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Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N — N, where f(n) is the maximum number
of tape cells that M scans for any input of length n.
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Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N — N, where f(n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N — N, where f(n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.
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Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N — N, where f(n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N — N, where f(n) is the maximum number of

tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N — R*. SPACE(f(n)) is the class of all
languages decided by an O(f(n))-space TM.
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Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N — N, where f(n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N — N, where f(n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N — R*. SPACE(f(n)) is the class of all
languages decided by an O(f(n))-space TM.

Definition. Let f: N — R*. NSPACE(f(n)) is the class of all
languages decided by an O(f(n))-space NTM.
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Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)
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Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)

Example. SAT € SPACE(n).
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Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)
Example. SAT € SPACE(n).

Theorem. For any f: N — Nwith f(n) > n:
SPACE(f(n)) C TIME(29U("))
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Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)
Example. SAT € SPACE(n).

Theorem. For any f: N — N with f(n) > n:
SPACE(f(n)) C TIME(2°(("))
(Recall: NTIME(f(n)) € TIME(2°((")))
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Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)
Example. SAT € SPACE(n).

Theorem. For any f: N — N with f(n) > n:
SPACE(f(n)) C TIME(29U("))
(Recall: NTIME(f(n)) € TIME(2°((")))

Theorem. (Savitch) For any f : N — N with f(n) > n we have
NSPACE(f(n)) C SPACE(f?(n))

G. Fuchsbauer

COMS21400 : Space Complexity and Beyond



Space complexity classes

Definition. PSPACE := | J, SPACE(n*) NPSPACE := J, NSPACE(n*)
Example. SAT € SPACE(n).

Theorem. For any f: N — N with f(n) > n:
SPACE(f(n)) C TIME(29U("))
(Recall: NTIME(f(n)) € TIME(2°((")))

Theorem. (Savitch) For any f : N — N with f(n) > n we have
NSPACE(f(n)) C SPACE(f?(n))

P € NP C PSPACE = NPSPACE C EXP
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PSPACE-completeness

Definition. A language B is PSPACE-complete if
» B e PSPACE, and
» every Ain PSPACE is polynomial-time reducible to B
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PSPACE-completeness

Definition. A language B is PSPACE-complete if
» B e PSPACE, and
» every Ain PSPACE is polynomial-time reducible to B

Quantified formulas

> Quantifiers: >~ ¥ forall
» 3: there exists
» Let ¢(xq,...,Xxn) be a Boolean formula.

» A totally quantified Boolean formula has a quantifier for every
variable at the beginning.
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PSPACE-completeness

Definition. A language B is PSPACE-complete if
» B e PSPACE, and
» every Ain PSPACE is polynomial-time reducible to B

Quantified formulas

> Quantifiers: >~ ¥ forall
» 3: there exists
» Let ¢(xq,...,Xxn) be a Boolean formula.

» A totally quantified Boolean formula has a quantifier for every
variable at the beginning.

TQBF := {(¢) | ¥ is a true totally quantified Boolean formula}
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PSPACE-completeness

Definition. A language B is PSPACE-complete if
» B e PSPACE, and
» every Ain PSPACE is polynomial-time reducible to B

Quantified formulas

> Quantifiers: >~ ¥ forall
» 3: there exists
» Let ¢(xq,...,Xxn) be a Boolean formula.

» A totally quantified Boolean formula has a quantifier for every
variable at the beginning.

TQBF := {(¢) | ¥ is a true totally quantified Boolean formula}

Theorem. TQBF is PSPACE-complete.
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Sublinear Space

Sublinear space? Space complexity f(n) < n = input size
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Sublinear Space

Sublinear space? Space complexity f(n) < n = input size

lefclelelaffle[b]c[alalc]e[e[a]f[e[d]

[clalalclele[a|f[eld[a]c]c]efulufu] -

™

Space-bounded TM Two-tape TM
» Input tape is read only
» Work tape
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Sublinear Space

Sublinear space? Space complexity f(n) < n = input size

lefclelelaffle[b]c[alalc]e[e[a]f[e[d]

[clalalclele[a|f[eld[a]c]c]efulufu] -

™

Space-bounded TM Two-tape TM
» Input tape is read only
» Work tape

The space complexity is defined by the number of cells scanned
on the work tape only

G. Fuchsbauer niversity of

k¢ U
COMS21400 : Space Complexity and Beyond BR



Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)
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Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH € NL

