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BIG-O and small-o notation
Classify functions by their asymptotic growth rate

Let f ,g : N→ R+

I f (n) = O(g(n)) if

∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : f (n) ≤ c · g(n)

(“For some positive c: f (n) ≤ c · g(n) for all sufficiently large n”)

I f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0

that is, ∀c > 0 ∃n0 ∈ N ∀n ≥ n0 : f (n) < c · g(n)

(“For any positive c: f (n) < c · g(n) for all sufficiently large n”)
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Examples 1

Polynomials. If f is a polynomial of degree k then

f (n) = O(nk )
f (n) = o(nk+1), but f is not o(nk )

I In general: if 0 < k1 < k2 then nk1 = o(nk2)

Logarithms. d Recall: ax = y then x = loga y e
b Typically a = 2: (blog2 nc+ 1) is n’s length in binary c

I
(log n)k

nc
−→

n→∞ 0 for all k , c > 0

thus log n = o(nk ), for all k > 0, n log n = o(n2), . . .
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Examples 2

Exponentials. Any exponential function “dominates ” any
polynomial:

I
nk

cn
−→

n→∞ 0 for all k > 0, c > 1

thus nk = o(cn), for any c > 1

I In general: if c1 < c2 then c1
n = o(c2

n)

Notation: f (n) = 2O(g(n)) iff ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : f (n) ≤ 2c·g(n)
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Time complexity for TMs
Definition. Let M be a TM which halts on every input. The running
time or time complexity of M is f : N→ N, where f (n) is the
maximum number of steps that M uses on any input of length n.

(“worst-case time”)

Definition. Let f : N→ R+. TIME(f (n)) is the class of all languages
decided by an O(f (n))-time TM.

Examples.
I TIME(n) (linear time)
I P :=

⋃
k TIME(nk ) (polynomial time)

I EXP :=
⋃

k TIME(2nk
) (exponential time)

Gap: super-polynomial, sub-exponential (∀c > 1 : f (n) = o(cn)),
e.g.: f (n) = nlog n.
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Non-deterministic Turing machines

DTM:

Start configuration

A node is a configuration

NDTM:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

qaccept

qreject
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Time complexity for NTMs

Definition. Let N be a NTM which is a decider. The running time of
N is f : N→ N, where f (n) is the maximum number of steps that N
uses on any branch of its computation on any input of length n.

Theorem. (Time-complexity of NTM simulation.) Every t(n)-time
NTM N has an equivalent 2O(t(n))-time TM M.

(equivalent: N and M decide the same language.)
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The class P

P =
⋃
k

TIME(nk )

I P is robust (not affected by model of computation)
I P is a mathematical model of “realistically solvable” or

“tractable” problems (Cobham’s thesis)
(caveat: running time c · nk with c � or k �)

Examples
I FACTORING ∈?P

(FACTORING = {(N,M) |N has an integer factor 1 < k < M})

Brute force: O(2n/2). Best known algo: 2O(n1/3(log n)2/3)

I PATH ∈ P
(PATH = {(G, s, t) |G is directed graph w/ path from s to t})
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Examples
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• V is a polynomial time verifier if V runs in poly time in the length of w (note: not
it’s full input (w, c)!). In this case V can access only poly many squares so the certificates
have only poly length too (without loss of generality).

• A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages (“languages with
short certificates”).

Intuitively
P = class of languages that can be decided “quickly”;
NP = class of languages that can be verified “quickly”.

Example Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to
vertex t in a directed graph G is a path that goes through every vertex exactly once.
The computational task HAMPATH(G, s, t) is defined to accept iff G has a Hamilto-
nian path from s to t. It is easy to check if a given path from s to t is Hamilto-
nian or not but it is hard to decide if such a path exists or not – there can be gener-
ally exponentially many paths in a graph between two given vertices for a brute force
search. For example, is there a Hamiltonian path from s to t in the following graph?
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In the case of the ordinary path problem, PATH(G, s, t) (cf INSERT1), we are also faced
with a potential search over exponentially many paths but there was a cleverer approach
leading to a poly time algorithm. No such cleverer approach is known for HAMPATH
(e.g. in contrast to PATH it no longer suffices to remember just where you currently are
on the path being tested). However HAMPATH is in NP – if G has a Hamiltonian path
from s to t then the certificate c is just a description of this path and the (poly time)
verifier V (G, s, t, c) simply checks that c really is Hamiltonian, starts at s and ends at
t. If s = t we are asking if a graph G has a closed circuit passing through each vertex
exactly once. This computational task is called HAMCIRCUIT(G) and it is similarly in
NP (and not known or believed to be in P).

