be fixed before simulating a proof (i.e., the keys and messages for an authenticator),
another commitment is added together with a proof of equality of the committed values. These
proofs are then all that have to be simulated for a fixed commitment.

We choose a more direct (and efficient) approach. We show that the proofs used in our con-
struction can all be simulated even when some of the commitments are fixed in advance.

Lemma 8. Let E be as in (2.2) on p. 21 with tT = 1T and Aj = 1 for indices j ∈ J ⊆ {1, . . . , n}.
Given commitments dj for j ∈ J , we can simulate c1, . . . , cm and dj for j /∈ J and a proof π for
E and (c1, . . . , cm,d1, . . . ,dm) if we are given the simulation trapdoor sim for ck∗. A symmetric
result holds for ci and dj interchanged, and Aj replaced with Bi.

4An equation of the form E(X1, . . . , Xm; y1, . . . , yn) :
Qn
i=1 A

yi
i

Qm
i=1 X

bi
i

Qm
i=1

Qn
j=1 X

γij ·yj

i = T , over Xi ∈ G1

and yj ∈ Zp, is called multi-scalar-multiplication equation in G1. [GS08] show how to construct WI proofs for this
type of equation.
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Proof. If the simulator can choose all the commitments ci and dj , it sets the committed val-
ues to 1. Since these values satisfy a homogeneous equation, the simulator can make an honest
proof using the randomness for the commitments. But if the commitments (dj)j∈J are fixed
and given to the simulator, it does not know the randomness sj s.t. dj = Com(ck∗, 1, sj) for all
j ∈ J . We show that the proof can nontheless be construct. Let us look at the definition of
Prove

(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1; Z

)
in (2.5) on p. 21. For the case when Xi = 1 = Yj we have

t11 :=
∑n

j=1

∑m
i=1 ri1γijsj1

t21 :=
∑n

j=1

∑m
i=1 ri2γijsj1

φ :=

[
vt11

11 v
t12
21

(∏m
i=1B

ri1
i

)
vt11

12 v
t12
22

vt21
11 v

t22
21

(∏m
i=1B

ri2
i

)
vt21

12 v
t22
22

]
◦· (Z ⊗	 ~v)

t12 :=
∑n

j=1

∑m
i=1 ri1γijsj2

t22 :=
∑n

j=1

∑m
i=1 ri2γijsj2

θ :=

[
1

(∏n
j=1A

sj1
j

)
1

(∏n
j=1A

sj2
j

)] ◦· (Z ⊗ ~u)

which has to be constructed without knowledge of (sj)j∈J , that is, the values satisfying dj =
Com(ck∗, 1, sj). Let the simulation trapdoor sim = (α1, α2, β1, β2) be s.t. v1 = (G2, G

α2
2 ) and

v2 = (Gβ2
2 , G

α2β2−1
2 ) (see Sect. 2.4.2, p. 20). Let (kj , lj) be the (unknown) logarithms of dj , i.e.,

dj,1 = G
kj
2 and dj,2 = G

lj
2 . Then we have

(Gkj2 , G
lj
2 ) = dj = Com(ck∗, 1, sj) = (vsj111 v

sj2
21 , v

sj1
12 v

sj2
22 ) = (Gsj1+β1sj2

2 , G
α2sj1+α2β2sj2−sj2
2 )

Solving for sj1 and sj2 we get sj1 = kj −α2β2kj +β2lj and sj2 = α2kj − lj . The simulator can thus
compute

G
sj1
2 = d

(1−α2β2)
j1 · dβ2

j2 G
sj2
2 = dα2

j1 · d
−1
j2 (7.7)

and use these values to compute φ, since it knows the logarithms of all vij as well as all rij and γij ,
and θ, e.g.

vt22
22 = v

Pn
j=1 sj2

Pm
i=1 ri2γij

22 =
(
G

Pn
j=1 sj2

Pm
i=1 ri2γij

2

)α2β2−1 =
∏n
j=1(Gsj22 )(α2β2−1)

Pm
i=1 ri2γij

=
(∏

j∈J(dα2
j1 · d

−1
j2 )(α2β2−1)

Pm
i=1 ri2γij

)(∏
j /∈J G

sj2(α2β2−1)
Pm
i=1 ri2γij

2

)
.

Since Aj = 1 for j ∈ J , it is straightforward to compute θ.

The above lemma lets us simulate a committed message, a committed signature and a proof of
validity for a given committed public key (since in E bA′′S given in (7.8) below, the (implicit) constant
that is paired with Y is 1, thus the premise of the lemma is satisfied). To prove anonymity of
our construction of a delegatable-credential scheme in Sect. 7.2 we moreover need to simulate a
verifiably encrypted signature on a given committed message; this requires simulation of a proof
for equation E bA′′S , where the constant (H−1) that is paired with the value whose commitment is
given (M) is not trivial; however, its logarithm −1 is known to the simulator.

