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Abstract. Electronic cash (e-cash) refers to money exchanged electron-
ically. The main features of traditional cash are usually considered de-
sirable also in the context of e-cash. One such property is off-line trans-
ferability, meaning the recipient of a coin in a transaction can transfer
it in a later payment transaction to a third person without contacting a
central authority. Among security properties, the anonymity of the payer
in such transactions has been widely studied. This paper proposes the
first efficient and secure transferable e-cash scheme with the strongest
achievable anonymity properties, introduced by Canard and Gouget. In
particular, it should not be possible for adversaries who receive a coin to
decide whether they have owned that coin before. Our proposal is based
on two recent cryptographic primitives: the proof system by Groth and
Sahai, whose randomizability enables strong anonymity, and the com-
muting signatures by Fuchsbauer, which allow one to sign values that
are only given as encryptions.

Keywords. Transferable e-cash, anonymity, Groth-Sahai proofs, com-
muting signatures.

1 Introduction

While electronic cash has long been one of the most challenging problems in
cryptography, its use in practice remains rare. Indeed, despite the numerous
benefits it may provide, e-cash still has many significant disadvantages. These
include susceptibility to fraud, failure of technology and possible surveillance of
individuals. With the recent emergence of new communication means and the
availability of many applications for smart phones, the interest of the crypto-
graphic community in electronic money has returned. Recent technologies pro-
vide the foundations for novel and desirable features such as, among others, the
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transferability of digital money. The desired security properties for e-cash are
today well-known and for transferable e-cash systems anonymity is a particularly
delicate issue.

Anonymity properties in transferable e-cash. The traditional properties
of anonymous electronic cash are called weak anonymity and strong anonymity.
The former means that it is infeasible for an attacker to identify the spender or
the recipient in a transaction, and the latter states that it is infeasible for an
attacker to decide whether two transactions are done by the same user or not.
In [4] Canard and Gouget give a complete taxonomy of anonymity properties
for transferable e-cash systems. They observe that in the transferability setting
the attacker may recognize a coin that he has already observed during previous
transfers. Thus, in addition to the two above traditional properties, they intro-
duce full anonymity (FA), which means that an attacker is not able to recognize
a coin he has already observed during a transaction between two honest users
(“observe then receive”). They also introduce perfect anonymity (PA), defined
as an attacker’s inability to decide whether he has already owned a coin he is
receiving.

Chaum and Pedersen [6] showed that a payer with unlimited computing
power can always recognize his own money if he sees it later being spent; thus,
the PA property cannot be achieved against unbounded adversaries. But even
when his power is limited, an adversary impersonating the bank can still win
the anonymity game, as shown in [4]. Perfect anonymity can therefore not be
achieved by a transferable e-cash scheme. Due to this impossibility result, Ca-
nard and Gouget [4] introduce two additional anonymity notions called PA1

and PA2. In order to break PA1, the adversary is given a coin and must decide
whether he has already (passively) seen it in a past transaction (“spend then
observe”). For PA2, the bank is trusted and the adversary should not be able to
decide whether or not he has already owned a coin he is receiving (“spend then
receive”). It is shown in [4] that both properties PA1 and PA2 are satisfiable and
that a transferable e-cash scheme should satisfy full anonymity, PA1 and PA2

in order to achieve“optimal” anonymity guarantees. In this paper we maintain
these anonymity notions but slightly modify the used terminologies to improve
readability.

Related work. Many transferable e-cash schemes have been proposed, but most
of them only provide weak [10, 11] or strong anonymity [13, 6, 5, 3]. A generic
construction of a transferable e-cash system with FA and PA1 security from a
one satisfying strongly anonymity is shown in [4]. PA2 remains thus the property
that is hardest to achieve.

The first proposal of a transferable e-cash scheme satisfying PA2 is a theo-
retical scheme in [4] that cannot be implemented effectively. This is due to its
use of complex meta-proofs [12] which allow the blinding of previous transfers
of a coin, even w.r.t. a previous owner of that coin.

Subsequently, Fuchsbauer et al. [8] proposed the first practical PA2-secure
scheme. However, their scheme has the important drawbacks that (i) each user
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has to keep in memory the data associated to all past transactions to prove her
innocence in case of a fraud and (ii) the anonymity of all subsequent owners
of a double-spent coin must be revoked in order to trace the defrauder, which
constitutes a serous breach of anonymity.

In conclusion, the remaining open problem is an efficient transferable e-cash
scheme that satisfies all anonymity properties including PA2.

Our contribution. In this paper, we propose such a scheme. More precisely,
we describe a new transferable e-cash scheme based on the work on random-
ization of Groth-Sahai proofs [9, 2] and on the recent primitive of commuting
signatures [7] based on them. This yields a new way to efficiently blind previous
transfers of a coin and permits to achieve the PA2 property, without requiring the
users to store anything. We moreover believe that the use of Groth-Sahai proofs
and commuting signatures in concrete cryptographic applications is technically
interesting.

There is a lot of concern regarding anonymity for electronic cash with re-
spect to illegal activities, such as money laundering or financing of terrorism. A
possible compromise between user privacy and the prevention of its abuse is to
provide the opportunity to appeal to a judge either in case of double-spending
or in a court case. In our proposal we introduce a trusted authority called judge,
which retrieves the identity of the defrauder after detection of a double-spending
(while detection can be performed locally by the bank). Although we do not
consider this explicitly, the judge could additionally trace coins and users, as re-
quired for fair e-cash [14]. We argue that the use of Groth-Sahai proofs—which,
besides not relying on the random-oracle heuristic and being efficient, are the
only randomizable proofs known to date—requires a common reference string
(CRS). Therefore, instead of assuming the existence of a trusted CRS “in the
sky”, we entrust the judge with its setup and let him use the contained trapdoor
constructively rather than “forgetting” it.