• It is obvious that P ⊆ NP. (Why?)

• co-NP is the class of all complements Σ∗ −A of languages A in NP. (cf exercise sheet
1 for P vs. co-P). Note that in general if membership of A has short certificates, we do
not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not
known whether NP = co-NP or not (but generally believed not equal).

I HAMPATH = {(G, s, t) |G is directed graph with
a Hamiltonian path from s to t}

I Easy to check that (G, s, t) ∈ HAMPATH when given a path;
easy to check that (N,M) ∈ FACTORING when given a factor
. . .

Many computational problems
I can be solved by brute-force, testing exp. many candidates.
I Verification of desired property on a candidate is easy.

G. Fuchsbauer
COMS21400 : Time Complexity Slide 12



Examples

COMS21400 14

• V is a polynomial time verifier if V runs in poly time in the length of w (note: not
it’s full input (w, c)!). In this case V can access only poly many squares so the certificates
have only poly length too (without loss of generality).

• A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages (“languages with
short certificates”).

Intuitively
P = class of languages that can be decided “quickly”;
NP = class of languages that can be verified “quickly”.

Example Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to
vertex t in a directed graph G is a path that goes through every vertex exactly once.
The computational task HAMPATH(G, s, t) is defined to accept iff G has a Hamilto-
nian path from s to t. It is easy to check if a given path from s to t is Hamilto-
nian or not but it is hard to decide if such a path exists or not – there can be gener-
ally exponentially many paths in a graph between two given vertices for a brute force
search. For example, is there a Hamiltonian path from s to t in the following graph?

u

u

u

u

u

u

u

u
@
@
@
@
@@R

�
�

�
�
��	

?

-

HH
HH

HHY

6

HHHHHHj��
��
��*

-

�������

?

@
@
@
@
@@R

�
�
�
�
���

s t

In the case of the ordinary path problem, PATH(G, s, t) (cf INSERT1), we are also faced
with a potential search over exponentially many paths but there was a cleverer approach
leading to a poly time algorithm. No such cleverer approach is known for HAMPATH
(e.g. in contrast to PATH it no longer suffices to remember just where you currently are
on the path being tested). However HAMPATH is in NP – if G has a Hamiltonian path
from s to t then the certificate c is just a description of this path and the (poly time)
verifier V (G, s, t, c) simply checks that c really is Hamiltonian, starts at s and ends at
t. If s = t we are asking if a graph G has a closed circuit passing through each vertex
exactly once. This computational task is called HAMCIRCUIT(G) and it is similarly in
NP (and not known or believed to be in P).

• It is obvious that P ⊆ NP. (Why?)

• co-NP is the class of all complements Σ∗ −A of languages A in NP. (cf exercise sheet
1 for P vs. co-P). Note that in general if membership of A has short certificates, we do
not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not
known whether NP = co-NP or not (but generally believed not equal).

I HAMPATH = {(G, s, t) |G is directed graph with
a Hamiltonian path from s to t}

I Easy to check that (G, s, t) ∈ HAMPATH when given a path;
easy to check that (N,M) ∈ FACTORING when given a factor
. . .

Many computational problems
I can be solved by brute-force, testing exp. many candidates.
I Verification of desired property on a candidate is easy.

G. Fuchsbauer
COMS21400 : Time Complexity Slide 12



Examples

COMS21400 14

• V is a polynomial time verifier if V runs in poly time in the length of w (note: not
it’s full input (w, c)!). In this case V can access only poly many squares so the certificates
have only poly length too (without loss of generality).

• A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages (“languages with
short certificates”).

Intuitively
P = class of languages that can be decided “quickly”;
NP = class of languages that can be verified “quickly”.

Example Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to
vertex t in a directed graph G is a path that goes through every vertex exactly once.
The computational task HAMPATH(G, s, t) is defined to accept iff G has a Hamilto-
nian path from s to t. It is easy to check if a given path from s to t is Hamilto-
nian or not but it is hard to decide if such a path exists or not – there can be gener-
ally exponentially many paths in a graph between two given vertices for a brute force
search. For example, is there a Hamiltonian path from s to t in the following graph?

u

u

u

u

u

u

u

u
@
@
@
@
@@R

�
�

�
�
��	

?

