

Cryptographically Enforced RBACCryptographically Enforced RBAC

Georg Fuchsbauer (IST Austria)

27 June 2013, CSF

joint work with Anna Lisa Ferrara and Bogdan Warinschi
 (University of Bristol)

Overview

Cryptographically enforced access control

 concentrate on

 Role-Based Access Control for file system

 Formal model, security definitions
 Soundness theorem for enforcing policies
 Implementation using Attribute-Based Encryption

Access Control

 Access control by

 low-level mechanisms

 enforcement by design
 absolute semantics

Access Control

 Access control by

 low-level mechanisms

 using cryptography

 enforcement by design
 absolute semantics

 key management
 only ”probabilistic” guarantees

Previous Work

 Cryptographic sealing [Gifford'82]
 Cryptographic model (UC) for access control

 [Halevi,Karger,Naor'05]
 Access control for XML documents

 [Abadi,Warinschi'08]

Previous Work

 Cryptographic sealing [Gifford'82]
 Cryptographic model (UC) for access control

 [Halevi,Karger,Naor'05]
 Access control for XML documents

 [Abadi,Warinschi'08]

 GAP between semantics associated to polices and

 cryptographic guarantees

 (previously: simple polices, simple primitives)

RBAC for Hospital

Doctor

Nurse

Patient

Receptionist

RBAC for Hospital

Medical records

List of doctors

List of appointments

RBAC for Hospital

RBAC for Hospital

RBAC - The Model

 R ... set of roles (fixed)

U ... universe of users U ⊆ U ... set of users

P ... universe of permissions P ⊆ P ... set of permissions

UA ⊆ U × R ... user-role assignment relation

PA ⊆ P × R ... permission-role assignment relation

State of the system: S = (U, P, UA, PA)

Hospital Example

Hospital Example

U R P

n
UA PA

RBAC Commands

 AddUser(u) U → U ∪ {u}

 DeleteUser(u) U→U \ {u}, UA→UA \ {(u,r)∈UA|r∈R}

 AddObject(p) P → P ∪ {p}

 DeleteObject(p) P→P \ {p}, PA→PA \ {(p,r)∈PA|r∈R}

 AssignUser(u,r) UA → UA ∪ {(u,r)}

 DeassignUser(u,r) UA → UA \ {(u,r)}

 GrantPermission(p,r) PA → PA ∪ {(p,r)}

 RevokePermission(p,r) PA → PA \ {(p,r)}

RBAC Semantics

 System evolves via commands

 (U, P, UA, PA) (U', P', UA', PA')

 Trace: sequence of commands:

RBAC command

...

RBAC Semantics

 System evolves via commands

 (U, P, UA, PA) (U', P', UA', PA')

 Trace: sequence of commands:

 Semantic: User u has access to p:

 HasAccess(u,p) ⇔ ∃ r ∈ R: (u,r) ∈ UA ∧ (p,r) ∈ PA

RBAC command

...

Security Policies

 Separation of Duty:

 ... models conflict of interest between r, r' : no user can
 hold both roles

 Privilege Escalation:

 ... lower-rank roles cannot access resources for higer-
 rank roles

... express limits on access

Security Policies

 Separation of Duty:

 ... models conflict of interest between r, r' : no user can
 hold both roles

 Privilege Escalation:

 ... lower-rank roles cannot access resources for higer-
 rank roles

... express limits on access

Example: Doctor Receptionist

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

 Example: Privilege escalation from role r to role r':

 Cond(u,p) ≡ [(u,r) ∈UA ∧ (p,r') ∈ PA]

Security Policies

 Security policy for RBAC is a formula

 ∀u ∈U ∀p ∈P: Cond(u,p) ⇒ ¬ HasAccess(u,p)

 interpreted over a state S = (U, P, UA, PA)

 A policy should hold over any execution trace.

