
COMS21400 : Space Complexity and Beyond

G. Fuchsbauer

Dept of Computer Science
University of Bristol,

Room 3.53, Merchant Venturers Building

04–11 Dec 2012

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 1

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 2

Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N→ N, where f (n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N→ N, where f (n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N→ R+. SPACE(f (n)) is the class of all
languages decided by an O(f (n))-space TM.

Definition. Let f : N→ R+. NSPACE(f (n)) is the class of all
languages decided by an O(f (n))-space NTM.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 3

Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N→ N, where f (n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N→ N, where f (n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N→ R+. SPACE(f (n)) is the class of all
languages decided by an O(f (n))-space TM.

Definition. Let f : N→ R+. NSPACE(f (n)) is the class of all
languages decided by an O(f (n))-space NTM.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 3

Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N→ N, where f (n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N→ N, where f (n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N→ R+. SPACE(f (n)) is the class of all
languages decided by an O(f (n))-space TM.

Definition. Let f : N→ R+. NSPACE(f (n)) is the class of all
languages decided by an O(f (n))-space NTM.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 3

Space complexity for TMs

Definition. Let M be a TM which halts on every input. The space
complexity of M is f : N→ N, where f (n) is the maximum number
of tape cells that M scans for any input of length n.

Definition. Let N be a NTM which halts on every input. The space
complexity of N is f : N→ N, where f (n) is the maximum number of
tape cells that N scans on any computation branch for any input
of length n.

Definition. Let f : N→ R+. SPACE(f (n)) is the class of all
languages decided by an O(f (n))-space TM.

Definition. Let f : N→ R+. NSPACE(f (n)) is the class of all
languages decided by an O(f (n))-space NTM.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 3

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

Space complexity classes

Definition. PSPACE :=
⋃

k SPACE(nk) NPSPACE :=
⋃

k NSPACE(nk)

Example. SAT ∈ SPACE(n).

Theorem. For any f : N→ N with f (n) ≥ n:

SPACE(f (n)) ⊆ TIME(2O(f (n)))

(Recall: NTIME(f (n)) ⊆ TIME(2O(f (n))))

Theorem. (Savitch) For any f : N→ N with f (n) ≥ n we have

NSPACE(f (n)) ⊆ SPACE(f 2(n))

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 4

PSPACE-completeness

Definition. A language B is PSPACE-complete if
I B ∈ PSPACE, and
I every A in PSPACE is polynomial-time reducible to B

Quantified formulas

I Quantifiers: I ∀: for all
I ∃: there exists

I Let φ(x1, . . . , xn) be a Boolean formula.
I A totally quantified Boolean formula has a quantifier for every

variable at the beginning.

TQBF := {〈ψ〉 |ψ is a true totally quantified Boolean formula}

Theorem. TQBF is PSPACE-complete.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 5

PSPACE-completeness

Definition. A language B is PSPACE-complete if
I B ∈ PSPACE, and
I every A in PSPACE is polynomial-time reducible to B

Quantified formulas

I Quantifiers: I ∀: for all
I ∃: there exists

I Let φ(x1, . . . , xn) be a Boolean formula.
I A totally quantified Boolean formula has a quantifier for every

variable at the beginning.

TQBF := {〈ψ〉 |ψ is a true totally quantified Boolean formula}

Theorem. TQBF is PSPACE-complete.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 5

PSPACE-completeness

Definition. A language B is PSPACE-complete if
I B ∈ PSPACE, and
I every A in PSPACE is polynomial-time reducible to B

Quantified formulas

I Quantifiers: I ∀: for all
I ∃: there exists

I Let φ(x1, . . . , xn) be a Boolean formula.
I A totally quantified Boolean formula has a quantifier for every

variable at the beginning.

TQBF := {〈ψ〉 |ψ is a true totally quantified Boolean formula}

Theorem. TQBF is PSPACE-complete.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 5

PSPACE-completeness

Definition. A language B is PSPACE-complete if
I B ∈ PSPACE, and
I every A in PSPACE is polynomial-time reducible to B

Quantified formulas

I Quantifiers: I ∀: for all
I ∃: there exists

I Let φ(x1, . . . , xn) be a Boolean formula.
I A totally quantified Boolean formula has a quantifier for every

variable at the beginning.

TQBF := {〈ψ〉 |ψ is a true totally quantified Boolean formula}

Theorem. TQBF is PSPACE-complete.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 5

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 6

Sublinear Space

Sublinear space? Space complexity f (n) < n = input size

Variants of Turing machines

. . .

