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Overview

Cryptographically enforced access control

 concentrate on 

                      Role-Based Access Control for file system

 Formal model, security definitions
 Soundness theorem for enforcing policies
 Implementation using Attribute-Based Encryption
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 Access control by

 low-level mechanisms

 using cryptography

 enforcement by design
 absolute semantics

 key management
 only ”probabilistic” guarantees
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 Cryptographic model (UC) for access control 

                                                          [Halevi,Karger,Naor'05]
 Access control for XML documents

                                                             [Abadi,Warinschi'08]



  

Previous Work

 Cryptographic sealing                                        [Gifford'82]
 Cryptographic model (UC) for access control 

                                                          [Halevi,Karger,Naor'05]
 Access control for XML documents

                                                             [Abadi,Warinschi'08]

 GAP between semantics associated to polices and

                                         cryptographic guarantees

          (previously: simple polices, simple primitives)



  

RBAC for Hospital

Doctor

Nurse

Patient

Receptionist



  

RBAC for Hospital

Medical records

List of doctors

List of appointments
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RBAC - The Model

                                                             R ... set of roles (fixed)

U ... universe of users                 U ⊆ U ... set of users

P ... universe of permissions      P ⊆ P  ... set of permissions

UA ⊆ U × R ... user-role assignment relation

PA ⊆ P × R ... permission-role assignment relation

State of the system:   S  =  (U, P, UA, PA)
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Hospital Example

U R P

n
UA PA



  

RBAC Commands

 AddUser(u)                        U → U ∪ {u}

 DeleteUser(u)             U→U \ {u}, UA→UA \ {(u,r)∈UA|r∈R}

 AddObject(p)                     P → P ∪ {p}

 DeleteObject(p)          P→P \ {p}, PA→PA \ {(p,r)∈PA|r∈R}

 AssignUser(u,r)                 UA  → UA ∪ {(u,r)}

 DeassignUser(u,r)             UA  → UA \ {(u,r)}

 GrantPermission(p,r)         PA  → PA ∪ {(p,r)}

 RevokePermission(p,r)      PA  → PA \ {(p,r)}



  

RBAC Semantics

 System evolves via commands

       (U, P, UA, PA)                                              (U', P', UA', PA')

        
 Trace:   sequence of commands:

      

RBAC command

...



  

RBAC Semantics

 System evolves via commands

       (U, P, UA, PA)                                              (U', P', UA', PA')

        
 Trace:   sequence of commands:

 Semantic:   User u has access to p:

   HasAccess(u,p)  ⇔  ∃ r ∈ R: (u,r) ∈ UA  ∧  (p,r) ∈ PA

      

RBAC command

...



  

Security Policies

 Separation of Duty:

         ... models conflict of interest between r, r' : no user can
             hold both roles

 Privilege Escalation:

         ... lower-rank roles cannot access resources for higer-      
             rank roles

... express limits on access



  

Security Policies

 Separation of Duty:

         ... models conflict of interest between r, r' : no user can
             hold both roles

 Privilege Escalation:

         ... lower-rank roles cannot access resources for higer-      
             rank roles

... express limits on access

Example:                    Doctor                 Receptionist
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 Security policy for RBAC is a formula 

           ∀u ∈U  ∀p ∈P:  Cond(u,p)   ⇒   ¬ HasAccess(u,p)
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Security Policies

 Security policy for RBAC is a formula 

           ∀u ∈U  ∀p ∈P:  Cond(u,p)   ⇒   ¬ HasAccess(u,p)

           interpreted over a state   S  =  (U, P, UA, PA)

 A policy should hold over any execution trace.

 Example: Privilege escalation from role r to role r':

            Cond(u,p)   ≡    [(u,r) ∈UA  ∧  (p,r') ∈ PA]

 Multiple policies:    C1, ..., Cn                         C1 ∨ ... ∨ Cn  
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Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users
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Cryptographic RBAC

 Permission = read access for file p in file system FS

 Manager

 Users have unrestricted access to FS

MPC

write

read



  

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users 

write

read

 runs command 
locally

 writes to FS

 sends update 
msgs to users



  

Cryptographic RBAC

Non-interactive protocol:

 Manager

 Users   update their states when receiving msg

write

read

 runs command 
locally

 writes to FS

 sends update 
msgs to users



  

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

RBAC commands,
      run by manager

input: stateM, FS, args
output: state'M, FS', {msgu}



  

cRBAC Algorithms

 Init

 AddUser
 DelUser
 AddObject
 DelObject
 AssignUser
 DeassignUser
 GrantPerm
 RevokePerm

 Write

 Read

 Update

RBAC commands,
      run by manager

run by users,
     input: stateu

run by manager,
       input: p, m

input: stateM, FS, args
output: state'M, FS', {msgu}



  

