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BIG-O and small-o notation

Classify functions by their asymptotic growth rate
Letf,g: N - RT

» f(n) = O(g(n)) if
Jdc>03ng e NVn>ngy: f(n)<c-g(n)

(“For some positive c: f(n) < c¢- g(n) for all sufficiently large n”)
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BIG-O and small-o notation

Classify functions by their asymptotic growth rate
Letf,g: N - RT
> f(n) = O(g(n)) if

Jdc>03ng e NVn>ngy: f(n)<c-g(n)

(“For some positive c: f(n) < c¢- g(n) for all sufficiently large n”)

> f(n) = o(g(n)) if
lim fm) _ 0
n=o0 g(n)
thatis, Ve > 03ny e NVn > ng : f(n) < c- g(n)

(“For any positive c: f(n) < c - g(n) for all sufficiently large n”)
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Examples 1

Polynomials. If f is a polynomial of degree k then

f(n) = O(n¥)
f(n) = o(n**1), but f is not o(n*)

» In general: if 0 < ky < ko then n* = o(n*e)
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Examples 1

Polynomials. If f is a polynomial of degree k then
f(n) = O(n¥)
f(n) = o(n**1), but f is not o(n*)

» In general: if 0 < ky < ko then n* = o(n*e)

Logarithms. [ Recall: & = y then x = log, y |
| Typically a=2: (|log, n] + 1) is n's length in binary |

k
_ (ognf

e oo forallk,c >0

thus logn = o(n¥), forall k > 0, nlogn= o(n?), ...
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Examples 2

Exponentials. Any exponential function “dominates ” any
polynomial:

K
n

> o nseo 0 forallk >0,¢c>1
thus n* = o(c"), for any ¢ > 1

» In general: if ¢; < ¢, then ¢ = o(c,")

Notation: f(n) = 2°09(") iff 3¢ > 0 3ng € N Vn > ng : f(n) < 2¢:9(")
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Time complexity for TMs

Definition. Let M be a TM which halts on every input. The running

time or time complexity of M is f : N — N, where f(n) is the

maximum number of steps that M uses on any input of length n.
(“worst-case time”)

Definition. Let f : N — R*. TIME(f(n)) is the class of all languages
decided by an O(f(n))-time TM.

G. Fuchsbauer

COMS21400 : Time Complexity



Time complexity for TMs

Definition. Let M be a TM which halts on every input. The running

time or time complexity of M is f : N — N, where f(n) is the

maximum number of steps that M uses on any input of length n.
(“worst-case time”)

Definition. Let f : N — R*. TIME(f(n)) is the class of all languages
decided by an O(f(n))-time TM.

Examples.
» TIME(n) (linear time)
> P =, TIME(n¥) (polynomial time)
> EXP := U, TIME(2™) (exponential time)

Gap: super-polynomial, sub-exponential (V¢ > 1 : f(n) = o(c")),
e.g.: f(n) = n'°97,
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Non-deterministic Turing machines

A node e is a configuration

DTM:

*— >0 »0— >0 >0 >0 >0 »0— >0— >0

T

Start configuration

NDTM:
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Time complexity for NTMs

Definition. Let N be a NTM which is a decider. The running time of
Nis f: N — N, where f(n) is the maximum number of steps that N
uses on any branch of its computation on any input of length n.

Theorem. (Time-complexity of NTM simulation.) Every t(n)-time
NTM N has an equivalent 2°((")-time TM M.

(equivalent: N and M decide the same language.)
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The class P

P = JTIME(n")
k

» P is robust (not affected by model of computation)

» P is a mathematical model of “realistically solvable” or
“tractable” problems (Cobham’s thesis)
(caveat: running time ¢ - n* with ¢ > or k >>)
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The class P

P = JTIME(n")
k

» P is robust (not affected by model of computation)

» P is a mathematical model of “realistically solvable” or
“tractable” problems (Cobham’s thesis)
(caveat: running time ¢ - n* with ¢ > or k >>)

Examples

» FACTORING 2P
(FACTORING = {(N, M) | N has an integer factor 1 < k < M})

Brute force: O(2"/2). Best known algo: 20(1/*(logm)?’?)
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The class P

P = JTIME(n")
k

» P is robust (not affected by model of computation)

» P is a mathematical model of “realistically solvable” or
“tractable” problems (Cobham’s thesis)
(caveat: running time ¢ - n* with ¢ > or k >>)

Examples

» FACTORING 2P
(FACTORING = {(N, M) | N has an integer factor 1 < k < M})

Brute force: O(2"/2). Best known algo: 20(1/*(logm)?’?)