 Example: Privilege escalation from role r to role r':

 Cond(u,p) ≡ [(u,r) ∈UA ∧ (p,r') ∈ PA]

 Multiple policies: C1, ..., Cn C1 ∨ ... ∨ Cn

Cryptographic RBAC

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users have unrestricted access to FS

write

read

Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users have unrestricted access to FS

MPC

write

read

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users

write

read

 runs command
locally

 writes to FS

 sends update
msgs to users

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users update their states when receiving msg

write

read

 runs command
locally

 writes to FS

 sends update
msgs to users

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

RBAC commands,
 run by manager

input: stateM, FS, args
output: state'M, FS', {msgu}

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

 Write

 Read

 Update

RBAC commands,
 run by manager

run by users,
 input: stateu

run by manager,
 input: p, m

input: stateM, FS, args
output: state'M, FS', {msgu}

Properties of cRBAC

 Correctness:

 After any executions of commands,

 if HasAccess(u,p)

 then Read(stu, p, FS) outputs content of p

Properties of cRBAC

 Correctness:

 After any executions of commands,

 if HasAccess(u,p)

 then Read(stu, p, FS) outputs content of p

 Security:

 No information on content of p is leaked to u when

 ¬ HasAccess(u,p)

 Adversary can make manager execute RBAC cmds
 corrupt users (not manager)
 ask for ”challenges”

Security

 Security game:

 Oracles O :

Expind(λ)
 b $ {0,1}

 (stM, FS, {st[u]}u∈U) $ Init(1λ,R)

 b' $ A (1λ,FS : O)
 Return (b' = b)

Advind(λ) := | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)

→

→
→

Security

 Security game:

 Oracles O :

Expind(λ)
 b $ {0,1}; Cr,Ch ∅
 (stM, FS, {st[u]}u∈U) $ Init(1λ,R)

 b' $ A (1λ,FS : O)
 Return (b' = b)

Advind(λ) := | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)

Game ensures that at all time:
 ∀u ∈Cr ∀p ∈Ch: ¬ HasAccess(u,p)

→

→

→
→

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

 cRBAC enforces Φ if

 whenever Cond(u,p) then

 u does not have access to p ”in reality”

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
 whenever Cond(u,p) then ¬ HasAccess(u,p)
 (i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA)

 cRBAC enforces Φ if

 whenever Cond(u,p) then

 u does not have access to p ”in reality”

 Ind-based definition:

 Manager enforces Φ symbolically

 A impersonates u, for Cond(u,p)

 ... must distinguish content of p

Secure Policy Enforcement

Theorem: If CRBAC is secure then it enforces any policy

Computational soundness:

 Policies that are satisfied symbolically are also

 satisfied computationally.

Implementation

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Only need weak form of ABE:
 Policies:

 Disjunction of attributes

 ψ = a1 ∨ a2 ∨ ... ∨ an

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Only need weak form of ABE:
 Policies:

 Disjunction of attributes

 ψ = a1 ∨ a2 ∨ ... ∨ an

 key ~ x ⊆ A
ciphertext ~ y ⊆ A

xy

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts

 File p is encrypted w.r.t. roles (attributes) associated to it

 (according to PA) Write Encrypt
 User u receive keys corresponding to their roles

 (according to UA) Read Decrypt

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

 ... ?

Revocation and Deassignment

 AssignUser(u,r)

 ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

 ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

 ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

 associate role r with a new attribute a

 re-encrypt files p with (p,r) ∈PA

 re-issue keys to users u' with (u',r) ∈UA

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

 RevokePerm(p,r) ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p)

 RevokePerm(p,r) ¬ HasAcc(u,p)

 AssignUser(u,r) ¬ HasAcc(u,p)

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

 Theorem: If ABE satisfies indistinguishability

 then CRBAC [ABE] is a secure implementation

 (u,r) ∉UA, (p,r) ∈PA ¬ HasAcc(u,p) c sk

 RevokePerm(p,r) ¬ HasAcc(u,p) c' sk

 AssignUser(u,r) ¬ HasAcc(u,p) c' sk'

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE

Future work

 Hierarchical RBAC, attribute-based RBAC
 More general framework for abstract notions of

 symbolic & computational access-control enforcement

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 60
	Slide 61

