
The security of Mimblewimble
Georg Fuchsbauer

joint work with

Michele Orrù and Yannick Seurin



The security of Mimblewimble
Georg Fuchsbauer

joint work with

Michele Orrù and Yannick Seurin

F, Orrù, Seurin: Aggregate cash systems: A cryptographic
investigation of Mimblewimble. EUROCRYPT’19



The security of Mimblewimble
Georg Fuchsbauer

joint work with

Michele Orrù and Yannick Seurin

F, Orrù, Seurin: Aggregate cash systems: A cryptographic
investigation of Mimblewimble. EUROCRYPT’19

F, Orrù: Non-interactive Mimblewimble transactions, revisited.
ASIACRYPT’22



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016

• uses ideas from Gregory Maxwell



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016

• uses ideas from Gregory Maxwell

• further developed by Andrew Poelstra



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016

• uses ideas from Gregory Maxwell

• further developed by Andrew Poelstra



What is it?

• Cryptocurrency scheme

– Privacy (all amounts hidden; input/output relation blurred)

– Scalability (forget about spent tx’s)

• proposed by
“Tom Elvis Jedusor”
in 2016

• uses ideas from Gregory Maxwell

• further developed by Andrew Poelstra



Applications

Implemented by several cryptocurrencies (since 2019):

...



Non-interactive TXs

Main drawback: transactions are interactive

2020: David Burkett, Gary Yu:
Non-interactive transactions



Non-interactive TXs

Main drawback: transactions are interactive

2020: David Burkett, Gary Yu:
Non-interactive transactions

2021: Fixed by Burkett, F, Orrù

Analyzed by F, Orrù



Non-interactive TXs

...



Non-interactive TXs



Non-interactive TXs

2022: Implemented in

Litecoin (“Mimblewimble extension blocks”)



Non-interactive TXs

2022: Implemented in

Litecoin (“Mimblewimble extension blocks”)

...



Bitcoin

• Transactions

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Block

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Blockchain

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

Out

Out

In2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

In

In

• Reference
to previous
output

Transaction

Out

Out

In6 BTC

4 BTC

2 BTC

Transaction
ion



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

6 BTC 2 BTC

4 BTC

1 BTC

Unspent
transaction
outputs
(UTXO’s)

= existing
money in
system



Bitcoin

Transaction

2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

• Coinbase 3.125 BTC
transaction

Transaction

3.125 BTC

0.125 BTC

3 BTC

Transaction
ion



Bitcoin

Transaction

2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

Transaction

6 BTC

4 BTC

2 BTC

Transaction
ion

• Owning
an output



Bitcoin

Transaction

2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

Transaction

6 BTC

4 BTC

2 BTC

Transaction
ion

pk

pk′

• Owning
an output



Bitcoin

Transaction

2 BTC

2 BTC

3 BTC

1 BTC

6 BTC

Transaction

6 BTC

4 BTC

2 BTC

Transaction
ion

pk

pk′

• Owning
an output



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

σ is signature under pk on tx

2 BTC

4 BTC

6 BTC



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

Security

• signatures
⇒ no theft

• balancedness of tx’s
checkable
⇒ no illegal creation

2 BTC

4 BTC

6 BTC

σ is signature under pk on tx



Bitcoin

Transaction

1 BTC

6 BTC

Transaction

σ

Transaction
ion

pk

pk′

pk′′

pk

Security

• signatures
⇒ no theft

• balancedness of tx’s
checkable
⇒ no illegal creation

2 BTC

4 BTC

6 BTC

σ is signature under pk on tx



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability



Bitcoin

Transaction

6 BTC

Transaction

Transaction
ion

pk

pk′

pk′′

pk
6 BTC 2 BTC

4 BTC

1 BTC

σ
σ
σ

σ

Drawbacks

• all tx’s public
⇒ weak anonymity

• all data must be kept
for verification
⇒ bad scalability



Scalability

Blockchain size:
> 500GB



Scalability

Blockchain size:
> 500GB

Size of UTXO set:
< 10GB



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

“cut-through”



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′

not possible
in Bitcoin:

σ′ is needed
to verify validity

⇒ Mimblewimble

“cut-through”



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In ?



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In ?



Anonymity

• CoinJoin [Maxwell’13]

– no link between inputs and outputs

– join many transactions?

– in Bitcoin: only interactively, since all inputs must sign tx

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In ?



Anonymity

• CoinJoin [Maxwell’13]

– no link between inputs and outputs

– join many transactions?

– in Bitcoin: only interactively, since all inputs must sign tx

Transaction

Out

Out

In

In

In

Transaction

Out

Out

In



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In

• Confidential Transactions [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin

– balancedness verifiable?



Anonymity

Transaction

Out

Out

In1 BTC

3 BTC

2 BTC

3 BTC

3 BTC

In

In

• Confidential Transactions [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin

– balancedness verifiable?