The paper is now organized as follows. In Section 2 we present the procedures
constituting a transferable e-cash scheme with a judge, and we detail its security
properties in Section 3. In Section 4 we give the main cryptographic tools used
to instantiate our scheme, which we describe in Section 5.

2 Definitions for Transferable E-cash with Judge

In this section, we first describe the algorithms for transferable e-cash, involving
a bank B, users U and a judge J . We extend the model given in [4] to include the
judge authority. Moreover, in accordance with [4], the bank B may be divided
into two entities: W for the withdrawal phase and D for the deposit phase.

2.1 Algorithms

For simplicity and contrary to [4], we represent a coin simply as a value c, while
its identifier Id is the value that the bank retrieves during a deposit to check
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for double-spending. Formally, a transferable e-cash system with judge, denoted
Π, is composed of the following procedures, where λ is a security parameter.

– ParamGen(1λ) is a probabilistic algorithm that outputs the parameters of
the system par. In the following, we assume that par contains λ and that it
is a default input of all the other algorithms.

– BKeyGen(), JKeyGen() and UKeyGen() are probabilistic algorithms executed
respectively by B, J or U , that output a key pair. When BKeyGen() is
executed by B, the output is (skB, pkB). The secret key skB may be divided
into two parts: skW for the withdrawal phase and skD for the deposit phase.
Consequently, we define separate algorithms WKeyGen() and DKeyGen() for
the bank’s key generation. The output of JKeyGen() is a keypair (skJ , pkJ )
for the judge, and UKeyGen() outputs (skU , pkU ).
As a convention, we assume that each secret key contains the corresponding
public key.

– Withdraw(W[skW , pkU ],U [skU , pkB]) is an interactive protocol where U with-
draws one transferable coin from B. At the end, U either gets a coin c and
outputs ok, or it outputs ⊥. The output of B is either its view VW

B of the
protocol (including pkU ), or ⊥ in case of error.

– Spend(U1[c, skU1 , pkB, pkJ ],U2[skU2 , pkB, pkJ ]) is an interactive protocol in
which U1 spends/transfers the coin c to U2. At the end, U2 outputs either
a coin c′ or ⊥, and U1 either tags the coin c as spent and outputs ok, or
outputs ⊥.

– Deposit(U [c, skU , pkB],D[skD, pkU ,L]) is an interactive protocol where U de-
posits a coin c at the bank B. If c is not consistent, then B outputs ⊥1. Else,
B computes the identifier Id of the deposited coin. If L, the list of spent
coins, contains an entry (Id, c′), for some c′, then B outputs (⊥2, Id, c, c

′).
Else, B adds (Id, c) to its list L, credits U ’s account, and returns L. U ’s
output is ok or ⊥.

– Identify(Id, c, c′, skJ ) is a deterministic algorithm executed by the judge J
that outputs a key pkU and a proof τG. If the users who had submitted c
and c′ are not malicious, then τG is a proof that pkU is the registered key
of a user that double-spent a coin. If Id = 0, this signifies that the judge
cannot conclude.

– VerifyGuilt(pkU , τG) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if τG is correct and 0 otherwise.

The main differences between these algorithms and those described in [4] is
the additional key generation algorithm JKeyGen() and the modification of the
procedure to identify a defrauder in case of a double-spending detection.

2.2 Global Variables and Oracles

Before formalizing the security properties, we first define the adversary’s means
of interaction with his challenger in the security experiments of a transferable
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e-cash system: we introduce global variables (in accordance with to [4]) and
oracles1.

Global variables. The set of public (resp. secret) user keys is denoted by
PK = {(i, pki) : i ∈ N} (resp. SK = {(i, ski) : i ∈ N} with ski =⊥ if user
i is corrupted). The set of views by the bank of the withdrawals done by the
adversary is denoted by SC (for supplied coins) and the set of all coins owned by
the oracles is denoted by OC (for obtained coins). The set of deposited electronic
cash (corresponding to L) is denoted by DC (for deposited coins). In addition,
we define the set of users who have received a coin from the adversary, denoted
by RU ; and the set of users who have spent a coin to the adversary, denoted
by SU . These modifications should improve the understanding of the original
description of oracles provided in [4].

Creation and corruption of users. The oracle Create(i) executes (ski, pki)←
UKeyGen(), defines PK[i] = pki and SK[i] = ski, and outputs pki. The oracle
Corrupt(i, pki) defines PK[i] = pki and SK[i] =⊥, and outputs ok. If the adver-
sary calls Corrupt(i,⊥) then the oracle outputs SK[i] and then sets SK[i] =⊥.
In all cases, the coins belonging to user i, stored in OC, are also given to A.

Withdrawal protocol. We define three oracles relating to withdrawal.

– The oracle BWith() plays the bank side of a Withdraw protocol. It updates
SC by adding VW

B with bit 1 to flag it as a corrupted coin.
– The oracle UWith(i) plays the user i in a Withdraw protocol. It updates OC

by adding the value (i, j, c) with flag 1, where j is the first empty entry of
OC (independently of the user i to which it belongs).

– The oracle With(i) simulates a complete Withdraw protocol, playing the role
of both B and user i, updates OC as for UWith(i) and updates SC by adding
VW
B both with flag 0. It outputs the communications between B and U .

