COMS21400 : Space Complexity and Beyond

G. Fuchsbauer

Dept of Computer Science University of Bristol, Room 3.53, Merchant Venturers Building

04-11 Dec 2012

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. Let *M* be a TM which halts on every input. The **space complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *M* scans for any input of length *n*.

Definition. Let *M* be a TM which halts on every input. The **space complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *M* scans for any input of length *n*.

Definition. Let *N* be a **N**TM which halts on every input. The **space** complexity of *N* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *N* scans **on any computation branch** for any input of length *n*.

Definition. Let *M* be a TM which halts on every input. The **space complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *M* scans for any input of length *n*.

Definition. Let *N* be a **N**TM which halts on every input. The **space** complexity of *N* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *N* scans **on any computation branch** for any input of length *n*.

Definition. Let $f : \mathbb{N} \to \mathbb{R}^+$. SPACE(f(n)) is the class of all languages decided by an O(f(n))-space TM.

Definition. Let *M* be a TM which halts on every input. The **space complexity** of *M* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *M* scans for any input of length *n*.

Definition. Let *N* be a **N**TM which halts on every input. The **space** complexity of *N* is $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of tape cells that *N* scans **on any computation branch** for any input of length *n*.

Definition. Let $f : \mathbb{N} \to \mathbb{R}^+$. SPACE(f(n)) is the class of all languages decided by an O(f(n))-space TM.

Definition. Let $f : \mathbb{N} \to \mathbb{R}^+$. **NSPACE**(f(n)) is the class of all languages decided by an O(f(n))-space **N**TM.

Definition. PSPACE := \bigcup_k **SPACE** (n^k) **NPSPACE** := \bigcup_k **NSPACE** (n^k)

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. PSPACE := \bigcup_k **SPACE** (n^k) **NPSPACE** := \bigcup_k **NSPACE** (n^k)

```
Example. SAT \in SPACE(n).
```

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. PSPACE := \bigcup_k **SPACE** (n^k) **NPSPACE** := \bigcup_k **NSPACE** (n^k)

```
Example. SAT \in SPACE(n).
```

Theorem. For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$:

 $\mathsf{SPACE}(f(n)) \subseteq \mathsf{TIME}(2^{O(f(n))})$

Definition. PSPACE := \bigcup_k SPACE (n^k) NPSPACE := \bigcup_k NSPACE (n^k)

```
Example. SAT \in SPACE(n).
```

Theorem. For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$:

 $\mathsf{SPACE}(f(n)) \subseteq \mathsf{TIME}(2^{O(f(n))})$

 $(\text{Recall: NTIME}(f(n)) \subseteq \text{TIME}(2^{O(f(n))}))$

Definition. PSPACE := $\bigcup_k \text{SPACE}(n^k)$ NPSPACE := $\bigcup_k \text{NSPACE}(n^k)$ Example. $SAT \in \text{SPACE}(n)$. Theorem. For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$: SPACE $(f(n)) \subseteq \text{TIME}(2^{O(f(n))})$

 $(\text{Recall: NTIME}(f(n)) \subseteq \text{TIME}(2^{O(f(n))}))$

Theorem. (Savitch) For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$ we have NSPACE $(f(n)) \subseteq$ SPACE $(f^2(n))$

Definition. PSPACE := $\bigcup_k \text{SPACE}(n^k)$ NPSPACE := $\bigcup_k \text{NSPACE}(n^k)$ Example. $SAT \in \text{SPACE}(n)$. Theorem. For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$: SPACE $(f(n)) \subseteq \text{TIME}(2^{O(f(n))})$

 $(\text{Recall: NTIME}(f(n)) \subseteq \text{TIME}(2^{O(f(n))}))$

Theorem. (Savitch) For any $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge n$ we have NSPACE $(f(n)) \subseteq$ SPACE $(f^2(n))$

$\mathsf{P} \ \subseteq \ \mathsf{NP} \ \subseteq \ \mathsf{PSPACE} \ = \ \mathsf{NPSPACE} \ \subseteq \ \mathsf{EXP}$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. A language B is PSPACE-complete if

- ▶ $B \in PSPACE$, and
- every A in PSPACE is polynomial-time reducible to B

Definition. A language B is **PSPACE-complete** if

- \blacktriangleright $B \in \mathsf{PSPACE}$, and
- every A in PSPACE is polynomial-time reducible to B

Quantified formulas

- Quantifiers:
- ∀: for all
 - \blacktriangleright \exists : there exists
- Let $\phi(x_1, \ldots, x_n)$ be a Boolean formula.
- A totally quantified Boolean formula has a quantifier for every variable at the beginning.

