COMS21400 : Time Complexity

G. Fuchsbauer

Dept of Computer Science University of Bristol, Room 3.53, Merchant Venturers Building

19-27 Nov 2012

G. Fuchsbauer COMS21400 : Time Complexity

Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

BIG-O and small-o notation

Classify functions by their asymptotic growth rate

Let $f,g \colon \mathbb{N} \to \mathbb{R}^+$

► f(n) = O(g(n)) if

 $\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \le c \cdot g(n)$

("For some positive c: $f(n) \le c \cdot g(n)$ for all sufficiently large n")

BIG-O and small-o notation

Classify functions by their asymptotic growth rate

Let $f, g \colon \mathbb{N} \to \mathbb{R}^+$

► f(n) = O(g(n)) if $\exists c > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : f(n) \le c \cdot g(n)$ ("For some positive c: $f(n) \le c \cdot g(n)$ for all sufficiently large n")

►
$$f(n) = o(g(n))$$
 if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
that is, $\forall c > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : f(n) < c \cdot g(n)$
("For any positive c: $f(n) < c \cdot g(n)$ for all sufficiently large n")

Polynomials. If *f* is a polynomial of degree *k* then

$$f(n) = O(n^k)$$

$$f(n) = o(n^{k+1}), \text{ but } f \text{ is not } o(n^k)$$

• In general: if $0 < k_1 < k_2$ then $n^{k_1} = o(n^{k_2})$

Polynomials. If *f* is a polynomial of degree *k* then

$$f(n) = O(n^k)$$

$$f(n) = o(n^{k+1}), \text{ but } f \text{ is not } o(n^k)$$

• In general: if $0 < k_1 < k_2$ then $n^{k_1} = o(n^{k_2})$

Logarithms. [Recall:
$$a^x = y$$
 then $x = \log_a y$
[Typically $a = 2$: ($\lfloor \log_2 n \rfloor + 1$) is *n*'s length in binary]

•
$$\frac{(\log n)^k}{n^c} \xrightarrow[n \to \infty]{} 0$$
 for all $k, c > 0$
thus $\log n = o(n^k)$, for all $k > 0$, $n \log n = o(n^2), \dots$

G. Fuchsbauer COMS21400 : Time Complexity

Exponentials. Any exponential function "dominates" any polynomial:

•
$$\frac{n^k}{c^n} \xrightarrow[n \to \infty]{} 0$$
 for all $k > 0, c > 1$
thus $n^k = o(c^n)$, for any $c > 1$

• In general: if $c_1 < c_2$ then $c_1^n = o(c_2^n)$

Notation: $f(n) = 2^{O(g(n))}$ iff $\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \le 2^{c \cdot g(n)}$

Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

G. Fuchsbauer COMS21400 : Time Complexity

Time complexity for TMs

Definition. Let *M* be a TM which halts on every input. The **running time** or **time complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that *M* uses on *any* input of length *n*. ("worst-case time")

Definition. Let $f : \mathbb{N} \to \mathbb{R}^+$. TIME(f(n)) is the class of all languages decided by an O(f(n))-time TM.

Time complexity for TMs

Definition. Let *M* be a TM which halts on every input. The **running time** or **time complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that *M* uses on *any* input of length *n*. ("worst-case time")

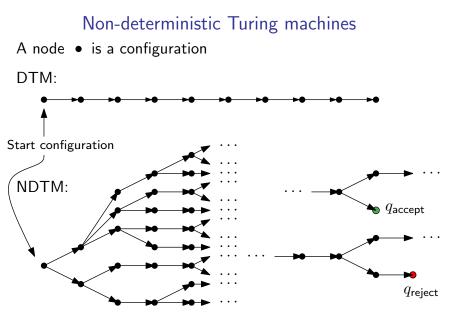
Definition. Let $f : \mathbb{N} \to \mathbb{R}^+$. TIME(f(n)) is the class of all languages decided by an O(f(n))-time TM.

Examples.

- ► TIME(*n*)
- $\mathbf{P} := \bigcup_k \mathsf{TIME}(n^k)$
- **EXP** := $\bigcup_k \text{TIME}(2^{n^k})$

(linear time) (polynomial time) (exponential time)

Gap: super-polynomial, sub-exponential $(\forall c > 1 : f(n) = o(c^n))$, e.g.: $f(n) = n^{\log n}$.



G. Fuchsbauer		
COMS21400 :	Time	Complexity

Time complexity for NTMs

Definition. Let *N* be a NTM which is a decider. The **running time** of *N* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that *N* uses *on any branch of its computation* on *any* input of length *n*.

Theorem. (*Time-complexity of NTM simulation.*) Every t(n)-time NTM *N* has an *equivalent* $2^{O(t(n))}$ -time TM *M*.