TM

ac e ta c def a c ea ce t t

Multitape TM

ab c ea c defa eaec efee

. . .

. . .

Moves: Left, Right, Stay

Probabilistic TM

Prob. TM

. . . ab c ea c defa eaec efee . . .

Space-bounded TM Two-tape TM
I Input tape is read only
I Work tape

The space complexity is defined by the number of cells scanned
on the work tape only

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 7

Sublinear Space

Sublinear space? Space complexity f (n) < n = input size
Variants of Turing machines

. . .

TM

ac e ta c def a c ea ce t t

Multitape TM

ab c ea c defa eaec efee

. . .

. . .

Moves: Left, Right, Stay

Probabilistic TM

Prob. TM

. . . ab c ea c defa eaec efee . . .

Space-bounded TM Two-tape TM
I Input tape is read only
I Work tape

The space complexity is defined by the number of cells scanned
on the work tape only

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 7

Sublinear Space

Sublinear space? Space complexity f (n) < n = input size
Variants of Turing machines

. . .

TM

ac e ta c def a c ea ce t t

Multitape TM

ab c ea c defa eaec efee

. . .

. . .

Moves: Left, Right, Stay

Probabilistic TM

Prob. TM

. . . ab c ea c defa eaec efee . . .

Space-bounded TM Two-tape TM
I Input tape is read only
I Work tape

The space complexity is defined by the number of cells scanned
on the work tape only

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 7

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions

I PATH is NL-complete
I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions

I PATH is NL-complete
I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions

I PATH is NL-complete
I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions
I PATH is NL-complete

I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions
I PATH is NL-complete
I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Logarithmic space

Definition. L = SPACE(log n)
NL = NSPACE(log n)

Example. PATH ∈ NL

More results.
I NL-completeness: defined via log-space reductions
I PATH is NL-complete
I NL = co-NL

L ⊆ NL=co-NL ⊆ P ⊆ NP ⊆ PSPACE=NPSPACE ⊆ EXP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 8

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 9

Space hierarchy

I Can we compute more when given more time/space?
I Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N→ N,
there exists a language A that is decidable in O(f (n)) space
but not in o(f (n)) space.

I SPACE(nε1) (SPACE(nε2), for 0 ≤ ε1 < ε2

I NL (PSPACE

I PSPACE (EXPSPACE :=
⋃

k SPACE(2nk
)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 10

Space hierarchy

I Can we compute more when given more time/space?
I Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N→ N,
there exists a language A that is decidable in O(f (n)) space
but not in o(f (n)) space.

I SPACE(nε1) (SPACE(nε2), for 0 ≤ ε1 < ε2

I NL (PSPACE

I PSPACE (EXPSPACE :=
⋃

k SPACE(2nk
)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 10

Space hierarchy

I Can we compute more when given more time/space?
I Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N→ N,
there exists a language A that is decidable in O(f (n)) space
but not in o(f (n)) space.

I SPACE(nε1) (SPACE(nε2), for 0 ≤ ε1 < ε2

I NL (PSPACE

I PSPACE (EXPSPACE :=
⋃

k SPACE(2nk
)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 10

Space hierarchy

I Can we compute more when given more time/space?
I Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N→ N,
there exists a language A that is decidable in O(f (n)) space
but not in o(f (n)) space.

I SPACE(nε1) (SPACE(nε2), for 0 ≤ ε1 < ε2

I NL (PSPACE

I PSPACE (EXPSPACE :=
⋃

k SPACE(2nk
)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 10

Space hierarchy

I Can we compute more when given more time/space?
I Could it be that all encountered classes are the same?

Theorem. (Space hierarchy) For any space-constructible f : N→ N,
there exists a language A that is decidable in O(f (n)) space
but not in o(f (n)) space.

I SPACE(nε1) (SPACE(nε2), for 0 ≤ ε1 < ε2

I NL (PSPACE

I PSPACE (EXPSPACE :=
⋃

k SPACE(2nk
)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 10

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE︸ ︷︷ ︸
6=

︸ ︷︷ ︸
6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE︸ ︷︷ ︸
6=

︸ ︷︷ ︸
6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE︸ ︷︷ ︸
6=

︸ ︷︷ ︸
6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE

︸ ︷︷ ︸
6=

︸ ︷︷ ︸
6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE

︸ ︷︷ ︸
6=

︸ ︷︷ ︸
6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Time hierarchy

Theorem. (Time hierarchy) For any time-constructible t : N→ N,
there exists a language A that is decidable in O(t(n)) time
but not in o

(
t(n)

log t(n)

)
time.