Definition. A language B is **PSPACE-complete** if

- \blacktriangleright $B \in \mathsf{PSPACE}$, and
- every A in PSPACE is polynomial-time reducible to B

Quantified formulas

- ∀: for all Quantifiers:

 - \blacktriangleright \exists : there exists
- Let $\phi(x_1, \ldots, x_n)$ be a Boolean formula.
- A totally quantified Boolean formula has a quantifier for every variable at the beginning.

TQBF := { $\langle \psi \rangle | \psi$ is a true totally quantified Boolean formula}

Definition. A language B is PSPACE-complete if

- $B \in PSPACE$, and
- every A in PSPACE is polynomial-time reducible to B

Quantified formulas

- ► Quantifiers: ► ∀: for all
 - ► ∃: there exists
- Let $\phi(x_1, \ldots, x_n)$ be a Boolean formula.
- A totally quantified Boolean formula has a quantifier for every variable at the beginning.

TQBF := { $\langle \psi \rangle | \psi$ is a true totally quantified Boolean formula}

Theorem. *TQBF* is PSPACE-complete.

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Sublinear Space

Sublinear space? Space complexity f(n) < n = input size

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Sublinear Space

Sublinear space? Space complexity f(n) < n = input size

Space-bounded TM Two-tape TM

- Input tape is read only
- Work tape

Sublinear Space

Sublinear space? Space complexity f(n) < n = input size

Space-bounded TM Two-tape TM

- Input tape is read only
- Work tape

The **space complexity** is defined by the number of cells scanned on the *work tape only*

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example. $PATH \in NL$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example. $PATH \in NL$

More results.

NL-completeness: defined via log-space reductions

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example. $PATH \in NL$

More results.

- NL-completeness: defined via log-space reductions
- PATH is NL-complete

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example. $PATH \in NL$

More results.

- NL-completeness: defined via log-space reductions
- PATH is NL-complete
- ► NL = co-NL

Definition. $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example. $PATH \in NL$

More results.

- NL-completeness: defined via log-space reductions
- PATH is NL-complete
- ► NL = co-NL

$\mathsf{L} \ \subseteq \ \mathsf{NL} = \mathsf{co}\mathsf{-}\mathsf{NL} \ \subseteq \ \mathsf{P} \ \subseteq \ \mathsf{NP} \ \subseteq \ \mathsf{PSPACE} = \mathsf{NPSPACE} \ \subseteq \ \mathsf{EXP}$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

- Can we compute more when given more time/space?
- Could it be that all encountered classes are the same?

- Can we compute more when given more time/space?
- Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible $f : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(f(n)) space but not in o(f(n)) space.

- Can we compute more when given more time/space?
- Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible $f : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(f(n)) space but not in o(f(n)) space.

▶ SPACE
$$(n^{\varepsilon_1}) \subsetneq$$
 SPACE (n^{ε_2}) , for $0 \le \varepsilon_1 < \varepsilon_2$

- Can we compute more when given more time/space?
- Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible $f : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(f(n)) space but not in o(f(n)) space.

▶ SPACE $(n^{\varepsilon_1}) \subsetneq$ SPACE (n^{ε_2}) , for $0 \le \varepsilon_1 < \varepsilon_2$

► NL \subsetneq PSPACE

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

- Can we compute more when given more time/space?
- Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible $f : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(f(n)) space but not in o(f(n)) space.