» PATHe P
(PATH = {(G, s, t) | G is directed graph w/ path from s to t})
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Examples




Examples

» HAMPATH = {(G, s, t)| G is directed graph with
a Hamiltonian path from s to t}
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Examples

s \ | 3
» HAMPATH = {(G, s, t) | G is directed graph with
a Hamiltonian path from s to t}

» Easy to check that (G, s, t) € HAMPATH when given a path;
easy to check that (N, M) € FACTORING when given a factor
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Examples

s \ | 3
» HAMPATH = {(G, s, t) | G is directed graph with
a Hamiltonian path from s to t}

» Easy to check that (G, s, t) € HAMPATH when given a path;
easy to check that (N, M) € FACTORING when given a factor

Many computational problems
» can be solved by brute-force, testing exp. many candidates.
» Verification of desired property on a candidate is easy.
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The class NP

Polynomial-time verifiers

» A verifier for a language Aisa TM V, s.t.
A= {w| V accepts (w, c) for some c} .

The string c is called a certificate or proof of membership in A.
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The class NP

Polynomial-time verifiers

» A verifier for a language Aisa TM V, s.t.
A= {w| V accepts (w, c) for some c} .
The string c is called a certificate or proof of membership in A.

» Vis a polynomial-time verifier if runs in polynomial time in the
length of w.
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The class NP

Polynomial-time verifiers

» A verifier for a language Aisa TM V, s.t.
A= {w| V accepts (w, c) for some c} .
The string c is called a certificate or proof of membership in A.

» Vis a polynomial-time verifier if runs in polynomial time in the
length of w.

Definition. NP is the class of all polynomially verifiable languages
i.e., all languages which have a polynomial-time verifier.
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More on NP

P = class of languages that can be decided “quickly”
NP = class of languages that can be verified “quickly”

» P C NP (- problems class)
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More on NP

P = class of languages that can be decided “quickly”
NP = class of languages that can be verified “quickly”

» P C NP (- problems class)

Definition. For a class of languages C, we define co-C as the class
of all complements A of languages A in C.

» P=co-P (- problems class)
> NP 2co-NP
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More on NP

P = class of languages that can be decided “quickly”
NP = class of languages that can be verified “quickly”

» P C NP (- problems class)

Definition. For a class of languages C, we define co-C as the class
of all complements A of languages A in C.
» P =co-P (— problems class)
> NP 2co-NP

Examples. HAMPATH € NP
COMPOSITES = {x | x = pq, for integers p,q >1} € NP
PRIMES € co-NP
Actually: PRIMES € NP (not obvious)
PRIMES < P (shown in 2003)
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More on NP

P = class of languages that can be decided “quickly”
NP = class of languages that can be verified “quickly”

» P C NP (- problems class)

Definition. For a class of languages C, we define co-C as the class
of all complements A of languages A in C.

» P =co-P (— problems class)
» NP 2co-NP

Examples. HAMPATH € NP
COMPOSITES = {x | x = pq, for integers p,q >1} € NP
PRIMES € co-NP
Actually: PRIMES € NP (not obvious)
PRIMES < P (shown in 2003)
HAMPATH 2 NP
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The name NP

Theorem. A language is in NP iff it is decided by some polynomial-
time NTM.

Corollary. NP C EXP (by the theorem on Slide 9).
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The name NP

Theorem. A language is in NP iff it is decided by some polynomial-
time NTM.

Corollary. NP C EXP (by the theorem on Slide 9).

P 2NP

“Can every problem whose solution is quickly verifiable
be solved quickly?”

» Implications?
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The SATisfiability problem
» Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
» Boolean operations: AND (x;y A X2), OR (X1 V x2), NOT (X)
» Boolean formulas: e.g. ¢ = (X1 Ax2) V ((X1 AX3)V X2)
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The SATisfiability problem

» Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
» Boolean operations: AND (x;y A X2), OR (X1 V x2), NOT (X)
» Boolean formulas: e.g. ¢ = (X1 Ax2) V ((X1 AX3)V X2)

A boolean formula is satisfiable if there exists an assignment of 0’s
and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2" possible assignments)
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The SATisfiability problem

» Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
» Boolean operations: AND (x;y A X2), OR (X1 V x2), NOT (X)
» Boolean formulas: e.g. ¢ = (X1 A x2) V ((x1 A X3) V X2)

A boolean formula is satisfiable if there exists an assignment of 0’s
and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2" possible assignments)

SAT .= {(¢) | ¢ is a satisfiable Boolean formula}

» SAT ¢ NP, SAT 2 co-NP
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The SATisfiability problem

» Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
» Boolean operations: AND (x;y A X2), OR (X1 V x2), NOT (X)
» Boolean formulas: e.g. ¢ = (X1 A x2) V ((x1 A X3) V X2)

A boolean formula is satisfiable if there exists an assignment of 0’s
and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2" possible assignments)

SAT .= {(¢) | ¢ is a satisfiable Boolean formula}

» SAT ¢ NP, SAT 2 co-NP

Theorem. (Cook-Levin)