I TIME(nε1) (TIME(nε2), for 1 ≤ ε1 < ε2

I P (EXP

6=︷ ︸︸ ︷
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE︸ ︷︷ ︸

6=
︸ ︷︷ ︸

6=

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 11

Outline

Space Complexity

Logarithmic Space

Separations

Randomised Computation

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 12

Randomised Computation

I Allow a TM to make random choices of the next step

Example. (Polynomial identities)
I Given: Q(x1, . . . , xn), a polynomial in n variables.
I Decide: Is Q identically zero?

Fact. Let Q(x1, . . . , xn) have degree ≤ d in every variable and
Q not identically zero.
Then for any set S of values, with |S| ≥ 2nd , the number of tuples
(a1, . . . ,an) ∈ Sn s.t. Q(a1, . . . ,an) = 0, is at most 1

2 |S|
n.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 13

Randomised Computation

I Allow a TM to make random choices of the next step

Example. (Polynomial identities)
I Given: Q(x1, . . . , xn), a polynomial in n variables.
I Decide: Is Q identically zero?

Fact. Let Q(x1, . . . , xn) have degree ≤ d in every variable and
Q not identically zero.
Then for any set S of values, with |S| ≥ 2nd , the number of tuples
(a1, . . . ,an) ∈ Sn s.t. Q(a1, . . . ,an) = 0, is at most 1

2 |S|
n.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 13

Randomised Computation

I Allow a TM to make random choices of the next step

Example. (Polynomial identities)
I Given: Q(x1, . . . , xn), a polynomial in n variables.
I Decide: Is Q identically zero?

Fact. Let Q(x1, . . . , xn) have degree ≤ d in every variable and
Q not identically zero.
Then for any set S of values, with |S| ≥ 2nd , the number of tuples
(a1, . . . ,an) ∈ Sn s.t. Q(a1, . . . ,an) = 0, is at most 1

2 |S|
n.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 13

Checking Q(x1, . . . , xn) is identically zero:

R = “On input Q

1. Choose S with |S| > 2nd .
2. Choose (a1, . . . ,an) at random from S × . . .× S
3. If Q(a1, . . . ,an) 6= 0 output reject

Otherwise output accept.”

If Q is zero then R outputs accept with probability 1

If Q is not zero then R outputs accept with probability ≤ 1/2

Amplification. Repeat Steps 2 and 3 k times

. . .
If Q is not zero then R outputs accept with probability ≤ 1/(2k)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 14

Checking Q(x1, . . . , xn) is identically zero:

R = “On input Q

1. Choose S with |S| > 2nd .
2. Choose (a1, . . . ,an) at random from S × . . .× S
3. If Q(a1, . . . ,an) 6= 0 output reject

Otherwise output accept.”

If Q is zero then R outputs accept with probability 1

If Q is not zero then R outputs accept with probability ≤ 1/2

Amplification. Repeat Steps 2 and 3 k times

. . .
If Q is not zero then R outputs accept with probability ≤ 1/(2k)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 14

Checking Q(x1, . . . , xn) is identically zero:

R = “On input Q

1. Choose S with |S| > 2nd .
2. Choose (a1, . . . ,an) at random from S × . . .× S
3. If Q(a1, . . . ,an) 6= 0 output reject

Otherwise output accept.”

If Q is zero then R outputs accept with probability 1

If Q is not zero then R outputs accept with probability ≤ 1/2

Amplification. Repeat Steps 2 and 3 k times

. . .
If Q is not zero then R outputs accept with probability ≤ 1/(2k)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 14

Checking Q(x1, . . . , xn) is identically zero:

R = “On input Q

1. Choose S with |S| > 2nd .
2. Choose (a1, . . . ,an) at random from S × . . .× S
3. If Q(a1, . . . ,an) 6= 0 output reject

Otherwise output accept.”