-

HH
HH

HHY

6

HHHHHHj��
��
��*

-

�������

?

@
@
@
@
@@R

�
�
�
�
���

s t

In the case of the ordinary path problem, PATH(G, s, t) (cf INSERT1), we are also faced
with a potential search over exponentially many paths but there was a cleverer approach
leading to a poly time algorithm. No such cleverer approach is known for HAMPATH
(e.g. in contrast to PATH it no longer suffices to remember just where you currently are
on the path being tested). However HAMPATH is in NP – if G has a Hamiltonian path
from s to t then the certificate c is just a description of this path and the (poly time)
verifier V (G, s, t, c) simply checks that c really is Hamiltonian, starts at s and ends at
t. If s = t we are asking if a graph G has a closed circuit passing through each vertex
exactly once. This computational task is called HAMCIRCUIT(G) and it is similarly in
NP (and not known or believed to be in P).

• It is obvious that P ⊆ NP. (Why?)

• co-NP is the class of all complements Σ∗ −A of languages A in NP. (cf exercise sheet
1 for P vs. co-P). Note that in general if membership of A has short certificates, we do
not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not
known whether NP = co-NP or not (but generally believed not equal).

I HAMPATH = {(G, s, t) |G is directed graph with
a Hamiltonian path from s to t}

I Easy to check that (G, s, t) ∈ HAMPATH when given a path;
easy to check that (N,M) ∈ FACTORING when given a factor
. . .

Many computational problems
I can be solved by brute-force, testing exp. many candidates.
I Verification of desired property on a candidate is easy.

G. Fuchsbauer
COMS21400 : Time Complexity Slide 12



Examples

COMS21400 14

• V is a polynomial time verifier if V runs in poly time in the length of w (note: not
it’s full input (w, c)!). In this case V can access only poly many squares so the certificates
have only poly length too (without loss of generality).

• A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages (“languages with
short certificates”).

Intuitively
P = class of languages that can be decided “quickly”;
NP = class of languages that can be verified “quickly”.

Example Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to
vertex t in a directed graph G is a path that goes through every vertex exactly once.
The computational task HAMPATH(G, s, t) is defined to accept iff G has a Hamilto-
nian path from s to t. It is easy to check if a given path from s to t is Hamilto-
nian or not but it is hard to decide if such a path exists or not – there can be gener-
ally exponentially many paths in a graph between two given vertices for a brute force
search. For example, is there a Hamiltonian path from s to t in the following graph?

u

u

u

u

u

u

u

u
@
@
@
@
@@R

�
�

�
�
��	

?

-

HH
HH

HHY

6

HHHHHHj��
��
��*

-

�������

?

@
@
@
@
@@R

�
�
�
�
���

s t

In the case of the ordinary path problem, PATH(G, s, t) (cf INSERT1), we are also faced
with a potential search over exponentially many paths but there was a cleverer approach
leading to a poly time algorithm. No such cleverer approach is known for HAMPATH
(e.g. in contrast to PATH it no longer suffices to remember just where you currently are
on the path being tested). However HAMPATH is in NP – if G has a Hamiltonian path
from s to t then the certificate c is just a description of this path and the (poly time)
verifier V (G, s, t, c) simply checks that c really is Hamiltonian, starts at s and ends at
t. If s = t we are asking if a graph G has a closed circuit passing through each vertex
exactly once. This computational task is called HAMCIRCUIT(G) and it is similarly in
NP (and not known or believed to be in P).

• It is obvious that P ⊆ NP. (Why?)

• co-NP is the class of all complements Σ∗ −A of languages A in NP. (cf exercise sheet
1 for P vs. co-P). Note that in general if membership of A has short certificates, we do
not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not
known whether NP = co-NP or not (but generally believed not equal).

I HAMPATH = {(G, s, t) |G is directed graph with
a Hamiltonian path from s to t}

I Easy to check that (G, s, t) ∈ HAMPATH when given a path;
easy to check that (N,M) ∈ FACTORING when given a factor
. . .

Many computational problems
I can be solved by brute-force, testing exp. many candidates.
I Verification of desired property on a candidate is easy.