(equivalent: N and M decide the same language.)

Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

G. Fuchsbauer COMS21400 : Time Complexity

Slide 10

The class P

$$\mathsf{P} = \bigcup_k \mathsf{TIME}(n^k)$$

- P is robust (not affected by model of computation)
- P is a mathematical model of "realistically solvable" or "tractable" problems (Cobham's thesis) (caveat: running time c ⋅ n^k with c ≫ or k ≫)

The class P

$$\mathsf{P} = \bigcup_k \mathsf{TIME}(n^k)$$

- P is robust (not affected by model of computation)
- P is a mathematical model of "realistically solvable" or "tractable" problems (Cobham's thesis) (caveat: running time c ⋅ n^k with c ≫ or k ≫)

Examples

 FACTORING ²P (FACTORING = {(N, M) | N has an integer factor 1 < k < M}) Brute force: O(2^{n/2}). Best known algo: 2^{O(n^{1/3}(log n)^{2/3})}

The class P

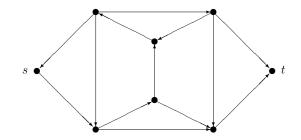
$$\mathsf{P} = \bigcup_k \mathsf{TIME}(n^k)$$

- P is robust (not affected by model of computation)
- P is a mathematical model of "realistically solvable" or "tractable" problems (Cobham's thesis) (caveat: running time c ⋅ n^k with c ≫ or k ≫)

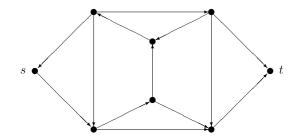
Examples

- ► FACTORING P (FACTORING = {(N, M) | N has an integer factor 1 < k < M}) Brute force: O(2^{n/2}). Best known algo: 2^{O(n^{1/3}(log n)^{2/3})}
- $\blacktriangleright PATH \in P$

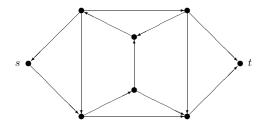
 $(PATH = \{(G, s, t) | G \text{ is directed graph w/ path from } s \text{ to } t\})$



Slide 12

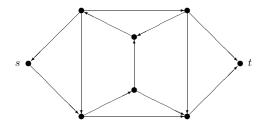


• $HAMPATH = \{(G, s, t) | G \text{ is directed graph with} a Hamiltonian path from s to t\}$



- $HAMPATH = \{(G, s, t) | G \text{ is directed graph with} a Hamiltonian path from s to t \}$
- ► Easy to check that (G, s, t) ∈ HAMPATH when given a path; easy to check that (N, M) ∈ FACTORING when given a factor

. . .



- $HAMPATH = \{(G, s, t) | G \text{ is directed graph with} a Hamiltonian path from s to t\}$
- ► Easy to check that (G, s, t) ∈ HAMPATH when given a path; easy to check that (N, M) ∈ FACTORING when given a factor

Many computational problems

- can be solved by brute-force, testing exp. many candidates.
- Verification of desired property on a candidate is easy.

. . .

Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

G. Fuchsbauer COMS21400 : Time Complexity

Slide 13

The class NP

Polynomial-time verifiers

► A verifier for a language A is a TM V, s.t.

 $A = \{w \mid V \text{ accepts } (w, c) \text{ for some } c\}$.

The string *c* is called a **certificate** or **proof** of membership in *A*.

The class NP

Polynomial-time verifiers

► A verifier for a language A is a TM V, s.t.

 $A = \{w \mid V \text{ accepts } (w, c) \text{ for some } c\}$.

The string *c* is called a **certificate** or **proof** of membership in *A*.

► V is a polynomial-time verifier if runs in polynomial time in the length of w.

The class NP

Polynomial-time verifiers

► A verifier for a language A is a TM V, s.t.

 $A = \{w \mid V \text{ accepts } (w, c) \text{ for some } c\}$.

The string *c* is called a **certificate** or **proof** of membership in *A*.

V is a polynomial-time verifier if runs in polynomial time in the length of w.

Definition. NP is the class of all polynomially verifiable languages i.e., all languages which have a polynomial-time verifier.

- P = class of languages that can be **decided** "quickly" NP = class of languages that can be **verified** "quickly"
 - $\blacktriangleright \ P \subseteq NP \quad (\rightarrow \text{ problems class})$

- P = class of languages that can be **decided** "quickly" NP = class of languages that can be **verified** "quickly"
 - $\blacktriangleright \ P \subseteq NP \quad (\rightarrow \text{ problems class})$

Definition. For a class of languages C, we define **co-C** as the class of all complements \overline{A} of languages A in C.

