
An improved LPN algorithm

Éric Levieil and Pierre-Alain Fouque

École normale supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France
{Eric.Levieil,Pierre-Alain.Fouque}@ens.fr

Abstract. HB+ is a shared-key authentication protocol, proposed by
Juels and Weis at Crypto 2005, using prior work of Hopper and Blum.
Its very low computational cost makes it attractive for low-cost devices
such as radio-frequency identification(RFID) tags. Juels and Weis gave a
security proof, relying on the hardness of the “learning parity with noise”
(LPN) problem. Here, we improve the previous best known algorithm
proposed by Blum, Kalai, and Wasserman for solving the LPN problem.
This new algorithm yields an attack for HB+ in the detection-based
model with work factor 252.

1 Introduction

Providing lightweight and secure cryptographic protocols for radio-frequen-
cy identification (RFID) tags is an area under quick development. The
HB protocol family is one of the most promising in this field and uses
very few operations and gates on the chip. The original protocol has been
proposed by Hopper and Blum [8].

All protocols in the HB family rely on the computational hardness of
the LPN problem.

The LPN Problem. In machine learning theory, this problem is de-
scribed in the uniform distribution model where the algorithm only has
access to a source of random samples. The LPN problem is the following:

Definition 1. (LPN Problem)
Let 〈·|·〉 denote the binary inner product. Let s be a random k-bit vector,
let ε ∈]0, 1/2[be a constant noise parameter, let Berε be the Bernoulli
distribution with parameter ε (so if ν ← Berε then Pr[ν = 1] = ε and
Pr[ν = 0] = 1− ε), and let As,ε be the distribution defined as{

a← {0, 1}k; ν ← Berε : (a, 〈s|a〉 ⊕ ν)
}

Let As,ε denote an oracle which outputs independent samples according
to this distribution. Algorithm M is said to (q, t,m, θ)-solve the LPNk,ε

problem if
Pr[s← {0, 1}k : MAs,ε(1k) = s] ≥ θ

and furthermore M runs in time at most t, memory at most m, and makes
at most q queries to its oracle.

This is the definition of Regev [13], and Katz et al. [10]. An alternative
(and equivalent) definition can be found for example in [9].

In the following, we define δ as δ = 1−2ε. This notation will be better
to analyze the complexity of the algorithms. For the classical parameters
ε = 1/4 and 1/8, δ is equal to 1/2 and 3/4.

The LPN problem is an average-case version of the following problem:
given a set of equations over GF(2), find a vector s that maximally satisfies
the equations. The latter problem has been first studied as the decoding of
a random linear code and has been proved to be NP -hard by Berlekamp
et al. in [1]. It has also be shown to be hard to approximate even within
a factor of two by Hastad in [7]: it is hard to find a s that satisfies more
than half of the optimum number of equations. In the LPN problem,
the instances (set of equations and values) maybe do not represent the
worst case of the problem, but studies of the average-case hardness of this
problem have been proposed in [8, 11, 2, 3, 13].

The HB Protocol. The Reader and the Tag share public values k, ε, u
and r, and a k-bit secret value s. To be authenticated by a Reader, the
Tag and the Reader repeat the following round many times:

Public parameters: k, ε, u, r

Secret key: s ∈ {0, 1}k

Tag Reader

a←−−−−−−−−−−−−−−− choose a in {0, 1}k
choose ν according to Berε

z = 〈a|s〉 ⊕ ν
z−−−−−−−−−−−−−−−→ check z

?
= 〈a|s〉

Fig. 1. Round identification of HB scheme

The round is repeated r times so that the Reader has good confidence
in the answers of the Tag. To this end, the protocol has a parameter u so
that if the number of errors is less than r · u, then the authentication is

successful. Typical values of ε are 1/4 or 1/8. This value cannot be chosen
too close to 1/2, otherwise the probability of rejecting an honest Tag
increases too much. If it is too close to 0, then you can find k independent
equations without errors easily.

A completeness error occurs when an honest Tag is rejected. We want
the probability of a completeness error, Pc to be less than 2−40.