G. Fuchsbauer
COMS21400 : Time Complexity Slide 12



Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

G. Fuchsbauer
COMS21400 : Time Complexity Slide 13



The class NP

Polynomial-time verifiers

I A verifier for a language A is a TM V , s.t.

A = {w |V accepts (w , c) for some c} .

The string c is called a certificate or proof of membership in A.

I V is a polynomial-time verifier if runs in polynomial time in the
length of w .

Definition. NP is the class of all polynomially verifiable languages
i.e., all languages which have a polynomial-time verifier.
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More on NP

P = class of languages that can be decided “quickly”
NP = class of languages that can be verified “quickly”

I P ⊆ NP (→ problems class)

Definition. For a class of languages C, we define co-C as the class
of all complements A of languages A in C.

I P = co-P (→ problems class)

I NP =?co-NP

Examples. HAMPATH ∈ NP
COMPOSITES = {x | x = pq, for integers p,q >1} ∈ NP
PRIMES ∈ co-NP

Actually: PRIMES ∈ NP (not obvious)
PRIMES ∈ P (shown in 2003)

HAMPATH ∈?NP
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The name NP

Theorem. A language is in NP iff it is decided by some polynomial-
time NTM.

Corollary. NP ⊆ EXP (by the theorem on Slide 9).

P =? NP

“Can every problem whose solution is quickly verifiable
be solved quickly?”

I Implications?

G. Fuchsbauer
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The SATisfiability problem
I Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
I Boolean operations: AND (x1 ∧ x2), OR (x1 ∨ x2), NOT (x)

I Boolean formulas: e.g. φ = (x1 ∧ x2) ∨ ((x1 ∧ x3) ∨ x2)

A boolean formula is satisfiable if there exists an assignment of 0’s
and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2n possible assignments)

SAT := {〈φ〉 |φ is a satisfiable Boolean formula}

I SAT ∈ NP, SAT ∈? co-NP

Theorem. (Cook-Levin)

SAT ∈ P iff P = NP

G. Fuchsbauer
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and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2n possible assignments)
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Reducibility

Informally: If A reduces to B then B is “harder” than A
(cf. undecidability)

Definition. f : Σ∗ → Σ∗ is polynomial-time computable if there is
a poly-time TM, which on input w halts with f (w) on its
tape.

Definition. A language A is polynomial-time reducible to B if there
is a poly-time computable f : Σ∗ → Σ∗ with

w ∈ A iff f (w) ∈ B

We write A ≤p B.

Theorem. If A ≤p B and B ∈ P then A ∈ P.
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NP-completeness

Definition. A language B is NP-complete if
I B ∈ NP, and
I every A in NP is polynomial-time reducible to B

(NP-complete problems are the “hardest” problems in NP)

Theorem. If B is NP-complete and B ∈ P then P = NP.

Theorem. If B is NP-complete and B ≤p C, for C ∈ NP, then C is
NP-complete.

Theorem. (Cook-Levin, restated) SAT is NP-complete.
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3-SAT

I Literal: x or x
I Clause: Disjunction of literals, e.g. (x1 ∨ x2 ∨ x3)

I φ is in conjunctive normal form if φ is a conjunction of clauses
I 3-CNF formula: A CNF formula with all clauses having 3

literals, e.g. (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4).

3-SAT := {〈φ〉 |φ is a satisfiable 3-CNF formula}

Theorem. 3-SAT is NP-complete.
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More NP-complete languages

A k -clique in a graph is a set of k nodes in which every two nodes
are connected by an edge.

CLIQUE := {(G, k) |G is an undirected graph with a k -clique}268 CHAPTER 7 / TIME COMPLEXITY

FIGURE 7.23
A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE { (G, k) C G is an undirected graph with a k-clique}.

THEOREM 7.24 .......... .............................................................................

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = "On input ((G, k), c):
1. Test whether c is a set of k nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = "On input (G. k), where G is a graph:
1. Nondeterministically select a subset c of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject."

........................................................................................................................................................................

Next we consider the SUBSET-SUM problem concerning integer arithmetic.
In this problem we have a collection of numbers £1, . .I, L k and a target num-
ber t. We want to determine whether the collection contains a subcollection that

Theorem. CLIQUE is NP-complete.

More NP-complete languages:
I HAMPATH

I SUBSET-SUM = {{x1, . . . , xk} |
for some {y1, . . . y`} ⊆ {x1, . . . , xk} we have:

∑
yi = 0}
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