G. Fuchsbauer

COMS21400 : Space Complexity and Beyond



Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH € NL

More results.
» NL-completeness: defined via log-space reductions
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Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH € NL

More results.
» NL-completeness: defined via log-space reductions
» PATHis NL-complete
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Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH € NL

More results.
» NL-completeness: defined via log-space reductions
» PATHis NL-complete
» NL = co-NL
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Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH € NL

More results.
» NL-completeness: defined via log-space reductions
» PATHis NL-complete
» NL = co-NL

L € NL=co-NL € P € NP € PSPACE=NPSPACE C EXP
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Space hierarchy

» Can we compute more when given more time/space?
» Could it be that all encountered classes are the same?
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Space hierarchy

» Can we compute more when given more time/space?
» Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N — N,
there exists a language A that is decidable in O(f(n)) space
but not in o(f(n)) space.
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Space hierarchy

» Can we compute more when given more time/space?
» Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N — N,
there exists a language A that is decidable in O(f(n)) space
but not in o(f(n)) space.

» SPACE(rF') C SPACE(n®2), for0 <eq <ep
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Space hierarchy

» Can we compute more when given more time/space?
» Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N — N,
there exists a language A that is decidable in O(f(n)) space
but not in o(f(n)) space.

» SPACE(rF') C SPACE(n™2), for0 <eq < e»
» NL ¢ PSPACE
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Space hierarchy

» Can we compute more when given more time/space?
» Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N — N,
there exists a language A that is decidable in O(f(n)) space
but not in o(f(n)) space.

» SPACE(rF') C SPACE(n®2), for0 <eq <ep
» NL ¢ PSPACE
» PSPACE C EXPSPACE = [ J, SPACE(2™)
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.

» TIME(n®1) C TIME(n®2), for1 <eq < ep
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.

» TIME(n®1) C TIME(n®2), for1 <eq < ep
» P C EXP
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.

» TIME(n®1) C TIME(n®2), for1 <eq < ep
» P C EXP

LCNLCP CNP C PSPACE C EXP C EXPSPACE
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.

» TIME(n®1) C TIME(n®2), for1 <eq < ep
» P C EXP

#

L CNLCP CNP C PSPACE C EXP C EXPSPACE
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Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N — N,
there exists a language A that is decidable in O(t(n)) time

but not in o (%) time.

» TIME(n®1) C TIME(n®2), for1 <eq < ep
» P C EXP

#

L CNLCP CNP C PSPACE C EXP C EXPSPACE

(. / (. J

# #
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Randomised Computation

» Allow a TM to make random choices of the next step
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Randomised Computation

» Allow a TM to make random choices of the next step

Example. (Polynomial identities)
» Given: Q(xq,...,Xn), a polynomial in n variables.
» Decide: Is Q identically zero?
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Randomised Computation

» Allow a TM to make random choices of the next step

Example. (Polynomial identities)
» Given: Q(xq,...,Xn), a polynomial in n variables.
» Decide: Is Q identically zero?

Fact. Let Q(xq,...,Xn) have degree < d in every variable and

Q not identically zero.

Then for any set S of values, with |S| > 2nd, the number of tuples
(a1,...,an) € S"s.t. Q(ay, ..., an) = 0, is at most }|S|".
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Checking Q(x1, ..., xp) is identically zero:

R =“Oninput Q
1. Choose S with |S| > 2nd.
2. Choose (ai,...,an) atrandomfrom S x ... x S

3. If Q(ay,...,an) # 0 output reject
Otherwise output accept.”
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Checking Q(x1, ..., xp) is identically zero:

R =“Oninput Q
1. Choose S with |S| > 2nd.
2. Choose (ai,...,an) atrandomfrom S x ... x S

3. If Q(ay, ..., an) # 0 output reject
Otherwise output accept.”

If Q is zero then R outputs accept with probability 1
If Q is not zero then R outputs accept with probability < 1/2

G. Fuchsbauer BAK University of

COMS21400 : Space Complexity and Beyond Slide 14 BRISTOL



Checking Q(x1, ..., xp) is identically zero:

R ="“Oninput Q
1. Choose S with |S| > 2nd.
2. Choose (ai,...,an) atrandomfrom S x ... x S

3. If Q(ay, ..., an) # 0 output reject
Otherwise output accept.”

If Q is zero then R outputs accept with probability 1
If Q is not zero then R outputs accept with probability < 1/2