If Q is zero then R outputs accept with probability 1

If Q is not zero then R outputs accept with probability ≤ 1/2

Amplification. Repeat Steps 2 and 3 k times

. . .
If Q is not zero then R outputs accept with probability ≤ 1/(2k)

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 14

Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

I For every computation branch b, let k be the number of coin
flips on b. Then

Pr[b] := 1/2k

I Accepting probability:

Pr[M accepts w] :=
∑

b is an accepting branch

Pr[b]

I Rejecting probability: 1− Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 15

Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

I For every computation branch b, let k be the number of coin
flips on b. Then

Pr[b] := 1/2k

I Accepting probability:

Pr[M accepts w] :=
∑

b is an accepting branch

Pr[b]

I Rejecting probability: 1− Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 15

Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

I For every computation branch b, let k be the number of coin
flips on b. Then

Pr[b] := 1/2k

I Accepting probability:

Pr[M accepts w] :=
∑

b is an accepting branch

Pr[b]

I Rejecting probability: 1− Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 15

Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

I For every computation branch b, let k be the number of coin
flips on b. Then

Pr[b] := 1/2k

I Accepting probability:

Pr[M accepts w] :=
∑

b is an accepting branch

Pr[b]

I Rejecting probability: 1− Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 15

Probabilistic TMs

Definition. A probabilistic Turing machine is a NTM in which each
non-deterministic step (“coin flip”) has two legal moves.

I For every computation branch b, let k be the number of coin
flips on b. Then

Pr[b] := 1/2k

I Accepting probability:

Pr[M accepts w] :=
∑

b is an accepting branch

Pr[b]

I Rejecting probability: 1− Pr[M accepts w]

PTMs are real devices, NTMs are not

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 15

COMS21400 30

Example

u u

u

u

u

u

u

u

u

u

u
u

u

�
�
�
�
�
�HHHHHH

�
�
�
�
�
�

HHHHHH

HHHHHH

��
��
��

@
@
@
@
@
@

@
@
@
@
@
@ ��

��
��

��
��
��

M on ω

ω

accept

accept

accept

reject

reject

Pr(branch ===) = 1
4

(2 coin flips on this branch)

Pr(M acc. ω) = 1
8

+ 1
4

+ 1
4

= 5
8

Pr(M rej. ω) = 1
8

+ 1
4

= 3
8

DefinitionM decides the language L with error probability ε if the following hold:
(i) if w ∈ L then Pr (M accepts w) ≥ 1− ε;
(ii) if w /∈ L then Pr (M rejects w) ≥ 1− ε.
F The complexity class BPP (bounded error probabilistic polynomial time) is the class
of all languages that are recognised by a poly time PTM with error probability ≤ 1/3.

Remark NP and BPP are two classes of poly time algorithms, each with a further extra
“resource”: non-determinism for NP and probabilistic choice fop BPP. It is not known
how to compare these resources i.e. we do not know if NP⊆BPP or BPP⊆NP or (more
likely?) if they are incomparable:

'

&

$

%

'

&

$

%"!

·? ·?

NP BPP

P ?

Indeed no NP complete language is known to have a probabilistic poly time algorithm
that recognises it with error probability 1/3 (i.e. a BPP algorithm).

The amplification lemma

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 16

The class BPP

Definition. A TM M recognises L with error probability ε if
I w ∈ L ⇒ Pr[M accepts w] ≥ 1− ε; and
I w /∈ L ⇒ Pr[M rejects w] ≥ 1− ε

Definition. BPP (bounded-error probabilistic polynomial time) is the class of
languages that are recognised by a polynomial-time PTM with error
probability 1/3.

COMS21400 30

Example

u u

u

u

u

u

u

u

u

u

u
u

u

�
�
�
�
�
�HHHHHH

�
�
�
�
�
�

HHHHHH

HHHHHH

��
��

��

@
@
@
@
@
@

@
@
@
@
@
@ ��

��
��

��
��

��

M on ω

ω

accept

accept

accept

reject

reject

Pr(branch ===) = 1
4

(2 coin flips on this branch)

Pr(M acc. ω) = 1
8

+ 1
4

+ 1
4

= 5
8

Pr(M rej. ω) = 1
8

+ 1
4

= 3
8

DefinitionM decides the language L with error probability ε if the following hold:
(i) if w ∈ L then Pr (M accepts w) ≥ 1− ε;
(ii) if w /∈ L then Pr (M rejects w) ≥ 1− ε.
F The complexity class BPP (bounded error probabilistic polynomial time) is the class
of all languages that are recognised by a poly time PTM with error probability ≤ 1/3.

Remark NP and BPP are two classes of poly time algorithms, each with a further extra
“resource”: non-determinism for NP and probabilistic choice fop BPP. It is not known
how to compare these resources i.e. we do not know if NP⊆BPP or BPP⊆NP or (more
likely?) if they are incomparable:

'

&

$

%

'

&

$

%"!