SAT € P iff P=NP
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Reductions, NP-Completeness
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Reducibility

Informally: If A reduces to B then B is “harder” than A
(cf. undecidability)

G. Fuchsbauer

COMS21400 : Time Complexity Slide 19



Reducibility

Informally: If A reduces to B then B is “harder” than A
(cf. undecidability)

Definition. f: ¥* — ¥* is polynomial-time computable if there is
a poly-time TM, which on input w halts with f(w) on its
tape.
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Reducibility

Informally: If A reduces to B then B is “harder” than A
(cf. undecidability)

Definition. f: ¥* — ¥* is polynomial-time computable if there is
a poly-time TM, which on input w halts with f(w) on its
tape.

Definition. A language A is polynomial-time reducible to B if there
is a poly-time computable f: ¥* — ¥* with

weA it f(w)eB

We write A <, B.
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Reducibility

Informally: If A reduces to B then B is “harder” than A
(cf. undecidability)

Definition. f: ¥* — ¥* is polynomial-time computable if there is
a poly-time TM, which on input w halts with f(w) on its
tape.

Definition. A language A is polynomial-time reducible to B if there
is a poly-time computable f: ¥* — ¥* with

weA iff f(w)eB
We write A <, B.

Theorem. If A<, Band B< Pthen Ac P.
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NP-completeness

Definition. A language B is NP-complete if
» B e NP, and
» every Ain NP is polynomial-time reducible to B

(NP-complete problems are the “hardest” problems in NP)

G. Fuchsbauer

COMS21400 : Time Complexity Slide 20



NP-completeness

Definition. A language B is NP-complete if
» B e NP, and
» every Ain NP is polynomial-time reducible to B

(NP-complete problems are the “hardest” problems in NP)

Theorem. If B is NP-complete and B € P then P = NP.
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NP-completeness

Definition. A language B is NP-complete if
» B e NP, and
» every Ain NP is polynomial-time reducible to B

(NP-complete problems are the “hardest” problems in NP)
Theorem. If B is NP-complete and B € P then P = NP.

Theorem. If Bis NP-complete and B <, C, for C € NP, then C is
NP-complete.
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NP-completeness

Definition. A language B is NP-complete if
» B e NP, and
» every Ain NP is polynomial-time reducible to B

(NP-complete problems are the “hardest” problems in NP)
Theorem. If B is NP-complete and B € P then P = NP.

Theorem. If Bis NP-complete and B <, C, for C € NP, then C is
NP-complete.

Theorem. (Cook-Levin, restated) SAT is NP-complete.
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3-SAT

Literal: x orx
Clause: Disjunction of literals, e.g. (x1 V X2 V X3)
¢ is in conjunctive normal form if ¢ is a conjunction of clauses

3-CNF formula: A CNF formula with all clauses having 3
literals, e.g. (X1 V Xo V 73) AN (X2 V X5 V XG) AN (X3 V Xg V X4).

v

v

v

v
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3-SAT

Literal: x orx
Clause: Disjunction of literals, e.g. (x1 V X2 V X3)
¢ is in conjunctive normal form if ¢ is a conjunction of clauses

3-CNF formula: A CNF formula with all clauses having 3
literals, e.g. (X1 V Xo V 73) AN (X2 V X5 V XG) AN (X3 V Xg V X4).

v

v

v

v

3-SAT .= {(¢) | ¢ is a satisfiable 3-CNF formula}
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3-SAT

Literal: x orx
Clause: Disjunction of literals, e.g. (x1 V X2 V X3)
¢ is in conjunctive normal form if ¢ is a conjunction of clauses

3-CNF formula: A CNF formula with all clauses having 3
literals, e.g. (X1 V Xo V 73) AN (X2 V X5 V XG) AN (X3 V Xg V X4).

v

v

v

v

3-SAT .= {(¢) | ¢ is a satisfiable 3-CNF formula}

Theorem. 3-SAT is NP-complete.
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More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes
are connected by an edge.

CLIQUE := {(G, k) | G is an undirected graph with a k-clique}
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More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes
are connected by an edge.

CLIQUE := {(G, k) | G is an undirected graph with a k-clique}

Theorem. CLIQUE is NP-complete.
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More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes
are connected by an edge.

CLIQUE := {(G, k) | G is an undirected graph with a k-clique}

Theorem. CLIQUE is NP-complete.

More NP-complete languages: ~
» HAMPATH
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More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes
are connected by an edge.

CLIQUE := {(G, k) | G is an undirected graph with a k-clique}

Theorem. CLIQUE is NP-complete.

More NP-complete languages: ~
» HAMPATH

» SUBSET-SUM = {{x1,...,x}|
for some {ys,...y¢} C {xy,...,xc} we have: }_y; = 0}
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