We give a strengthening of Lemma 8, where the Aj are of the form G
aj
1 with aj known to the

simulator.

Lemma 9. Let E be as in (2.2) with tT = 1T and Aj = G
aj
1 (with aj known) for indices j ∈ J .

Given commitments dj for j ∈ J , we can simulate c1, . . . , cn and dj for j /∈ J and a proof π for
E and (c1, . . . , cm,d1, . . . ,dm) if we are given the simulation trapdoor sim for ck∗. A symmetric
result holds for ci and dj interchanged, and Aj = G

aj
1 replaced with Bi = Gbi2 .
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7.4 Simulating Proofs for Fixed Commitments

Proof. For simplicity, we give a proof in the additive notation of Remark 1 (p. 22). Since ~X =
(0, . . . , 0)> = ~Y , we have

~c = R~u φ = R>ι( ~B) + (R>ΓS − Z>)~v
~d = S~v θ = S>ι( ~A) + Z~u

Let us denote by ~A′ the vector ~A where all Aj with j /∈ J are replaced by 0, and by ~A′′ the vector
~A where all Aj with j ∈ J are replaced by 0, and let S′ and S′′ be defined analogously. We have
~A = ~A′ + ~A′′ and S = S′ + S′′, and moreover S>ι( ~A) = (S′)>ι( ~A′) + (S′′)>ι( ~A′′). Note that the
simulator only knows the logarithms of ~A′ (by the premise of the lemma) and the values in S′′

(which it has chosen itself).
Since in the WI setting the matrix ~u is invertible, there exists Ω ∈ Z2×2

p s.t. ι( ~A′) = Ω~u. The
logarithms of ι( ~A′) and ~u being known to the simulator, it can efficiently compute Ω. We now show
how the simulator computes the proof (φ, θ): it chooses Ẑ ← Z2×2

p and (knowing the values in S′′)
computes θ := (S′′)>ι( ~A′′) + Ẑ~u = S>ι( ~A)− (S′)>ι( ~A′) + Ẑ~u, which is a proof θ = S>ι( ~A) + Z~u
with Z := Ẑ − (S′)>Ω. With this randomness Z the first part of the proof is then

φ = R>ι( ~B) + (R>ΓS − Ẑ> + Ω>S′) ~v ,

which can be constructed using the techniques of the proof of Lemma 8: it suffices to construct the
elements in (7.7) and use the known logarithms of ~v as well as the known values R and Ω.

7.4.2 Making the Equations for Ver′′ Simulatable

In our application to delegatable credentials in Sect. 7.2 we have to simulate proofs for the equations
of EVer′′(·,v,·,·)(vk, (M,N),Σ), when the commitments for vk = (X,Y ) or (M,N) (or both!) are given
to the simulator.

While EB and ER from (5.5) have a trivial right-hand side, we replace EA′′ from (7.5) by the
equations

EA′′S (A; W,S,N,D) : e(K · Lv,W ) e(T−1, S) e(G−1, N) e(A, Y ) e(A,D) = 1

EdS (d; W ) : W d ·H−d = 1

First, we transformed EA′′ into a homogeneous equation and a multi-scalar multiplication equa-
tion as described by [GS08]. We chose to turn H into a variable W , since proofs for equations in G2

are in G4
1 ×G2

2 and thus smaller than proofs for equations in G1; more importantly, this allows to
use the variable W for several (formerly) inhomogeneous equations with a right-hand side e(·, H).
For delegatable credentials this means that we can use the commitments to W and d, as well as
the proof for EdS for all levels of the credential.

Moreover, in EA′′S we replaced e(M,H−1) by e(G−1, N) which by EM (M ;N) is equal. Accord-
ingly, we replace EU by

EUS (Q,N) : e(T−1, Q) e(G−1, N) = e(U,H)−1

which, together with EM and EP proving that (M,N) ∈ DH and (P,Q) ∈ DH, still asserts that
U = T t ·M . As for EA′′ and EU we again have that the left-hand side of EUS is contained in that
of EA′′S . Note that in addition, this equation is linear in the sense of Groth-Sahai and a proof πUS
thus reduces to two elements from G1, whereas πU ∈ G4

1 ×G4
2.
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Non-interactively Delegatable Anonymous Credentials

Next, we show how to adapt SigCom′′ (which is the algorithm in Figure 5.1 in Sect. 5.4.2 with
A defined as (K · Lv · T r · U)

1
x+c at the beginning). All that needs to be done to define SigCom′′S is

to replace EA† by
E
A†S

(A; W,D) : e(K · Lv,W ) e(A, Y ) e(A,D) = 1T .

Setting π′AS ← πUS ◦· Prove(ck,E
A†S
, (A,α), (W,ω), (Hc, δ)) in Figure 5.1 yields thus a proof for

EA′′S by Lemma 5, since the product of the left-hand sides of E
A†S

and EUS is the left-hand side
of EA′′S . The proof for the additional (multi-scalar multiplication) equation EdS can be produced
by the signer herself. Finally, adapting AdPrCK to the simulatable equations is straightforward: it
now adapts a proof for EA′′S to one for E bA′′S (given in (7.8) below), where Y is a variable.