Spending protocol. Here we take into account that during a Spend protocol
the adversary can play the role of the payer, the receiver, or can only be a passive
observer. This will be relevant for the anonymity experiments in Section 3.4.

– The oracle Rcv(i) allows A to spend a coin to user i. The oracle plays the
role of U2 with the secret key of user i in the Spend protocol. It updates the
set OC by adding a new entry (i, j, c) and adds i to the set RU .

– The oracle Spd(i, j) enablesA to receive either the coin j or a coin transferred
from user i. Either i or j can be undetermined (equal to ⊥). The owner i of
the spent coin j is then added to SU . The oracle plays the role of user U1 in
the Spend protocol with the secret key of the owner i of the coin j in OC.
It uses the entry (i, j, c) of OC as the Spend protocol describes it. It finally
updates this entry by changing the flag to 1.

1 By convention, the name of an oracle corresponds to the action done by this oracle.

Appeared in A. Nitaj and D Pointcheval (Eds.): Africacrypt 2011, volume 6737 of LNCS, pp.
206-223, 2011.

c© Springer-Verlag Berlin Heidelberg 2011



– The oracle S&R (spend-and-receive) permits A to observe the spending of a
coin j between users i1 (in the role of U1) and i2 (in the role of U2), who are
both played by the oracle. It updates OC by adding (i2, j

′, c) and by flagging
the coin j as spent by i1. It outputs all the (external) communications of the
spending.

Deposit protocol. Depending on who the adversary impersonates there are
several oracles for deposit.2

– The oracle BDepo() plays the role of the bank during a Deposit protocol
and interacts with the adversary. The oracle gives the output of a Deposit
procedure and updates the set DC.

– The oracle UDepo(i, c) plays the role of the user i during a Deposit protocol
for the coin c. The adversary is in this case the bank. If c =⊥ then the oracle
randomly chooses one coin belonging to user i and deposits it.

– The oracle Depo(i, c) plays the role of both the bank and the user i in the
Deposit protocol of the coin c. If c =⊥, then the oracle randomly chooses the
coin to be deposited.

– The oracle Idt(Id, c, c′) plays the role of the judge in the Identify procedure,
with the same outputs.

A consequence of the result by Chaum and Pedersen [6], who showed that a
transferred coin necessarily grows in size, is that an adversary may easily break
anonymity by checking the number of times a given coin has been transferred.
In the following, we say that two users i0 and i1 are compatible, and write
comp(i0, i1) = 1, if they both own at least one coin with the same size.

3 Security Properties

In this section, we define the security notions for an e-cash system with a judge,
adapting those from Canard and Gouget [4]. In every security game the chal-
lenger first generates the parameters and the keys for the bank and the judge;
we denote this by AllGen. The challenger then gives the adversary the keys cor-
responding to the parties he is allowed to impersonate.

3.1 Unforgeability

Unforgeability is a notion protecting the bank, meaning that no collection of
users can ever spend more coins than they withdrew, even by corrupting the
judge. Formally, we have the following definition based on the experiment given
below.

2 The main difference between these oracles and those described in [4] is the mod-
ification of the oracle BDepo() and the definition of the new oracle Idt(Id, c, c′).
In [4] there is a single oracle CreditAccount(), which executes both BDepo() and
Ident(Id, c, c′). This modification is necessitated by the inclusion of the judge.
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Definition 1 (Unforgeability). Let Π be a transferable e-cash system with a
judge. For an adversary A and λ ∈ N, we let SuccunforΠ,A(λ) = Pr[Expunfor

Π,A(λ) = 1].

Π is said to be unforgeable if the function SuccunforΠ,A(·) is negligible for any poly-
nomial-time adversary A.

Expunfor
Π,A(λ)

– (par, skB, pkB, skJ , pkJ )← AllGen(1λ); cont← true; st← ∅;
– While (cont = true) do {
− (cont, st)

← ACreate,Corrupt,BWith,With,Rcv,Spd,S&R,BDepo,Depo(st, par, skJ , pkB);

Let qW be the number of successful calls to BWith and With;
let qD denote the number of successful calls to BDepo and Depo;

− If qW < qD then return 1; }
– Return ⊥.

3.2 Identification of Double-Spenders

This notion guarantees the bank that no collection of users, collaborating with
the judge, can spend a coin twice (double-spend) without revealing one of their
identities. Formally, we have the following experiment and definition.

Expident
Π,A(λ)

– (par, skB, pkB, skJ , pkJ )← AllGen(1λ); cont← true; st← ∅;
– While (cont = true) do {
− st← ACreate,Corrupt,BWith,With,Rcv,Spd,S&R,BDepo,Depo,Idt(st, par, skJ , pkB);

− If a call to BDepo outputs (⊥2, Id, c, c
′) then cont← false; }

– (i∗, τG)← Identify(Id, c, c′, skJ );

– If VerifyGuilt(pki∗ , τG) = 0 or i∗ = 0 then return 1;

– Return ⊥.

Definition 2 (Double-Spender Identification). Let Π be a transferable e-
cash system with a judge. For any adversary A and λ ∈ N, we let SuccidentΠ,A(λ) =

Pr[Expident
Π,A(λ) = 1]. Π identifies double spenders if the function SuccidentΠ,A(·) is

negligible for any polynomial-time adversary A.