·? ·?

NP BPP

P ?

Indeed no NP complete language is known to have a probabilistic poly time algorithm
that recognises it with error probability 1/3 (i.e. a BPP algorithm).

The amplification lemma

Lemma. (Amplification) Let 0 < ε1 ≤ ε2 < 1/2.
If L can be recognised by a poly-time PTM with error probability ε2
then it can be recognised by a poly-time PTM with error prob. ε1.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 17

The class BPP

Definition. A TM M recognises L with error probability ε if
I w ∈ L ⇒ Pr[M accepts w] ≥ 1− ε; and
I w /∈ L ⇒ Pr[M rejects w] ≥ 1− ε

Definition. BPP (bounded-error probabilistic polynomial time) is the class of
languages that are recognised by a polynomial-time PTM with error
probability 1/3.

COMS21400 30

Example

u u

u

u

u

u

u

u

u

u

u
u

u

�
�
�
�
�
�HHHHHH

�
�
�
�
�
�

HHHHHH

HHHHHH

��
��

��

@
@
@
@
@
@

@
@
@
@
@
@ ��

��
��

��
��

��

M on ω

ω

accept

accept

accept

reject

reject

Pr(branch ===) = 1
4

(2 coin flips on this branch)

Pr(M acc. ω) = 1
8

+ 1
4

+ 1
4

= 5
8

Pr(M rej. ω) = 1
8

+ 1
4

= 3
8

DefinitionM decides the language L with error probability ε if the following hold:
(i) if w ∈ L then Pr (M accepts w) ≥ 1− ε;
(ii) if w /∈ L then Pr (M rejects w) ≥ 1− ε.
F The complexity class BPP (bounded error probabilistic polynomial time) is the class
of all languages that are recognised by a poly time PTM with error probability ≤ 1/3.

Remark NP and BPP are two classes of poly time algorithms, each with a further extra
“resource”: non-determinism for NP and probabilistic choice fop BPP. It is not known
how to compare these resources i.e. we do not know if NP⊆BPP or BPP⊆NP or (more
likely?) if they are incomparable:

'

&

$

%

'

&

$

%"!

·? ·?

NP BPP

P ?

Indeed no NP complete language is known to have a probabilistic poly time algorithm
that recognises it with error probability 1/3 (i.e. a BPP algorithm).

The amplification lemma

Lemma. (Amplification) Let 0 < ε1 ≤ ε2 < 1/2.
If L can be recognised by a poly-time PTM with error probability ε2
then it can be recognised by a poly-time PTM with error prob. ε1.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 17

The class BPP

Definition. A TM M recognises L with error probability ε if
I w ∈ L ⇒ Pr[M accepts w] ≥ 1− ε; and
I w /∈ L ⇒ Pr[M rejects w] ≥ 1− ε

Definition. BPP (bounded-error probabilistic polynomial time) is the class of
languages that are recognised by a polynomial-time PTM with error
probability 1/3.

COMS21400 30

Example

u u

u

u

u

u

u

u

u

u

u
u

u

�
�
�
�
�
�HHHHHH

�
�
�
�
�
�

HHHHHH

HHHHHH

��
��

��

@
@
@
@
@
@

@
@
@
@
@
@ ��

��
��

��
��

��

M on ω

ω

accept

accept

accept

reject

reject

Pr(branch ===) = 1
4

(2 coin flips on this branch)

Pr(M acc. ω) = 1
8

+ 1
4

+ 1
4

= 5
8

Pr(M rej. ω) = 1
8

+ 1
4

= 3
8

DefinitionM decides the language L with error probability ε if the following hold:
(i) if w ∈ L then Pr (M accepts w) ≥ 1− ε;
(ii) if w /∈ L then Pr (M rejects w) ≥ 1− ε.
F The complexity class BPP (bounded error probabilistic polynomial time) is the class
of all languages that are recognised by a poly time PTM with error probability ≤ 1/3.

Remark NP and BPP are two classes of poly time algorithms, each with a further extra
“resource”: non-determinism for NP and probabilistic choice fop BPP. It is not known
how to compare these resources i.e. we do not know if NP⊆BPP or BPP⊆NP or (more
likely?) if they are incomparable:

'

&

$

%

'

&

$

%"!

·? ·?

NP BPP

P ?

Indeed no NP complete language is known to have a probabilistic poly time algorithm
that recognises it with error probability 1/3 (i.e. a BPP algorithm).

