One-Time Pad et Stream Cipher

Pierre-Alain Fouque

pa.fouque@gmail.com

Chiffrement par flot

Systèmes de chiffrement efficace en environnement très contraint (carte à puce GSM A5/1 par exemple)

Systèmes de chiffrement très efficace en logiciel (RC4 par exemple)

Construits à partir du chiffrement de Vernam (one-time pad=masque jetable) qui garantit la sécurité parfaite

Schémas symétriques

- Def: un chiffrement défini sur 3 espaces (K,M,C) est une paire d'algorithmes «efficaces» (E,D) où E:K×M→C, D:K×C→M t.q. ∀m∈M, k∈K, D(k,E(k,m))=m
- E est souvent probabiliste,
- D est toujours déterministe

XOR

- XOR de deux chaînes binaires {0,1}ⁿ, est l'addition modulo 2 bit à bit
- Table
- Bitwise : bit à bit
- Propriétés:
 - pour tout $a, a \oplus 0 = a$
 - pour tout $a, a \oplus I = I a$
 - pour tout $a, a \oplus a = 0$

One Time Pad (Vernam 1917)

- c:=E(k,m)=k⊕m
- D(k,c)=k⊕c

msg: 0110111

⊕ k: 1011001

CT:

- En effet, D(k,E(k,m))=D(k,k⊕m)=k⊕(k⊕m)
 =(k⊕k)⊕m=0⊕m=m
- Etant donné un message (m) et son chiffrement OTP (c), pouvez-vous calculer la clé OTP à partir de m et c ?

One Time Pad (Vernam 1917)

- chiffrement et déchiffrement très très rapide!!
- mais clés très longues (aussi longue que le clair)
- Est-ce que le OTP est un bon chiffrement ?
- Qu'est-ce qu'un bon chiffrement ?

Sécurité au sens de la théorie de l'information (Shannon 1949)

- Idée de base: CT ne doit révéler aucune info sur PT
- <u>Def</u>: un chiffrement (E,D) sur (K,M,C) garantit la sécurité parfaite (inconditionnelle) if
 - $\forall m_0, m_1 \in M$, $(|m_0| = |m_1|)$ et $\forall c \in C$, $Pr[E(k,m_0) = c] = Pr[E(k,m_1) = c]$ où $k \leftarrow_R K$
 - Etant donné CT, on ne peut pas dire si le message est m₀ ou m₁ (pour tout m₀ et m₁)
 - Même les adversaires les plus puissants n'apprennent rien sur PT connaissant CT (aucune à chiffré seul connu CT, mais d'autres ...)

Lemme: OTP garantit la sécurité parfaite

- Preuve: $\forall m,c: Pr_k[E(k,m)=c] = \frac{\# \text{ keys } k \in K \text{ s.t. } E(k,m)=c}{|K|}$
 - donc, \forall m,c, $\#\{k \in K: E(k,m)=c\}=const$
 - → chiffrement guarantit la sécurité parfaite
- Soient m∈M et c∈C, combien de clé OTP envoie m vers c ?

• OTP garantit la sécurité parfaite

Propriété principale du XOR

- Thm: si Y est une variable aléatoire sur {0,1}ⁿ,
 X une variable uniforme et indépendante sur {0,1}ⁿ, alors Z=Y⊕X est une variable uniforme sur {0,1}ⁿ
- Preuve:

Stream cipher (rendre OTP pratique)

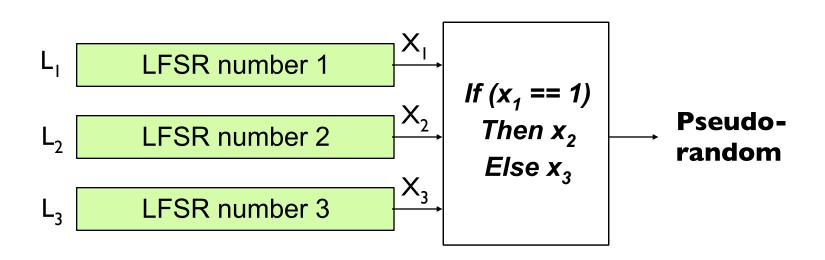
- <u>idée</u>: remplacer la clé «aléatoire» par «pseudoaléa»
- PRG: est une fonction G: $\{0,1\}^s \rightarrow \{0,1\}^n$, n>>s

- (calculable «efficacement» par algo. déterministe)
- $c:=E(k,m):=m\oplus G(k)$
- $D(k,m)=c\oplus G(k)$
- Est-ce qu'un stream cipher garantit la sécurité parfaite ?

Générateurs pseudo-aléatoires

- Def: G algorithme déterministe en temps polynomial. Pour tout $n, s \in \{0, 1\}^n$, le résultat de G(s) est une chaîne de bits de longueur m(n)
 - Expansion: m(n)>n, avec m un polynôme
 - Pseudo-aléatoire: Pour tout algorithme PPT
 (probabilistic polynomial-time) D, il existe une fonction
 négligeable negl: |Pr[D(G(s))=1]-Pr[D(r)=1]|<=negl(n)
 où s et r sont aléatoires et uniformes de la bonne taille</p>

Attaques Stream cipher


- Attack I: two time pad n'est pas sûr
 - Jamais utiliser un stream cipher plus d'une fois !!
 - Exemples du monde réel
 - Project Venona (1941-1946)
 - MS-PPTP (Windows NT)
 - WEP-RC4 (802.11b)

Attaque Stream cipher

Attack 2: aucune intégrité (OTP est malléable)

Modification de CT: indétectable et a un impact prédictible sur le clair PT

Geffe stream cipher

Quel est le biais?