We demonstrated how our instantiation of commuting signatures based on Sig′′ can be adapted
to make the equations for Ver′′ simulatable. Below, we show that they can even be simulated when
commitments to the verification key and/or the message are given to the simulator.

Simulating ComM. When the simulator needs to simulate a ComM commitment it does the
following: set cM and cN to commitments to 1. This enables simulation of other proofs for
equations about M (such as those in Ver′′). Since ComM also contains the value U = T t · M ,
the simulator has to choose t randomly, which defines P and Q. Now the simulator can produce
cP , cQ, πM , πP , πU honestly. Note that the fact that cP and cQ were not produced as commitments
to 1 is not a problem, as they are never used outside of a ComM commitment.

Simulating Ver′′(·, ·, ·) for Fixed Commitments. In the proof of anonymity of our credential
scheme, we have to construct algorithms SimCredProve and SimIssue that output Groth-Sahai proofs
without being given witnesses. The proofs are for validity of certificates contained in credentials,
thus about the simulatable equations in Ver′′ from Scheme 4 (p. 82). The only equation that
contains parts of a verification key or the message of is the following

E bA′′S (A; W,S,N, Y,D) : e(K · Lv,W ) e(T−1, S) e(G−1, N) e(A, Y ) e(A,D) = 1T . (7.8)

Since it satisfies the requirements for Lemma 9, we get:

Corollary 1. Given commitments cvk and C, the simulator can produce (cΣ, π̂) that is distributed
as[

Σ← Sign′′(sk, v, (M,N)); ρ← RΣ :(
Com(ck∗,Σ, ρ), Prove

(
ck∗,EVer′′(·,v,·,·), ((X, ξ), (Y, ψ)), ((M,µ), (N, ν)), (Σ, ρ))

)]
,

where vk = (X,Y ) ∈ DH and (ξ, ψ) are such that cvk = Com(ck∗, vk, (ξ, ψ)), sk is such that
vk = VK(sk), and M,N, µ and ν are such that C = (Com(ck∗,M, µ),Com(ck∗, N, ν), . . .).

Proof. Simulating a proof for Ver′′ means simulating proofs for equations E bA′′S ,EdS ,EB and ER.
The simulator makes commitments cΣ to (1, . . . , 1). Proofs πB and πR are computed honestly and
the first equation satisfies the premises of Lemma 9: the constants (the “Aj” in (2.2)) that are
paired with N and Y are G−1 and 1, respectively, and thus have known logarithms. π bA′′S can thus
be simulated. πdS is simulated by opening cd := Com(ck∗, 1, 0) to 0, as described in [GS08].

Concluding, we have shown that when we replace EA′′ by EA′′S and EdS (and E bA′′ by E bA′′S and

EdS ), all equations for validity of a Sig′′ signature can be simulated, even if the commitments to
the verification key and the message are fixed in advance. This shows that our instantiation of
delegatable credentials satisfies the strong simulation-based anonymity definition by [BCC+09].
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Conclusion

We introduced the concept of automorphic signatures and gave two instantiations; the first is based
on previously introduced assumptions while the second is more efficient and can be instantiated in
asymmetric bilinear groups. It relies on a new assumption, which we prove to hold in the generic
group model. We used our scheme to give the first efficient instantiation of Fischlin’s round-optimal
blind signatures. Furthermore, we illustrated the numerous benefits of automorphic signatures
by constructing fully-secure group signatures and anonymous credentials, and by giving the first
efficient instantiation of anonymous proxy signatures, providing additional anonymity guarantees
that have not been considered so far.

We leave as an open problem the construction of a practical automorphic signature whose
messages are single group elements. It would also be interesting to see if the techniques used
in Definition 2 can be generalized to vectors of arbitrary (but fixed) length; that is, to define a
direct transformation from a signature scheme whose message space is a group to one signing an
arbitrarily fixed number of messages.

We moreover defined and instantiated a new primitive we call commuting signatures. They
allow users to encrypt different components of a triple consisting of a verification key, a message
and a signature, and prove validity of the encrypted values. Most importantly, they enable signers
that are given an encrypted message to produce an encryption of a signature on it together with a
proof of validity.

We showed that this primitive enables the first instantiation of delegatable anonymous creden-
tials with non-interactive issuing and delegation. Moreover, using our instantiation, the efficiency
of the credential scheme improves significantly compared to the (only) previous instantiation. We
believe that commuting signatures are an important tool in the construction of privacy-preserving
primitives and that they will find further applications. In particular, we are confident that the
approach to transferable fair e-cash from [4] can be revised using commuting signatures to obtain
stronger anonymity guarantees.
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