The amplification lemma

Lemma. (Amplification) Let 0 < ε1 ≤ ε2 < 1/2.
If L can be recognised by a poly-time PTM with error probability ε2
then it can be recognised by a poly-time PTM with error prob. ε1.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 17

The class BPP

Definition. A TM M recognises L with error probability ε if
I w ∈ L ⇒ Pr[M accepts w] ≥ 1− ε; and
I w /∈ L ⇒ Pr[M rejects w] ≥ 1− ε

Definition. BPP (bounded-error probabilistic polynomial time) is the class of
languages that are recognised by a polynomial-time PTM with error
probability 1/3.

COMS21400 30

Example

u u

u

u

u

u

u

u

u

u

u
u

u

�
�
�
�
�
�HHHHHH

�
�
�
�
�
�

HHHHHH

HHHHHH

��
��

��

@
@
@
@
@
@

@
@
@
@
@
@ ��

��
��

��
��

��

M on ω

ω

accept

accept

accept

reject

reject

Pr(branch ===) = 1
4

(2 coin flips on this branch)

Pr(M acc. ω) = 1
8

+ 1
4

+ 1
4

= 5
8

Pr(M rej. ω) = 1
8

+ 1
4

= 3
8

DefinitionM decides the language L with error probability ε if the following hold:
(i) if w ∈ L then Pr (M accepts w) ≥ 1− ε;
(ii) if w /∈ L then Pr (M rejects w) ≥ 1− ε.
F The complexity class BPP (bounded error probabilistic polynomial time) is the class
of all languages that are recognised by a poly time PTM with error probability ≤ 1/3.

Remark NP and BPP are two classes of poly time algorithms, each with a further extra
“resource”: non-determinism for NP and probabilistic choice fop BPP. It is not known
how to compare these resources i.e. we do not know if NP⊆BPP or BPP⊆NP or (more
likely?) if they are incomparable:

'

&

$

%

'

&

$

%"!

·? ·?

NP BPP

P ?

Indeed no NP complete language is known to have a probabilistic poly time algorithm
that recognises it with error probability 1/3 (i.e. a BPP algorithm).

The amplification lemma

Lemma. (Amplification) Let 0 < ε1 ≤ ε2 < 1/2.
If L can be recognised by a poly-time PTM with error probability ε2
then it can be recognised by a poly-time PTM with error prob. ε1.

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 17

The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

I w ∈ L ⇒ Pr[M accepts w] ≥ 1/2; and
I w /∈ L ⇒ Pr[M rejects w] = 1

If M accepts, we know w ∈ L (“one-sided error”)

Example. The Fermat primality test is given p s.t.
I p is prime ⇒ Pr[M accepts p] = 1
I p is composite ⇒ Pr[M accepts p] ≤ 1/2k

Thus COMPOSITES ∈ RP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 18

The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

I w ∈ L ⇒ Pr[M accepts w] ≥ 1/2; and
I w /∈ L ⇒ Pr[M rejects w] = 1

If M accepts, we know w ∈ L (“one-sided error”)

Example. The Fermat primality test is given p s.t.
I p is prime ⇒ Pr[M accepts p] = 1
I p is composite ⇒ Pr[M accepts p] ≤ 1/2k

Thus COMPOSITES ∈ RP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 18

The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

I w ∈ L ⇒ Pr[M accepts w] ≥ 1/2; and
I w /∈ L ⇒ Pr[M rejects w] = 1

If M accepts, we know w ∈ L (“one-sided error”)

Example. The Fermat primality test is given p s.t.
I p is prime ⇒ Pr[M accepts p] = 1
I p is composite ⇒ Pr[M accepts p] ≤ 1/2k

Thus COMPOSITES ∈ RP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 18

The class RP

Definition. RP (randomised polynomial time) is the class of languages for
which there is a poly-time PTM with

I w ∈ L ⇒ Pr[M accepts w] ≥ 1/2; and
I w /∈ L ⇒ Pr[M rejects w] = 1

If M accepts, we know w ∈ L (“one-sided error”)

Example. The Fermat primality test is given p s.t.
I p is prime ⇒ Pr[M accepts p] = 1
I p is composite ⇒ Pr[M accepts p] ≤ 1/2k

Thus COMPOSITES ∈ RP

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 18

Fin

G. Fuchsbauer
COMS21400 : Space Complexity and Beyond Slide 19

	Space Complexity
	Logarithmic Space
	Separations
	Randomised Computation