- $\blacktriangleright \ \mathbf{P} = \mathbf{CO} \cdot \mathbf{P} \quad (\rightarrow \text{ problems class})$
- NP 2co-NP

- P = class of languages that can be **decided** "quickly" NP = class of languages that can be **verified** "quickly"
 - $\blacktriangleright \ P \subseteq NP \quad (\rightarrow \text{ problems class})$

Definition. For a class of languages C, we define **co-C** as the class of all complements \overline{A} of languages A in C.

- $\blacktriangleright \ \mathbf{P} = \mathbf{CO} \cdot \mathbf{P} \quad (\rightarrow \text{ problems class})$
- NP 2co-NP

Examples. $HAMPATH \in NP$ $COMPOSITES = \{x \mid x = pq, \text{ for integers } p, q > 1\} \in NP$ $PRIMES \in \text{ co-NP}$ $Actually: PRIMES \in NP \text{ (not obvious)}$ $PRIMES \in P \text{ (shown in 2003)}$

- P = class of languages that can be **decided** "quickly" NP = class of languages that can be **verified** "quickly"
 - $\blacktriangleright \ P \subseteq NP \quad (\rightarrow \text{ problems class})$

Definition. For a class of languages C, we define **co-C** as the class of all complements \overline{A} of languages A in C.

- $\blacktriangleright \ \mathbf{P} = \mathbf{CO} \cdot \mathbf{P} \quad (\rightarrow \text{ problems class})$
- NP 2co-NP

Examples. HAMPATH \in NP $COMPOSITES = \{x \mid x = pq, \text{ for integers } p, q > 1\} \in NP$ $PRIMES \in \text{co-NP}$

Actually: $PRIMES \in NP$ (not obvious) $PRIMES \in P$ (shown in 2003)

G. Fuchsbauer COMS21400 : Time Complexity

The name NP

Theorem. A language is in NP iff it is decided by some polynomialtime NTM.

Corollary. NP \subseteq EXP (by the theorem on Slide 9).

The name NP

Theorem. A language is in NP iff it is decided by some polynomialtime NTM.

Corollary. NP \subseteq EXP (by the theorem on Slide 9).

P 🗜 NP

"Can every problem whose solution is quickly verifiable be solved quickly?"

Implications?

- Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
- ▶ Boolean operations: AND $(x_1 \land x_2)$, OR $(x_1 \lor x_2)$, NOT (\overline{x})
- ▶ Boolean formulas: e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

- Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
- ▶ Boolean operations: AND $(x_1 \land x_2)$, OR $(x_1 \lor x_2)$, NOT (\overline{x})
- ▶ Boolean formulas: e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is **satisfiable** if there exists an assignment of 0's and 1's to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2^n possible assignments)

- Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
- ▶ Boolean operations: AND $(x_1 \land x_2)$, OR $(x_1 \lor x_2)$, NOT (\overline{x})
- ▶ Boolean formulas: e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is **satisfiable** if there exists an assignment of 0's and 1's to the variables, s.t. the formula evaluates to 1.

(Formula with *n* variables has 2^n possible assignments)

SAT := { $\langle \phi \rangle | \phi$ is a satisfiable Boolean formula}

► $SAT \in NP$, SAT ? co-NP

- Boolean variables: x take values 1 (TRUE) or 0 (FALSE)
- ▶ Boolean operations: AND $(x_1 \land x_2)$, OR $(x_1 \lor x_2)$, NOT (\overline{x})
- ▶ Boolean formulas: e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is **satisfiable** if there exists an assignment of 0's and 1's to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2^n possible assignments)

SAT := { $\langle \phi \rangle | \phi$ is a satisfiable Boolean formula}

► SAT ∈ NP, SAT **?** co-NP

Theorem. (Cook-Levin)

 $SAT \in P$ iff P = NP

G. Fuchsbauer COMS21400 : Time Complexity

Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness

G. Fuchsbauer COMS21400 : Time Complexity

Slide 18

Reducibility

Informally: If *A reduces* to *B* then *B* is "harder" than *A* (cf. undecidability)

Reducibility

Informally: If A reduces to B then B is "harder" than A (cf. undecidability)

Definition. $f: \Sigma^* \to \Sigma^*$ is polynomial-time computable if there is a poly-time TM, which on input *w* halts with f(w) on its tape.

Reducibility

Informally: If A reduces to B then B is "harder" than A (cf. undecidability)

Definition. $f: \Sigma^* \to \Sigma^*$ is polynomial-time computable if there is a poly-time TM, which on input *w* halts with f(w) on its tape.

Definition. A language *A* is **polynomial-time reducible** to *B* if there is a poly-time computable $f: \Sigma^* \to \Sigma^*$ with

$$w \in A$$
 iff $f(w) \in B$

We write $A \leq_{p} B$.