In = Out

(by default in )



Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

How can we get

• Confidential transactions
(check balancedness)

• Coin-join
(non-interactively)

• Cut-through
(post-confirmation)

while maintaining verifiability?



Anonymity

• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

Mimblewimble



Pedersen commitment

Commit v

Commitment

• “digital envelope”



Pedersen commitment

Commit v

Commitment

• “digital envelope”

• hiding: commitment hides v

• binding: Alice can open commitment only to one value



Pedersen commitment

Commit

Open

v

v

Commitment

• “digital envelope”

• hiding: commitment hides v

• binding: Alice can open commitment only to one value



Pedersen commitment

Commit

Open

v

v

Commitment

• “digital envelope”

• hiding: commitment hides v

• binding: Alice can open commitment only to one value



Pedersen commitment

Commit

Open

v

reveal v and r

Pedersen
G,H ∈ G

pick random r

C := vH + rG

Commitment

• “digital envelope”



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• hiding: for any v exists r so that C commits v



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

C := vH + rG

• binding: from v 6= v′, r, r′ with

vH + rG = C = v′H + r′G

⇒ compute logGH



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

Com(v; r) :=

vH + rG

• commitments are homomorphic:

Com(v1; r1) + Com(v2; r2) = (v1H + r1G) + (v2H + r2G)

= (v1 + v2)H + (r1 + r2)G

= Com(v1 + v2; r1 + r2)

e.g.: Com(1; 5) + Com(1; 10)− Com(2; 15) = 0



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

Com(v; r) :=

vH + rG

• commitments are homomorphic:

Com(v1; r1) + Com(v2; r2) = (v1H + r1G) + (v2H + r2G)

= (v1 + v2)H + (r1 + r2)G

= Com(v1 + v2; r1 + r2)

e.g.: Com(1; 5) + Com(1; 10)− Com(2; 15) = 0



Pedersen commitment

Commitment

• “digital envelope”

Commit

Open

v pick random r

reveal v and r

Pedersen
G,H ∈ G

Com(v; r) :=

vH + rG

• commitments are homomorphic:

Com(v1; r1) + Com(v2; r2) = (v1H + r1G) + (v2H + r2G)

= (v1 + v2)H + (r1 + r2)G

= Com(v1 + v2; r1 + r2)

e.g.: Com(1; 5) + Com(1; 10)− Com(2; 15) = 0



Confidential Transactions

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

In1

In2

In3

Out1

Out2

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG



Confidential Transactions

In1

In2

In3

Out1

Out2

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

Out1 + . . .+ Outn

− In1 − . . .− In` = 0



Confidential Transactions

In1

In2

In3

Out1

Out2

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0∑

Cout
i −

∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

!
=0

)G



Confidential Transactions

• negative amounts!

1
1
2 −5

9

In1

In2

In3

Out1

Out2

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

• ensure that transactions do not create money?

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0



Confidential Transactions

• negative amounts!

1
1
2 −5

9

In1

In2

In3

Out1

Out2

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

• ensure that transactions do not create money?

Range proofs

– add proofs that committed values are in ∈ [0, 264]

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0

π



Confidential Transactions

• negative amounts!

1
1
2 −5

9

In1

In2

In3

Out1

Out2

[Back, Maxwell ’13 – ’15]

• use commitments to amounts

• ensure that transactions do not create money?

Range proofs

– add proofs that committed values are in ∈ [0, 264]

Transaction

pk

pk′
σ1
σ2
σ3

C = vH + rG

∑
Out−

∑
In = 0

π



Confidential Transactions

In1

In2

In3

Out1

Out2

Transaction

pk

pk′
σ1
σ2
σ3

Confidential transaction

∑
Out−

∑
In = 0

C = vH + rG, π



Confidential Transactions

In1

In2

In3

Out1

Out2

Transaction

pk

pk′
σ1
σ2
σ3

Confidential transaction

Signatures ⇒
• no non-interactive

CoinJoin

• no Cut-Through

∑
Out−

∑
In = 0

C = vH + rG, π



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

pk

pk′



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0no more pk’s,



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!

no more pk’s,



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!

But: sender knows
sum of output r’s

no more pk’s,



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

∑
Out−

∑
In = 0

secret key!

∑
Cout

i −
∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

=:x

)G

no more pk’s,



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

no more signatures!

secret key!

∑
Cout

i −
∑
C in

i

=
∑

(vouti H + routi G)−
∑

(vini H + rini G)

= (
∑
vouti −

∑
vini︸ ︷︷ ︸

!
=0

)H + (
∑
routi −

∑
rini︸ ︷︷ ︸

=:x

)G

∑
Out−

∑
In

= 0H + xG
no more pk’s,



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

secret key!

∑
Out−

∑
In

= 0H + xG

⇒ prove that
∑

Out−
∑

In

is commitment to 0



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

secret key!

