

Cryptographically Enforced RBACCryptographically Enforced RBAC

Georg Fuchsbauer (IST Austria)

27 June 2013, CSF

joint work with Anna Lisa Ferrara and Bogdan Warinschi
 (University of Bristol)

Overview

Cryptographically enforced access control

 concentrate on

 Role-Based Access Control for file system

 Formal model, security definitions
 Soundness theorem for enforcing policies
 Implementation using Attribute-Based Encryption

Access Control

 Access control by

 low-level mechanisms

 enforcement by design
 absolute semantics

Access Control

 Access control by

 low-level mechanisms

 using cryptography

 enforcement by design
 absolute semantics

 key management
 only ”probabilistic” guarantees

Previous Work

 Cryptographic sealing [Gifford'82]
 Cryptographic model (UC) for access control

 [Halevi,Karger,Naor'05]
 Access control for XML documents

 [Abadi,Warinschi'08]

Previous Work

 Cryptographic sealing [Gifford'82]
 Cryptographic model (UC) for access control

 [Halevi,Karger,Naor'05]
 Access control for XML documents

 [Abadi,Warinschi'08]

 GAP between semantics associated to polices and

 cryptographic guarantees

 (previously: simple polices, simple primitives)

RBAC for Hospital

Doctor

Nurse

Patient

Receptionist

RBAC for Hospital

Medical records

List of doctors

List of appointments

RBAC for Hospital

RBAC for Hospital

RBAC - The Model

 R ... set of roles (fixed)

U ... universe of users U ⊆ U ... set of users

P ... universe of permissions P ⊆ P ... set of permissions

UA ⊆ U × R ... user-role assignment relation

PA ⊆ P × R ... permission-role assignment relation

State of the system: S = (U, P, UA, PA)

Hospital Example

Hospital Example

U R P

n
UA PA

RBAC Commands

 AddUser(u) U → U ∪ {u}

 DeleteUser(u) U→U \ {u}, UA→UA \ {(u,r)∈UA|r∈R}

 AddObject(p) P → P ∪ {p}

 DeleteObject(p) P→P \ {p}, PA→PA \ {(p,r)∈PA|r∈R}

 AssignUser(u,r) UA → UA ∪ {(u,r)}

 DeassignUser(u,r) UA → UA \ {(u,r)}

 GrantPermission(p,r) PA → PA ∪ {(p,r)}

 RevokePermission(p,r) PA → PA \ {(p,r)}

RBAC Semantics

 System evolves via commands

 (U, P, UA, PA) (U', P', UA', PA')

 Trace: sequence of commands:

RBAC command

...

RBAC Semantics

 System evolves via commands

 (U, P, UA, PA) (U', P', UA', PA')

 Trace: sequence of commands:

 Semantic: User u has access to p:

 HasAccess(u,p) ⇔ ∃ r ∈ R: (u,r) ∈ UA ∧ (p,r) ∈ PA

RBAC command

...

Security Policies

 Separation of Duty:

 ... models conflict of interest between r, r' : no user can
 hold both roles

 Privilege Escalation:

 ... lower-rank roles cannot access resources for higer-
 rank roles

... express limits on access

Security Policies

 Separation of Duty:

 ... models conflict of interest between r, r' : no user can
 hold both roles

 Privilege Escalation:

 ... lower-rank roles cannot access resources for higer-
 rank roles

... express limits on access

Example: Doctor Receptionist

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

 Example: Privilege escalation from role r to role r':

 Cond(u,p) ≡ [(u,r) ∈UA ∧ (p,r') ∈ PA]

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

 Example: Privilege escalation from role r to role r':

 Cond(u,p) ≡ [(u,r) ∈UA ∧ (p,r') ∈ PA]

 Multiple policies: C1, ..., Cn C1 ∨ ... ∨ Cn

Cryptographic RBAC

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users have unrestricted access to FS

write

read

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users have unrestricted access to FS

MPC

write

read

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users

write

read

 runs command
locally

 writes to FS

 sends update
msgs to users

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users update their states when receiving msg

write

read

 runs command
locally

 writes to FS

 sends update
msgs to users

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

RBAC commands,
 run by manager

input: stateM, FS, args
output: state'M, FS', {msgu}

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

 Write

 Read

 Update

RBAC commands,
 run by manager

run by users,
 input: stateu

run by manager,
 input: p, m

input: stateM, FS, args
output: state'M, FS', {msgu}

Properties of cRBAC

 Correctness:

 After any executions of commands,

 if HasAccess(u,p)

 then Read(stu, p, FS) outputs content of p

Properties of cRBAC

 Correctness:

 After any executions of commands,

 if HasAccess(u,p)

 then Read(stu, p, FS) outputs content of p

 Security:

 No information on content of p is leaked to u when

 ¬ HasAccess(u,p)

 Adversary can  make manager execute RBAC cmds
 corrupt users (not manager)
 ask for ”challenges”

Security

 Security game:

 Oracles O :

Expind(λ)
 b $ {0,1}

 (stM, FS, {st[u]}u∈U) $ Init(1λ,R)

 b' $ A (1λ,FS : O)
 Return (b' = b)

Advind(λ) := | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)

→

→
→

Security

 Security game:

 Oracles O :

Expind(λ)
 b $ {0,1}; Cr,Ch ∅
 (stM, FS, {st[u]}u∈U) $ Init(1λ,R)

 b' $ A (1λ,FS : O)
 Return (b' = b)

Advind(λ) := | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)

Game ensures that at all time:
 ∀u ∈Cr ∀p ∈Ch: ¬ HasAccess(u,p)

→

→

→
→

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

 cRBAC enforces Φ if

 whenever Cond(u,p) then

 u does not have access to p ”in reality”

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

 cRBAC enforces Φ if

 whenever Cond(u,p) then

 u does not have access to p ”in reality”

 Ind-based definition:

 Manager enforces Φ symbolically

 A impersonates u, for Cond(u,p)

 ... must distinguish content of p

Secure Policy Enforcement

Theorem: If CRBAC is secure then it enforces any policy

Computational soundness:

 Policies that are satisfied symbolically are also

 satisfied computationally.

Implementation

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Only need weak form of ABE:
 Policies:

 Disjunction of attributes

 ψ = a1 ∨ a2 ∨ ... ∨ an

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Only need weak form of ABE:
 Policies:

 Disjunction of attributes

 ψ = a1 ∨ a2 ∨ ... ∨ an

 key ~ x ⊆ A
ciphertext ~ y ⊆ A

xy

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts

 File p is encrypted w.r.t. roles (attributes) associated to it

 (according to PA) Write Encrypt
 User u receive keys corresponding to their roles

 (according to UA) Read Decrypt

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

 ... ?

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

 associate role r with a new attribute a

 re-encrypt files p with (p,r) ∈PA

 re-issue keys to users u' with (u',r) ∈UA

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

 RevokePerm(p,r) ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

 RevokePerm(p,r) ¬ HasAcc(u,p)

 AssignUser(u,r) ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

 Theorem: If ABE satisfies indistinguishability

 then CRBAC [ABE] is a secure implementation

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE

Future work

 Hierarchical RBAC, attribute-based RBAC
 More general framework for abstract notions of

 symbolic & computational access-control enforcement

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 60
	Slide 61