3.3 Exculpability

This notion protects honest users in that the bank, even when colluding with
a collection of malicious users and possibly the judge, cannot falsely accuse
(with a proof) honest users of having double-spent a coin. Formally, we have the
following experiment and definition.
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Expexcul
Π,A(λ)

– (par, skB, pkB, skJ , pkJ )← AllGen(1λ);
– (Id∗, c∗1, c

∗
2, i
∗, τ∗)

← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt(st, par, skJ , skB);
– If VerifyGuilt(pki∗ , τ

∗) = 1 and ski∗ 6=⊥, return 1;
– Return ⊥.

Definition 3 (Exculpability). Let Π be a transferable e-cash system with
judge. For an adversary A and λ ∈ N, we let SuccexculΠ,A(λ) = Pr[Expexcul

Π,A(λ) = 1].

Π is said to be exculpable if the function SuccexculΠ,A(·) is negligible for any poly-
nomial-time adversary A.

3.4 Anonymity Properties in Transferable E-cash

Regarding anonymity, Canard and Gouget [4] distinguish between five different
notions: weak anonymity (WA), strong anonymity (SA), full anonymity (FA),
and two types of restricted perfect anonymity (PA1 and PA2). They show that FA
implies SA, which implies WA, and that FA, PA1 and PA2 are all incomparable.
We say the anonymity for a transferable e-cash scheme is optimal when it satisfies
the latter 3 properties. We work with the formal definitions of [4] but slightly
modify the terminology6.

– Observe-then-Receive Full Anonymity (OtR-FA, previously FA): the adver-
sary, impersonating the bank, cannot link a coin he receives as “legitimate”
user to a previously (passively) observed transfer between honest users.

– Spend-then-Observe Full Anonymity (StO-FA, previously PA1): the adver-
sary, impersonating the bank, cannot link a (passively) observed coin trans-
ferred between two honest users to a coin he has already owned as a “legiti-
mate” user.

– Spend-then-Receive Full Anonymity (StR-FA, previously PA2): when the
bank is honest, the adversary cannot link two transactions involving the
same coin, i.e. make the link between two coins he has received.

In the following, we say that a transferable e-cash scheme achieves optimal
anonymity if it satisfies at the same time OtR-FA, StO-FA and StR-FA, which
are incomparable, according to [4]. These anonymity notions are formally defined
below, based on the corresponding experiments given in Figure 1.

Definition 4 (Anonymity Properties). Let Π be a transferable e-cash sys-
tem with judge and let c ∈ {otr-fa, sto-fa, str-fa}. For an adversary A and λ ∈ N,
we let AdvcΠ,A(λ) = Pr[Expc-1

Π,A(λ) = 1] − Pr[Expc-0
Π,A(λ) = 1]. Π is said to be

Observe-then-Receive fully anonymous (resp. Spend-then-Observe fully anony-
mous, Spend-then-Receive fully anonymous) if the function Advotr-faΠ,A (·) (resp.

Advsto-faΠ,A (·), Advstr-faΠ,A (·)) is negligible for any polynomial-time adversary A.

6 In particular, the notion of “perfect” anonymity in [4] is not based on the indistin-
guishability of distributions, which may be confusing as we only achieve computa-
tional security.
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Expotr-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Ac,Agu)

– (par, skB, pkB, skJ , pkJ )← AllGen(1λ);

– (i∗0, i
∗
1, st)← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt

ch (par, skB, pkJ );

– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ comp(i∗0, i
∗
1) = 0 ∨ i∗0 ∈ RU ∨ i∗1 ∈ RU

then return ⊥;

– Choose j∗ such that coin number j∗ belongs to i∗b and i∗1−b owns a
coin of equal size. Simulate Spd(i∗b , j

∗) to Ac, which outputs stc;

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt
gu (stc);

– Return b∗.

Expsto-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Agu)

– (par, skB, pkB, skJ , pkJ )← AllGen(1λ);

– (i∗0, i
∗
1, i
∗
2, st)← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt

ch (par, skB, pkJ );

– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ ski∗2 =⊥ ∨ comp(i∗0, i
∗
1) = 0, return ⊥;

– Choose j∗ such that coin number j∗ belongs to i∗b , and i∗1−b owns a
coin of equal size; run out← S&R(j∗, i∗b , i

∗
2);

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,UDepo,Idt
gu (out, stc);

– If an oracle call involved the coin used in S&R then return ⊥;

– Return b∗.

Expstr-fa-b
Π,A (λ) // b ∈ {0, 1}, A = (Ach,Ac,Agu)

– (par, skB = (skW , skD), pkB = (pkW , pkD), skJ , pkJ )← AllGen(1λ);

– (i∗0, i
∗
1, st)

← ACreate,Corrupt,UWith,Rcv,Spd,S&R,Depo,Idt
ch (par, skW , pkD, pkJ );

– If ski∗0 =⊥ ∨ ski∗1 =⊥ ∨ comp(i∗0, i
∗
1) = 0 then return ⊥;

– Choose j∗ such that coin number j∗ belongs to i∗b , and i∗1−b owns a
coin of equal size. Simulate Spd(i∗b , j

∗) to Ac, which outputs stc;

– b∗ ← ACreate,Corrupt,UWith,Rcv,Spd,S&R,Depo,Idt
gu (stc);

– If the oracle Depo is called on input either i∗0 or i∗1, return ⊥;

– Return b∗.

Fig. 1. Experiments for full-anonymity notions.

4 Cryptographic Tools

In this section we give the main tools we need to construct our new transferable
e-cash system with judge. For each of them, we introduce the concept, give the
underlying procedures and formally describe the main security characteristics.
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4.1 Assumptions

Our construction will rely on two cryptographic assumptions: the symmetric
external Diffie-Hellman (DH) assumption and the asymmetric double hidden
strong DH assumption, a “q-type” assumption introduced in [1].

