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F, Orrù, Seurin: Aggregate cash systems: A cryptographic
investigation of Mimblewimble. EUROCRYPT’19



The security of Mimblewimble
Georg Fuchsbauer

joint work with
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Implemented by several cryptocurrencies (since 2019):
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• Confidential Transactions : [Maxwell]

– hide the input and output amounts

– not compatible with Bitcoin as is

– balancedness verifiable?

How can we get

• Confidential transactions
(check balancedness)

• Coin-join
(non-interactively)

• Cut-through
(post-confirmation)

while maintaining verifiability?
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Commit

Open
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Pedersen
G,H ∈ G

C := vH + rG

• binding: from v 6= v′, r, r′ with

vH + rG = C = v′H + r′G

⇒ compute logGH
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• σ1 valid for X1

• σ2 valid for X2

t

Privacy?

Kernel offset:

• For txi, choose random ti, set Xi :=
∑

Outi−
∑

Ini − tiG
• When merging tx1 and tx2, set t := t1 + t2
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In

In

In
Chg

Out

σ X

•
∑

Out−
∑

In = X

• σ valid for X

σ is signature under key rOut + rChg −
∑
rIn

known by sender

known by receiver

Threshold-signing for key rOutG+ (rChg −
∑
rIn)G

How are transactions actually created?
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. . . satisfying
joint security

[FOS19]

• Formal security models:
– inflation-resistance
– coin-theft-resistance
– privacy

• Abstraction of Mimblewimble from:
– homomorphic commitments
– compatible signatures
– simulation-extractable NIZK range proofs

• Proof that abstraction satisfies model

• Instantiations: proof that
– Pedersen + Schnorr
– Pedersen + (aggregate) BLS . . . satisfy joint security