∑
Out−

∑
In

= 0H + xG
one signature

“proves” that
︷ ︸︸ ︷∑

Out−
∑

In

is commitment to 0

σ xG



Mimblewimble

In1

In2

In3

Out1

Out2

[Jedusor ’16]

Transaction

C = vH + rG, π

secret key!

∑
Out−

∑
In

= 0H + xG
one signature

“proves” that
︷ ︸︸ ︷∑

Out−
∑

In

is commitment to 0

σ xG



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

•
∑

Out1−
∑

In1 = X1

• σ1 valid for X1



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

Tx 2

σ2 X2

In

In

Out

•
∑

Out1−
∑

In1 = X1

• σ1 valid for X1

•
∑

Out2−
∑

In2 = X2

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out
•

∑
Out2−

∑
In2 = X2

• σ2 valid for X2

Non-interactive CoinJoin

•
∑

Out1−
∑

In1 = X1

• σ1 valid for X1

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

σ1,2 if aggregate signature scheme (BLS)



Mimblewimble

In

In

In

Out

Out

Tx 1 & 2

σ1 X1

σ2 X2

In

In

Out

Post-confirmation Cut-Through

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out

•
∑

Out−
∑

In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

Post-confirmation Cut-Through



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

Post-confirmation Cut-Through



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′“cut-through”



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′“cut-through”

3.125 BTC



Scalability

Transaction

Transaction
ion

pk′′

pk

σ

pkσ′

Transaction
ion

pk′“cut-through”

3.125 BTC



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

Cut through all transactions in blockchain

...

Out

...

...
...

...
...



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

Cut through all transactions in blockchain

...

Out

...

...
...

...
...

UTXO set



Mimblewimble

In

In

Out
all Tx’s

σ1 X1

σn Xn

In Out

•
∑

Out−
∑

In =
∑
Xi

• ∀i : σi valid for Xi

Cut through all transactions in blockchain

...

Out

...

...
...

...
...

Only coinbase transactions

UTXO set



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

Privacy?



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

• Shuffle inputs and outputs

Privacy?



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

• Shuffle inputs and outputs

• Hides in/out relation?

Privacy?



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out
•

∑
Out−

∑
In = X1 +X2

• σ1 valid for X1

• σ2 valid for X2

• Shuffle inputs and outputs

• Hides in/out relation?

• No! We have
∑

Outi−
∑

Ini = Xi ⇒ solve subset-sum

Privacy?



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

•
∑

Out1−
∑

In1 = X1 + t1G

• σ1 valid for X1

Kernel offset:

• Choose random ti, set Xi :=
∑

Outi−
∑

Ini − tiG

t1

Privacy?



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

•
∑

Out1−
∑

In1 = X1 + t1G

• σ1 valid for X1

Kernel offset:

• Choose random ti, set Xi :=
∑

Outi−
∑

Ini − tiG

t1

Privacy?



Mimblewimble

In

In

In

Out

Out

Tx 1

σ1 X1

•
∑

Out1−
∑

In1 = X1 + t1G

• σ1 valid for X1

Kernel offset:

• Choose random ti, set Xi :=
∑

Outi−
∑

Ini − tiG

t1

• When merging tx1 and tx2, set t := t1 + t2

Privacy?



Mimblewimble

In

In

In

Out
Tx 1 & 2

σ1 X1

σ2 X2
In

Out

•
∑

Out−
∑

In = X1+X2+tG

• σ1 valid for X1

• σ2 valid for X2

t

Privacy?

Kernel offset:

• For txi, choose random ti, set Xi :=
∑

Outi−
∑

Ini − tiG
• When merging tx1 and tx2, set t := t1 + t2



Mimblewimble

How are transactions actually created?



Mimblewimble

In

In

In
Chg

Out

σ X

•
∑

Out−
∑

In = X

• σ valid for X

How are transactions actually created?



Mimblewimble

In

In

In
Chg

Out

σ X

•
∑

Out−
∑

In = X

• σ valid for X

σ is signature under key rOut + rChg −
∑
rIn

How are transactions actually created?



Mimblewimble

In

In

In
Chg

Out

σ X

•
∑

Out−
∑

In = X

• σ valid for X

σ is signature under key rOut + rChg −
∑
rIn

known by sender

known by receiver

How are transactions actually created?



Mimblewimble

In

In

In
Chg

Out

σ X

•
∑

Out−
∑

In = X

• σ valid for X

σ is signature under key rOut + rChg −
∑
rIn

known by sender

known by receiver

Threshold-signing for key rOutG+ (rChg −
∑
rIn)G

How are transactions actually created?



Mimblewimble

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy



Mimblewimble

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs



Mimblewimble

. . . satisfying
joint security

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs



Mimblewimble

. . . satisfying
joint security

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model



Mimblewimble

. . . satisfying
joint security

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model

• Instantiations: proof that
– Pedersen + Schnorr
– Pedersen + (aggregate) BLS . . . satisfy joint security