Definition 5 ((SXDH)). Let G1,G2 be cyclic groups of prime order generated
by g1 and g2, respectively, and let e : G1 × G2 → GT be a bilinear map. The
SXDH assumption states that for i = 1, 2, given gi, g

a
i , g

b
i , for random a, b, it is

hard to distinguish gabi from a random element from Gi.

Definition 6 (q-ADHSDH). Given (g, f, k, gξ, h, hξ) ∈ G4
1 ×G2

2 and

(
ai = (k · gνi)

1
ξ+γi , bi = fγi , vi = gνi , di = hγi , wi = hνi

)q−1
i=1

for random g, f, k ← G1, h← G2, ξ, γi, νi ← Zp, it is hard to output a new such
tuple (a, b, v, d, w) ∈ G3

1 ×G2
2, i.e., one that satisfies

e(a, hξ · d) = e(k · v, h) e(b, h) = e(f, d) e(v, h) = e(g, w)

4.2 Groth-Sahai Proofs

Groth and Sahai [9] proposed the first efficient non-interactive proof system for
a large class of statements over bilinear groups in the standard model. Those
proofs fit our purpose perfectly: their witness indistinguishability guarantees
the anonymity of the users that withdraw, transfer and spend coins, and their
randomizability provides unlinkability of transferred coins.

We use SXDH-based Groth-Sahai commitments and proofs in a pairing-
friendly setting in order to commit to elements and prove relations satisfied
by the associated plaintexts. The commitment key is: u ∈ G 2×2

1 , v =∈ G 2×2
2 .

Depending on whether the commitments should be perfectly binding or perfectly
hiding (for simulations in security proofs), the initialization of the parameters

will vary between: u1 = (g1, u) with u = gµ1 and u2 = uν1 with µ, ν
$← Z∗p (which

makes u a Diffie-Hellman tuple in G1) for the binding setting, and for the hiding
setting u2 = uν1 � (1, g1)−1 = (gν1 , g

µν−1
1 ). Similarly, we define key pairs v1 and

v2 in G2
2 with independent randomness.

Commitments to group elements. To commit to X ∈ G1 with random
values s1, s2 ∈ Zp, we set C(X) = (1, X)�us11 �us22 = (us11,1 ·us22,1, X ·us11,2 ·us22,2).

– Perfectly binding setting: We have C(X) = (ga1 , X ·ua), with a = s1 +νs2. A
simulator that knows µ can extract X as this is an ElGamal encryption of X
under (g1, g

µ
1 ). The key µ is called the extraction key for such an extractable

commitment.
– Perfectly hiding setting: We have C(X) = (ga1 , X · gb1 · ua), for a = s1 + νs2

and b = −s2, two independent random values. C(X) is thus an encryption
of X · gb1, for a random b, so it blinds X.

Analogously, one commits to elements from G2 by replacing u by v and g1 by
g2 in the above.
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Proofs. Under the SXDH assumption, the two initializations of the commitment
key are indistinguishable. Groth and Sahai [9] show how to construct proofs that
a set of committed values satisfies an equation of a certain type. A proof is in
G2×2

2 × G2×2
1 ; it can be constructed using the committed values satisfying the

equation and their randomness, and it is verified w.r.t. the commitments and
the commitment key. If the key is set up as perfectly hiding then the proof does
not reveal more than the fact that the values satisfy the equation.

Randomization. The commitments can easily be randomized. Given, e.g., a
commitment c ∈ G2

1, one chooses two random values s′1, s
′
2 and computes the

randomization as c′ = (c1 · us
′
1

1,1 · u
s′2
2,1, c2 · u

s′1
1,2 · u

s′2
2,2). In [2] it is shown how to

randomize and adapt a proof (π, θ) for a vector of commitments (ci)i to their
randomizations (c′i)i.

4.3 Commuting Signatures

Commuting signatures and verifiable encryption [7] is a primitive combining a
signature scheme (the automorphic signature from [1], whose messages are group
elements) with Groth-Sahai (GS) proofs. This allows one to commit to a message,
a verification key, or a corresponding signature (or arbitrary combinations of
them), and prove that the committed values are valid (i.e. the signature is valid
on the message under the key), via the GS methodology.

Commuting signatures provide several additional functionalities, of which we
use the following two.

SigCom: This allows a signer, who is given a commitment C to a message, to
make a commitment cΣ to a signature (under his secret key) on that message
(without knowing it though) and a proof that cΣ contains a valid signature
on the value committed in C.

AdCK: Given a commitment to a message, a commitment to a signature and
a proof of validity w.r.t. to a verification key, this algorithm allows anyone
to commit to that key and adapt the proof; more precisely, AdCK outputs a
proof asserting that a commitment contains a valid signature on a committed
message under a committed verification key.

Security states that the output of SigCom is the same as if the signer had known
the message, signed it, made commitments to the message and the signature and
had given a GS proof of validity w.r.t. his signature-verification key. Analogously,
the output of AdCK is the same as a proof constructed for the known committed
values.

In our e-cash scheme commuting signatures will enable users to produce
signatures on values that are only available as commitments and make a proof
of validity under their verification key, which is also given as a commitment.
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5 A Tranferable E-cash System with Judge

Based on the cryptographic building blocks introduced in the last section, we
are now in a position to describe our transferable e-cash system with judge.
In our solution the withdrawer is anonymous towards the bank, a feature that
previous schemes do not offer. This is motivated by the fact that our withdrawal
is very similar to the spending protocol and it is easy to make the withdrawer
non-anonymous, should one wish to. A possible application of our scheme is the
anonymous purchase of tickets which can then be transferred to other users.
Another scenario could be e-cash which can be purchased in exchange for actual
cash.