Properties of cRBAC

 Correctness:

        After any executions of commands,

        if  HasAccess(u,p)

                            then Read(stu, p, FS) outputs content of p



  

Properties of cRBAC

 Correctness:

        After any executions of commands,

        if  HasAccess(u,p)

                            then Read(stu, p, FS) outputs content of p

 Security:

        No information on content of p is leaked to u when

                                                            ¬ HasAccess(u,p)

        Adversary can  make manager execute RBAC cmds
 corrupt users (not manager)
 ask for ”challenges”



  

Security

 Security game:

 Oracles O : 

Expind(λ)
       b     $ {0,1}

       (stM, FS, {st[u]}u∈U )     $ Init(1λ,R)

       b'     $ A (1λ,FS : O )
       Return (b' = b)

Advind(λ)  :=  | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)
   

→

→
→



  

Security

 Security game:

 Oracles O : 

Expind(λ)
       b     $ {0,1};  Cr,Ch      ∅
       (stM, FS, {st[u]}u∈U )     $ Init(1λ,R)

       b'     $ A (1λ,FS : O )
       Return (b' = b)

Advind(λ)  :=  | Pr [Expind(λ) → true] - 1/2 |

 Oracles for RBAC commands

 CorruptU(u), Challenge(p,m0,m1)

Game ensures that at all time:
               ∀u ∈Cr ∀p ∈Ch: ¬ HasAccess(u,p)

→

→

→
→



  

Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
    whenever  Cond(u,p)  then  ¬ HasAccess(u,p)
                                           ( i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA )
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Secure Policy Enforcement

 Policy Φ defined by Cond s.t.
    whenever  Cond(u,p)  then  ¬ HasAccess(u,p)
                                           ( i.e. ∀r ∈R: (u,r) ∉UA ∨ (p,r) ∉PA )

 cRBAC enforces Φ if

    whenever  Cond(u,p)  then 

                              u does not have access to p ”in reality”

 Ind-based definition:

    

 Manager enforces Φ symbolically

  A  impersonates u, for Cond(u,p)

 ... must distinguish content of p 
                            



  

Secure Policy Enforcement

Theorem:  If CRBAC is secure then it enforces any policy

Computational soundness:

      Policies that are satisfied symbolically are also    

      satisfied computationally.



  

Implementation



  

Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy
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Attribute-Based Encryption

Attribute-Based Encryption

 Encryption w.r.t. set of attributes from universe A
 Keys associated to policies over attributes
 ... decrypt ciphertexts whose attributes satisfy policy

Only need weak form of ABE:
 Policies: 

  Disjunction of attributes

     ψ  =  a1 ∨ a2 ∨ ... ∨ an

          key  ~  x ⊆ A
ciphertext  ~  y ⊆ A

xy



  

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts



  

Implementation of cRBAC

 RBAC

roles

objects

 ABE

attributes

ciphertexts

 File p is encrypted w.r.t. roles (attributes) associated to it

        (according to PA)                      Write            Encrypt
 User u receive keys corresponding to their roles

        (according to UA)                      Read            Decrypt



  

Revocation and Deassignment

 AssignUser(u,r)

     ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

     ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

     ... re-encrypt content of p w.r.t. reduced set of roles
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     ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

     ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

     ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

     ... ?

    



  

Revocation and Deassignment

 AssignUser(u,r)

     ... issue new key for user u's extended set of roles
 GrantPerm(p,r)

     ... re-encrypt content of p w.r.t. extended set of roles
 RevokePerm(p,r)

     ... re-encrypt content of p w.r.t. reduced set of roles
 DeassignUser(u,r)

     

    

 associate role r with a new attribute a

 re-encrypt files p with (p,r) ∈PA

 re-issue keys to users u' with (u',r) ∈UA
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Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

      

 (u,r) ∉UA, (p,r) ∈PA    ¬ HasAcc(u,p)         c       sk

 RevokePerm(p,r)        ¬ HasAcc(u,p)         c'       sk
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Security

 Not secure. Why? Consider:

 New attribute for role r also when RevokePerm(p,r)!

 Theorem: If ABE  satisfies indistinguishability 

                 then CRBAC   [ABE   ] is a secure implementation

      

 (u,r) ∉UA, (p,r) ∈PA    ¬ HasAcc(u,p)         c       sk

 RevokePerm(p,r)        ¬ HasAcc(u,p)         c'       sk

 AssignUser(u,r)           ¬ HasAcc(u,p)              c'       sk'



  

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE



  

Conclusion

 Defined syntax & security for cryptographic access control
 Soundness theorem for policies
 Provably secure implementation using weak ABE

Future work

 Hierarchical RBAC, attribute-based RBAC
 More general framework for abstract notions of 

      symbolic & computational access-control enforcement
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