- ▶ SPACE $(n^{\varepsilon_1}) \subsetneq$ SPACE (n^{ε_2}) , for $0 \le \varepsilon_1 < \varepsilon_2$
- ► NL \subsetneq PSPACE
- ▶ **PSPACE** \subseteq **EXPSPACE** := \bigcup_k SPACE(2^{n^k})

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

• $\mathsf{TIME}(n^{\varepsilon_1}) \subsetneq \mathsf{TIME}(n^{\varepsilon_2}), \text{ for } 1 \le \varepsilon_1 < \varepsilon_2$

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

- ► TIME $(n^{\varepsilon_1}) \subsetneq$ TIME (n^{ε_2}) , for $1 \le \varepsilon_1 < \varepsilon_2$
- ► $P \subsetneq EXP$

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

- $\mathsf{TIME}(n^{\varepsilon_1}) \subsetneq \mathsf{TIME}(n^{\varepsilon_2}), \text{ for } 1 \le \varepsilon_1 < \varepsilon_2$
- ► $P \subsetneq EXP$

$\mathsf{L} \ \subseteq \ \mathsf{NL} \ \subseteq \ \mathsf{P} \ \subseteq \ \mathsf{NP} \ \subseteq \ \mathsf{PSPACE} \ \subseteq \ \mathsf{EXP} \ \subseteq \ \mathsf{EXPSPACE}$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

▶ $\mathsf{TIME}(n^{\varepsilon_1}) \subsetneq \mathsf{TIME}(n^{\varepsilon_2}), \text{ for } 1 \leq \varepsilon_1 < \varepsilon_2$

► $P \subsetneq EXP$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Theorem. (*Time hierarchy*) For any time-constructible $t : \mathbb{N} \to \mathbb{N}$, there exists a language *A* that is decidable in O(t(n)) time but not in $o\left(\frac{t(n)}{\log t(n)}\right)$ time.

• $\mathsf{TIME}(n^{\varepsilon_1}) \subsetneq \mathsf{TIME}(n^{\varepsilon_2}), \text{ for } 1 \le \varepsilon_1 < \varepsilon_2$

► $P \subsetneq EXP$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Randomised Computation

Allow a TM to make random choices of the next step

Randomised Computation

Allow a TM to make random choices of the next step

Example. (Polynomial identities)

- Given: $Q(x_1, \ldots, x_n)$, a polynomial in *n* variables.
- Decide: Is Q identically zero?

Randomised Computation

Allow a TM to make random choices of the next step

Example. (Polynomial identities)

- Given: $Q(x_1, \ldots, x_n)$, a polynomial in *n* variables.
- Decide: Is Q identically zero?

Fact. Let $Q(x_1, ..., x_n)$ have degree $\leq d$ in every variable and Q not identically zero. Then for any set S of values, with $|S| \geq 2nd$, the number of tuples $(a_1, ..., a_n) \in S^n$ s.t. $Q(a_1, ..., a_n) = 0$, is at most $\frac{1}{2}|S|^n$.

- R = "On input Q
 - 1. Choose S with |S| > 2nd.
 - 2. Choose (a_1, \ldots, a_n) at random from $S \times \ldots \times S$
 - 3. If $Q(a_1, \ldots, a_n) \neq 0$ output *reject*

Otherwise output accept."

R = "On input Q

- 1. Choose S with |S| > 2nd.
- 2. Choose (a_1, \ldots, a_n) at random from $S \times \ldots \times S$
- 3. If $Q(a_1, \ldots, a_n) \neq 0$ output *reject*

Otherwise output accept."

If *Q* is zero then *R* outputs *accept* with probability 1

If *Q* is not zero then *R* outputs *accept* with probability $\leq 1/2$

R = "On input Q

- 1. Choose S with |S| > 2nd.
- 2. Choose (a_1, \ldots, a_n) at random from $S \times \ldots \times S$
- 3. If $Q(a_1, \ldots, a_n) \neq 0$ output *reject*

Otherwise output accept."

If Q is zero then R outputs accept with probability 1

If *Q* is not zero then *R* outputs *accept* with probability $\leq 1/2$

Amplification. Repeat Steps 2 and 3 k times

R = "On input Q

- 1. Choose S with |S| > 2nd.
- 2. Choose (a_1, \ldots, a_n) at random from $S \times \ldots \times S$
- 3. If $Q(a_1, \ldots, a_n) \neq 0$ output *reject*

Otherwise output accept."

If Q is zero then R outputs accept with probability 1

If *Q* is not zero then *R* outputs *accept* with probability $\leq 1/2$

Amplification. Repeat Steps 2 and 3 k times

If *Q* is not zero then *R* outputs *accept* with probability $\leq 1/(2^k)$

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. A **probabilistic Turing machine** is a NTM in which each non-deterministic step ("coin flip") has *two* legal moves.