5.1 Overview of our Solution

A coin is represented by a unique chain of nonces n = n0‖n1‖n2‖ · · · , where each
ni is randomly chosen by a consecutive owner of the coin. Thus, n0 is chosen by
the bank, n1 by the withdrawer, n2 by the one who receives this coin from the
withdrawer, and so on.

A double-spending has occurred when two coins n and n′ are deposited which
both begin with n0 = n′0. Note that the minimum value i such that ni 6= n′i cor-
responds to the transfer of the coin where it was double-spent. If we oblige every
user to commit to her identity during a transfer and include this commitment
in the coin then a judge holding an extraction key can trace the defrauder.

When a coin is transferred from Ui to Ui+1, the spender Ui signs the fol-
lowing: (i) the nonce she chose when receiving the coin (during a spending or
withdrawal), (ii) the nonce chosen by the receiver Ui+1, and (iii) Ui+1’s verifica-
tion key. The latter binds this transfer to the next one, where Ui+1 will use her
signing key. In fact, since only Ui+1 knows the secret key corresponding to the
signed public key, she is the only one able to spend the coin.

However, to remain anonymous, Ui+1 cannot let the spender know her veri-
fication key. This is where commuting signatures come into play: they allow the
signer to make (a commitment to) a signature on the receiver’s key, even when it
is only given to the signer as a commitment. Since SigCom additionally outputs
a proof, validity of the committed signature is publicly verifiable.

When a coin is spent, its entire history (i.e. committed nonces, keys, signa-
tures and proofs of their validity from previous transfers) is transmitted. This
will guarantee unforgeability, identification of double-spending and non-framea-
bility, without requiring data to be stored by the user and provided later on
demand to prove innocence (as was the case in the relaxed model in [8]). Every
time a coin is transferred, its history (consisting of commitments and Groth-
Sahai proofs) can be completely randomized. Thus, a previous owner of a coin
cannot recognize it at a later moment; this is how our scheme achieves strong
anonymity notions.
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5.2 Key-Generation Algorithms

During the generation phase, the judge J generates two pairs of commitment/ex-
traction keys, which will enable identification of double spenders. Similarly, the
double-spending detector D also generates such a key pair.

We denote a commitment under J ’s keys by either c (first key) or c̃ (second
key) and a commitment under D’s key by d. Using their secret extraction keys,
the judge and the detector can open commitments under their respective keys
using OpenJ and OpenD.

The judge also generates a key pair for a commuting signature scheme; in the
following, a signature on m from J is denoted SignJ (m). Moreover, the bank B
and each user U generate key pairs (bsk, bpk) and (usk, upk) for the commuting
signature scheme. When registering, a user U obtains from the judge J a signa-
ture on her verification key as membership certificate: cert = SignJ (upk). In the
following, we differentiate the users by different indices: U1, U2, etc.

5.3 Withdrawal Protocol

The withdrawal protocol involves a user U1 and the bank B. In a nutshell, the
bank B generates a random nonce n0 and the user a random nonce n1, which
together will be the beginning of the serial number of the coin. The bank then
signs these nonces and the user’s public key upk1, which will bind the user’s
identity to the coin and enable tracing in case of double spending.

However, to guarantee anonymity, rather than sending these values in the
clear, the user sends commitments to them. She also adds a commitment to her
certificate and a proof of validity, which convinces the bank that she is registered.
This can be done since the certificate is an automorphic signature [1], for which
GS proofs can be used to prove that a committed value is a signature on another
committed value, in this case upk1, valid under the judge’s verification key.

The bank now has to construct a committed signature on the values n0, n1
and upk1, which are only given in the form of commitments. This is where we
take advantage of the functionality SigCom of the commuting-signature scheme
introduced in Section 4.3: given commitments, a signer can produce a commit-
ment to a signature on the values contained in them, together with a proof of
validity of the signature.

All these commitments will be done w.r.t. the judge’s commitment key. To
enable the double-spending detector D to detect a double-spending (however
without breaking the user’s anonymity), we do the following: in addition to
committing to the nonces w.r.t. the judge’s key, the user and the bank make
another commitment dni to ni under D’s key. In order to show that this was
done correctly, we require a proof that two commitments w.r.t. different keys
contain the same value. This can be done by using two instances of Groth-
Sahai proofs on top of each other, as was done in [8]. The outer layer is the
one corresponding to c, which will enable us to simulate such a proof when the
commitment key for c is set up as hiding, but the key for d is still binding.

We formalize the above in the following protocol:
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U1 picks at random a nonce n1 and makes two extractable commitments (for J
and D) to n1 denoted respectively by cn1

and dn1
, and a proof πn1

that the
two committed values are equal.
Moreover, U1 makes commitments cu1 , c̃u1 and cc1 to its public key upk1 and
its certificate cert1, respectively, together with a proof πc1 that the value in
cc1 is a valid signature on the value in cu1

, i.e. cert1 = SignJ (upk1), and a
proof π̃u1

that the committed values on cu1
and c̃u1

are equal.
U1 sends the following values to the bank: (cn1 , cu1 , cc1 , πc1).