Amplification. Repeat Steps 2 and 3 k times
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Checking Q(x1, ..., xp) is identically zero:

R ="“Oninput Q
1. Choose S with |S| > 2nd.
2. Choose (ai,...,an) atrandomfrom S x ... x S

3. If Q(ay, ..., an) # 0 output reject
Otherwise output accept.”

If Q is zero then R outputs accept with probability 1
If Q is not zero then R outputs accept with probability < 1/2

Amplification. Repeat Steps 2 and 3 k times

If Q is not zero then R outputs accept with probability < 1/(2%)
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Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.
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Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

» For every computation branch b, let k be the number of coin
flips on b. Then
Pr[b] := 1/2k
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Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

» For every computation branch b, let k be the number of coin
flips on b. Then
Pr[b] := 1/2k

» Accepting probability:

Pr[M accepts w] := > Pr[b]

b is an accepting branch
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Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

» For every computation branch b, let k be the number of coin

flips on b. Then
Pr[b] := 1/2k

» Accepting probability:

Pr[M accepts w] := > Pr[b]

b is an accepting branch

» Rejecting probability: 1 — Pr[M accepts w]
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Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

» For every computation branch b, let k be the number of coin

flips on b. Then
Pr[b] := 1/2%

» Accepting probability:

Pr[M accepts w] := > Pr[b]

b is an accepting branch

» Rejecting probability: 1 — Pr[M accepts w]

’ PTMs are real devices, NTMs are not
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M on w accept

reject

Pr(branch =) =1

(2 coin flips on this branch)

accept
p Pr(MaCC.w):é_Fi_'_i:g
Pr(Mrej. w)=¢+1 =12
accept
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The class BPP

Definition. A TM M recognises L with error probability ¢ if
» we L = Pr[Maccepts w] >1—¢; and
» w¢ L = Pr[Mrejects w] >1—¢
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The class BPP

Definition. A TM M recognises L with error probability ¢ if
» wel = Pr[Maccepts w] >1—¢; and
» w¢ L = Pr[Mrejects w] >1—¢
Definition. BPP (bounded-error probabilistic polynomial time) is the class of

languages that are recognised by a polynomial-time PTM with error
probability 1/3.

niversity of

k¢ U
B BR

G. Fuchsbauer
&

COMS21400 : Space Complexity and Beyond Slide 17



The class BPP

Definition. A TM M recognises L with error probability ¢ if
» wel = Pr[Maccepts w] >1—¢; and
» w¢ L = Pr[Mrejects w] >1—¢
Definition. BPP (bounded-error probabilistic polynomial time) is the class of

languages that are recognised by a polynomial-time PTM with error
probability 1/3. NP BPP

)

G. Fuchsbauer niversity of

k¢ U
COMS21400 : Space Complexity and Beyond Slide 17 BR



The class BPP

Definition. A TM M recognises L with error probability ¢ if
» wel = Pr[Maccepts w] >1—¢; and
» w¢ L = Pr[Mrejects w] >1—¢
Definition. BPP (bounded-error probabilistic polynomial time) is the class of

languages that are recognised by a polynomial-time PTM with error
probability 1/3. NP BPP

)

Lemma. (Amplification) Let 0 < &1 <ep < 1/2.
If L can be recognised by a poly-time PTM with error probability e»
then it can be recognised by a poly-time PTM with error prob. e1.
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The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

» we L = Pr[M accepts w] > 1/2; and
» w¢ L = Pr[Mrejects w] =1
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The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

» we L = Pr[M accepts w] > 1/2; and
» w¢ L = Pr[Mrejects w] =1

If M accepts, we know w € L (“one-sided error”)
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The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

» we L = Pr[M accepts w] > 1/2; and
» w¢ L = Pr[Mrejects w] =1

If M accepts, we know w € L (“one-sided error”)
Example. The Fermat primality test is given p s.t.

> pis prime = Pr[M accepts p] = 1
» pis composite = Pr[M accepts p] < 1/2k
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The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

» we L = Pr[M accepts w] > 1/2; and
» w¢ L = Pr[Mrejects w] =1

If M accepts, we know w € L (“one-sided error”)

Example. The Fermat primality test is given p s.t.
» pis prime = Pr[M accepts p] = 1
» pis composite = Pr[M accepts p] < 1/2k

Thus COMPOSITES € RP
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