Reducibility

Informally: If A reduces to B then B is "harder" than A (cf. undecidability)

Definition. $f: \Sigma^* \to \Sigma^*$ is polynomial-time computable if there is a poly-time TM, which on input *w* halts with f(w) on its tape.

Definition. A language *A* is **polynomial-time reducible** to *B* if there is a poly-time computable $f: \Sigma^* \to \Sigma^*$ with

$$w \in A$$
 iff $f(w) \in B$

We write $A \leq_{p} B$.

Theorem. If $A \leq_p B$ and $B \in P$ then $A \in P$.

G. Fuchsbauer COMS21400 : Time Complexity

Definition. A language *B* is **NP-complete** if

- ▶ *B* ∈ NP, and
- every A in NP is polynomial-time reducible to B

(NP-complete problems are the "hardest" problems in NP)

Definition. A language *B* is **NP-complete** if

- ▶ *B* ∈ NP, and
- every A in NP is polynomial-time reducible to B

(NP-complete problems are the "hardest" problems in NP)

Theorem. If *B* is NP-complete and $B \in P$ then P = NP.

Definition. A language *B* is **NP-complete** if

- ▶ *B* ∈ NP, and
- every A in NP is polynomial-time reducible to B

(NP-complete problems are the "hardest" problems in NP)

Theorem. If *B* is NP-complete and $B \in P$ then P = NP.

Theorem. If *B* is NP-complete and $B \leq_{\rho} C$, for $C \in NP$, then *C* is NP-complete.

Definition. A language *B* is **NP-complete** if

- ► *B* ∈ NP, and
- every A in NP is polynomial-time reducible to B

(NP-complete problems are the "hardest" problems in NP)

Theorem. If *B* is NP-complete and $B \in P$ then P = NP.

Theorem. If *B* is NP-complete and $B \leq_{\rho} C$, for $C \in NP$, then *C* is NP-complete.

Theorem. (Cook-Levin, restated) SAT is NP-complete.

3-SAT

- Literal: x or \overline{x}
- Clause: Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in conjunctive normal form if ϕ is a conjunction of clauses
- S-CNF formula: A CNF formula with all clauses having 3 literals, e.g. (x₁ ∨ x̄₂ ∨ x̄₃) ∧ (x₂ ∨ x̄₅ ∨ x₆) ∧ (x₃ ∨ x̄₆ ∨ x₄).

3-SAT

- Literal: x or \overline{x}
- ► Clause: Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in conjunctive normal form if ϕ is a conjunction of clauses
- ▶ 3-CNF formula: A CNF formula with all clauses having 3 literals, e.g. $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)$.

 $\textit{3-SAT} := \{ \langle \phi \rangle \, | \, \phi \text{ is a satisfiable 3-CNF formula} \}$

3-SAT

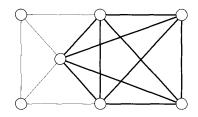
- Literal: x or \overline{x}
- Clause: Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in conjunctive normal form if ϕ is a conjunction of clauses
- ▶ 3-CNF formula: A CNF formula with all clauses having 3 literals, e.g. $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)$.

 $\textit{3-SAT} := \{ \langle \phi \rangle \, | \, \phi \text{ is a satisfiable 3-CNF formula} \}$

Theorem. 3-SAT is NP-complete.

A *k*-**clique** in a graph is a set of *k* nodes in which every two nodes are connected by an edge.

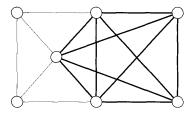
 $CLIQUE := \{(G, k) | G \text{ is an undirected graph with a } k \text{-clique} \}$



A *k*-**clique** in a graph is a set of *k* nodes in which every two nodes are connected by an edge.

 $CLIQUE := \{(G, k) | G \text{ is an undirected graph with a } k \text{-clique} \}$

Theorem. CLIQUE is NP-complete.



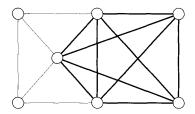
A *k*-**clique** in a graph is a set of *k* nodes in which every two nodes are connected by an edge.

 $CLIQUE := \{(G, k) | G \text{ is an undirected graph with a } k$ -clique $\}$

Theorem. CLIQUE is NP-complete.

More NP-complete languages:

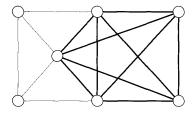
► HAMPATH



A *k*-**clique** in a graph is a set of *k* nodes in which every two nodes are connected by an edge.

 $CLIQUE := \{(G, k) | G \text{ is an undirected graph with a } k$ -clique}

Theorem. CLIQUE is NP-complete.



More NP-complete languages:

► HAMPATH

► SUBSET-SUM =
$$\{\{x_1, \ldots, x_k\} \mid$$

for some $\{y_1, \ldots, y_\ell\} \subseteq \{x_1, \ldots, x_k\}$ we have: $\sum y_i = 0\}$