B after verifying πc1 now also generates a random nonce n0 and makes two
commitments (for J and D) to n0 denoted by cn0

and dn0
, and a proof πn0

that the two committed values are equal.
B produces a committed signature cs1 on the values n0, n1 and upk1 by
running SigCom on cn0

, cn1
and cu1

; this also outputs a proof πs1 of validity
of cs1 w.r.t. cn0

, cn1
and cu1

and the bank’s verification key (which is public).
The bank sends all these values, from which the user forms the coin

coin1 = (cn0 , dn0 , πn0 , cn1 , dn1 , πn1 , cu1 , c̃u1 , π̃u1 , cc1 , πc1 , cs1 , πs1) . (1)

In the sequel, this coin will be randomized before being spent. The result of ran-

domizing coin1 is denoted coin
(1)
1 and consists of randomizing all its components,

i.e. commitments and proofs, as described in [2]. After randomization, we have

thus coin
(1)
1 = (c

(1)
n0 , d

(1)
n0 , π

(1)
n0 , c

(1)
n1 , d

(1)
n1 , π

(1)
n1 , c

(1)
u1 , c̃

(1)
u1 , π̃

(1)
u1 , c

(1)
c1 , π

(1)
c1 , c

(1)
s1 , π

(1)
s1 ).

5.4 Spending Protocol

This is a protocol between a user U1 holding a coin as in (1) and a user U2 playing
the role of the receiver. The protocol is very similar to the withdrawal protocol,
except for two points. First, U1 has to randomize the coin, which prevents a later
linking of the coin. Note that, due to the contained proofs, the validity of a coin
is publicly verifiable.

Second, while the bank’s verification key is public, U1’s key must remain
hidden. Thus, after U1 produces a commitment to a signature on the values
n1, n2 (the nonce chosen by U2), and U2’s public key upk2, and a proof that
verifies w.r.t. her public key upk1, U1 does the following: using the functionality
AdCK (described in Section 4.3), she converts the proof into one asserting that

the committed signature is valid under the value committed in c
(1)
u1 (i.e. the

randomization of the commitment to upk1).

U2 picks at random a nonce n2 and commits to it as cn2
and dn2

(for J and D)
and makes a proof πn2

of equality of the committed values.
U2 makes further commitments cu2

, c̃u2
and cc2 to her public key upk2 and her

certificate cert2, together with a proof πc2 that cc2 contains a valid certificate
and a proof π̃u2 that the committed values in cu2 and c̃u2 are equal. She sends
(cn2

, cu2
, cc2 , πc2) to U1

U1 checks the proof sent by U2 and randomizes coin1 to coin
(1)
1 . U1 then produces

a committed signature on the values committed in c
(1)
n1 , cn2

and cu2
using
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SigCom: this generates a commitment cs2 to a signature on the values n1, n2
and upk2, as well as a proof π′s2 of validity of cs2 on cn1

, cn2
, cu2

w.r.t.
upk1. Running AdCK, U1 converts π′s2 to a proof πs2 asserting validity w.r.t.

the key committed in c
(1)
u2 . Note that this works since cu1 was produced and

randomized to c
(1)
u1 by U1, who therefore knows its randomness. Finally, U1

sends U2 the following: (coin
(1)
1 , cs2 , πs2).

U2 checks the proofs contained in coin
(1)
1 and πs2 and defines the transferred

coin as

coin2 := (coin
(1)
1 , cn2

, dn2
, πn2

, cu2
, c̃u2

, π̃u2
, cc2 , πc2 , cs2 , πs2) .

5.5 Deposit and Identify Procedures

To deposit a coin, a user spends it to the bank, that is, she runs the proto-
col from the last section with the bank playing the role of U2. In order to de-
tect a double-spending given a coin, the detector D opens all the commitments

d
(`)
n0 , d

(`)
n1 , d

(`−1)
n2 , · · · , d(1)n` contained in it, using her extraction key. She thus ob-

tains the serial number n = n0‖n1‖ · · · ‖n` of this coin, which allows her to check
whether the coin was double-spent.

To do so, D checks whether n0 already exists in her database. If this is not
the case then the Deposit is validated and the list L is updated by adding n =
n0‖n1‖ · · · ‖n`. Otherwise, if a serial number ñ beginning with n0 already exists
in her database then with overwhelming probability the coin was double-spent
and D outputs ⊥1. She compares the two serial numbers n = n0‖n1‖n2‖ · · · ‖n`
and ñ = n0‖ñ1‖ñ2‖ · · · ‖ñ` and stops at the last i0 such that ni0 = ñi0 . She
finally asks for the execution of the Identify procedure by the Judge on input the
two related spendings and i0.

To identify the double spender, the judge extracts the value committed in
cui0 using her extraction key, which reveals the public key upki0 of the defrauder.
The proof τG of identification is a proof of correct opening of the commitment,
as done in [8].

5.6 Security Considerations

We now sketch how to prove that our scheme is secure. We have to show that it
fulfills all the security requirements given in Section 3.

Claim 1. Our transferable e-cash system with a judge is secure under the follow-
ing assumptions: unforgeability of the commuting signature scheme and sound-
ness and witness indistinguishability of Groth-Sahai proofs.

Unforgeability. Let us assume that an adversary is able to break the unforge-
ability of our transferable e-cash scheme. We use it as a black box to design
a machine which breaks commuting signatures, i.e. their unforgeability under
chosen-message attacks.
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Given a challenge public key by our challenger, we use it as the bank’s public
key and generate the remaining parameters as described in our e-cash scheme
(without any modifications), and send it to the adversary. We answer all oracle
queries by the adversary either by using the appropriate key or by querying the
signing oracle provided by our challenger (for BWith and With calls).