Definition. A **probabilistic Turing machine** is a NTM in which each non-deterministic step ("coin flip") has *two* legal moves.

For every computation branch b, let k be the number of coin flips on b. Then

Definition. A **probabilistic Turing machine** is a NTM in which each non-deterministic step ("coin flip") has *two* legal moves.

► For every computation branch *b*, let *k* be the number of coin flips on *b*. Then

$$\Pr[b] := 1/2^k$$

Accepting probability:

$$\Pr[M \text{ accepts } w] := \sum_{b \text{ is an accepting branch}} \Pr[b]$$

Definition. A **probabilistic Turing machine** is a NTM in which each non-deterministic step ("coin flip") has *two* legal moves.

► For every computation branch *b*, let *k* be the number of coin flips on *b*. Then

$$\Pr[b] := 1/2^k$$

Accepting probability:

$$\Pr[M \text{ accepts } w] := \sum_{b \text{ is an accepting branch}} \Pr[b]$$

► Rejecting probability: 1 – Pr[*M* accepts *w*]

Definition. A **probabilistic Turing machine** is a NTM in which each non-deterministic step ("coin flip") has *two* legal moves.

► For every computation branch *b*, let *k* be the number of coin flips on *b*. Then

$$\Pr[b] := 1/2^k$$

Accepting probability:

$$\Pr[M \text{ accepts } w] := \sum_{b \text{ is an accepting branch}} \Pr[b]$$

► Rejecting probability: 1 – Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. A TM *M* recognises *L* with error probability ε if

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1 \varepsilon;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] \geq 1 \varepsilon$

Definition. A TM *M* recognises *L* with error probability ε if

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1 \varepsilon;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] \geq 1 \varepsilon$

Definition. BPP (bounded-error probabilistic polynomial time) is the class of languages that are recognised by a polynomial-time PTM with error probability 1/3.

Definition. A TM *M* recognises *L* with error probability ε if

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1 \varepsilon;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] \geq 1 \varepsilon$

Definition. BPP (bounded-error probabilistic polynomial time) is the class of languages that are recognised by a polynomial-time PTM with error probability 1/3.

Definition. A TM *M* recognises *L* with error probability ε if

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \geq 1 \varepsilon;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] \geq 1 \varepsilon$

Definition. BPP (bounded-error probabilistic polynomial time) is the class of languages that are recognised by a polynomial-time PTM with error probability 1/3.

Lemma. (Amplification) Let $0 < \varepsilon_1 \le \varepsilon_2 < 1/2$.

If *L* can be recognised by a poly-time PTM with error probability ε_2 then it can be recognised by a poly-time PTM with error prob. ε_1 .

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

Definition. **RP** (randomised polynomial time) is the class of languages for which there is a poly-time PTM with

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1/2;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] = 1$

Definition. **RP** (randomised polynomial time) is the class of languages for which there is a poly-time PTM with

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1/2;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] = 1$

If *M* accepts, we know $w \in L$ ("one-sided error")

Definition. **RP** (randomised polynomial time) is the class of languages for which there is a poly-time PTM with

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1/2;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] = 1$

If *M* accepts, we know $w \in L$ ("one-sided error")

Example. The Fermat primality test is given p s.t.

- p is prime \Rightarrow $\Pr[M \text{ accepts } p] = 1$
- *p* is composite \Rightarrow Pr[*M* accepts *p*] $\leq 1/2^k$

Definition. **RP** (randomised polynomial time) is the class of languages for which there is a poly-time PTM with

- $w \in L \Rightarrow \Pr[M \text{ accepts } w] \ge 1/2;$ and
- $w \notin L \Rightarrow \Pr[M \text{ rejects } w] = 1$

If *M* accepts, we know $w \in L$ ("one-sided error")

Example. The Fermat primality test is given p s.t.

- p is prime \Rightarrow $\Pr[M \text{ accepts } p] = 1$
- *p* is composite \Rightarrow Pr[*M* accepts *p*] $\leq 1/2^k$

Thus $COMPOSITES \in RP$

Fin

G. Fuchsbauer COMS21400 : Space Complexity and Beyond