Suppose the adversary wins the game. For each of the qD successfully de-
posited coins, using the judge’s extraction key we open the commitments cs1 ,
cn0

, cn1
and cu1

. By soundness of πs1 , the extracted signature s1 is valid on
(n0, n1, upk1), the other extracted values, under the bank’s public key. Since ev-
ery deposit was successful, none of the qD coins was double-spent, which means
that their n0 components are all different. We have thus qD signatures on dif-
ferent triples (n0, n1, upk1). On the other hand, there were fewer calls (qW ) to
withdraw oracles, and thus fewer calls to our signing oracle. There must thus be
a signature on a message which was not queried to the signing oracle. We output
that signature/message pair as a forgery and win thus the unforgeability game
with the same probability as the adversary.

Identification of double-spender. As for unforgeability, we use a successful
adversary to break unforgeability of the commuting signature scheme. This time
we use the public key given by our challenger as the judge’s public key and set up
the remaining parameters as described in our scheme. We can therefore answer
any oracle call by the adversary, except for the certification of a new user in the
system (oracle Create), for which we use our signing oracle.

At some point the adversary makes a call to the BDepot oracle that is an-
swered as (⊥2, Id, c, c

′), i.e. a double-spending is detected. If the adversary is
successful then Identify outputs (i∗, τG) such that either VerifyGuilt(pki∗ , τG) = 0
or i∗ = 0. Since each valid coin must contain a valid certificate for the public key
corresponding to each transfer, by soundness of the proofs, the adversary must
have forged the certificate. Otherwise Identify would have output an existing user
key.

Exculpability. This is shown similarly to unforgeability, except that here we
focus on signatures issued by an honest user rather than the bank.

A user with public key upk is accused of double-spending when there are two
coins c and c′ with serial numbers n and n′, such that for some index i, we have
n0 = n′0, . . . , ni = n′i and ni+1 6= n′i+1, and moreover cui contains the user’s
public key upk. Since both coins are valid, by the soundness of the proofs, they
contain signatures on (ni, ni+1, upki+1) and (ni, n

′
i+1, upk

′
i+1), respectively.

Since an honest user does not transfer or spend one of his coins twice, and it
only happens with negligible probability that she chooses twice the same nonce
ni when receiving two different coins, one of the signatures must be a forgery.

The adversary we build against unforgeability of the commuting signature
scheme receives the challenge public key and sets it as the public key of a ran-
domly chosen user. It uses the signing oracle to simulate this user, whenever the
adversary asks her to spend/transfer a coin. If the probability that the e-cash

Appeared in A. Nitaj and D Pointcheval (Eds.): Africacrypt 2011, volume 6737 of LNCS, pp.
206-223, 2011.

c© Springer-Verlag Berlin Heidelberg 2011



adversary wins the exculpability game is non-negligible then so is the probabil-
ity that he wins by framing the user chosen by the simulator. We break thus
unforgeability of the commuting signature.

Anonymity properties.

– To achieve Spend-the-Observe Full Anonymity, it suffices to encrypt the
messages sent between the users when transferring a coin; this was shown
in [4].

– Spend-then-Receive Full Anonymity (formerly known as PA2) is harder to
achieve, since the adversary is given the challenge coin, which he could al-
ready have owned before; the adversary therefore must not know the key to
detect double-spendings.
Groth-Sahai proofs are witness indistinguishable in the following sense: if
the commitment key is set up as perfectly hiding then the commitments are
random values independent of the committed values and the proofs are dis-
tributed equally for any such values—as long as they satisfy the equations.
Thus, if we set up all commitment keys (the two for the judge and one for
the double-spending detector), a coin would not reveal anything about the
chosen nonces, the public keys and certificates of its owners and their signa-
tures. Moreover, after being transferred, the coins are perfectly unlinkable,
since a randomization transforms one set of random values into an indepen-
dent set of random values (conditioned on the fact that the values that could
have been committed satisfy the equations).
However, if the coins do not contain any information, we cannot correctly
simulate the experiment for StR-FA. In particular, we cannot simulate the
deposit and identification oracles, which rely on the detector’s and the judge’s
extraction keys. This is the reason why we introduced the commitments d
and c̃, which double some of the values committed in the c’s, namely the
nonces and the user public keys.
The anonymity properties are shown by a sequence of game hops. The first
game is the original game, and in the second we extract from the commit-
ments d and c̃ to detect and trace double-spendings. In a third game, we set
up the judge’s key for the commitments c as perfectly hiding. Under SXDH
this changes the adversary’s behavior only negligibly. In a forth game we
simulate the proofs πni and π̃ui of equality of commitments under different
keys. This can be done using the trapdoor information for the key for the
c-commitments.
Finally, we mentioned in Section 4.2 that commitments under binding keys
are actually ElGamal encryptions of the committed value. Under SXDH we
can thus replace such encryptions by random pairs of elements from the
corresponding group. When we perform the challenge spending via Spd in
the experiment, we replace the commitments/encryptions dni and c̃ui by
random values. This is done by a sequence of hybrid games, replacing one
value after the other.
In the final game now the challenge coin is perfectly random, and does thus
not contain any information about the bit b. The adversary’s probability of
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winning the game is thus 1
2 . This concludes the proof for StR-FA as the final

game is indistinguishable from the original game.
– The remaining notion, OtR-FA, is proved similarly, but here we cannot re-

place values d by random ones, as the adversary gets the corresponding
extraction key, contained in skB . However, we can simply leave the values
d in the challenge coin unchanged, as the adversary has never seen them
before: he has never owned the coin and does not get the value dn1

when
impersonating the bank during a withdraw.
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4. Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In
ACNS’08, volume 5037 of LNCS, pages 207–223. Springer, 2008.
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