A soundness error occurs when a Tag making random answers suc-
ceeds in authenticating itself. We want the probability of a soundness
error, Ps to be less than 2−80.

Given ε, u, and r, we can compute the value of Pc and Ps. Let

g(x, y) =
(

x

y

)x (
1− x

1− y

)1−x

.

The probabilities Pc and Ps can be expressed as sums of the tail of a
binomial distribution, and using Stirling’s formula, we obtain:

Pc ∼ g(u, ε)−r and Ps ∼ g(u, 1/2)−r.

For each ε, we compute the values of u and r such that r is as small
as possible, and the above conditions on Pc and Ps are true.

We gather the result in the following table:

Fig. 2. Values for r(ε)

ε 0.01 0.05 0.125 0.25 0.4 0.49

u 0.112 0.181 0.256 0.348 0.442 0.495

r 159 249 441 1164 7622 554360

In this protocol, secure only against passive attackers, an adversary
gets pairs of the form (a, 〈a|s〉 ⊕ ν) and must compute s.

There is a simple active attack against HB. Indeed, if an adversary
can change the challenge, it can send several times the same value a. Since
the answer is incorrect with probability ε � 1/2, majority votes enable
to recover 〈a|s〉. Then, k scalar products with independent a, allow to
entirely recover s.

The HB+ Protocol. Consequently, Juels and Weis in [9] have pro-
posed HB+, a protocol robust against active attacks in the detection-
based model. The idea is to use a blinding factor. The Tag and the Reader

now share two k-bit secret values s1 and s2. The protocol round is the
following:

Public parameters: k, ε, u, r

Secret key: s1, s2 ∈ {0, 1}k

Tag Reader

choose b in {0, 1}k b−−−−−−−−−−−−−−−→
a←−−−−−−−−−−−−−−− choose a in {0, 1}k

choose ν according to Berε

z = 〈a|s1〉 ⊕ 〈b|s2〉 ⊕ ν
z−−−−−−−−−−−−−−−→ check z

?
= 〈a|s1〉 ⊕ 〈b|s2〉

Fig. 3. Round identification of HB+ scheme

The security of this protocol relies on the LPN problem for s2. Indeed,
an active attacker can interact with the Tag in the first stage of his attack
and then tries to impersonate the Tag against a Reader. The attacker can
choose a = 0k, obtaining values of 〈b|s2〉 ⊕ ν. If he can solve a LPNk,ε

problem, he can recover s2. Then, once s2 is recovered, he must recover s1.
This can be easily done since the attacker is now faced to a HB protocol
that can be defeated by choosing the same a many times to know 〈a|s1〉
with high confidence.

Remark 1. The length of s1 is used in HB+ proofs only to guarantee
that the attack that consists to guess s1 is not efficient. But |s1| = 80 is
sufficient to guarantee 80 bits security.

Related Works. Gilbert, Robshaw, and Sibert [5] found a man-in-the-
middle attack against HB+ when the adversary can interact with the
Reader and the Tag during the same round. Consequently, Bringer, Cha-
banne and Dottax [4] proposed a new derived protocol, HB++, that is
resistant to a generalization of Gilbert et al. attack.

The security proof of HB+ of Juels and Weis has also been simpli-
fied and improved by Katz and Sun Shin [10], using a recent result of
Regev [13].

Our work. The best algorithm to solve the LPN problem had been
proposed by Blum, Kalai and Wasserman in [3], hereafter denoted as

the BKW algorithm. The parameter security k of the HB protocols has
therefore been estimated using the complexity of this algorithm. But,
Blum, et al. only give a high-level description of the BKW algorithm
and estimate the overall subexponential complexity of order 2O(k/ log k).
Juels and Weis in [9] propose practical parameters by giving an effective
estimate of the query and time complexity.

However, they have not seen that the BKW algorithm could be im-
proved. In this paper, we present in detail the BKW algorithm, analyze it
precisely and give its complexity. Then, we propose an improvement for
the final stage of the algorithm. Instead of throwing away almost all equa-
tions, we manage to use every one. Therefore, we need much less queries.
We also use a Walsh-Hadamard transform to speed up this phase. Then,
we give an heuristic improvement using Wagner’s method to solve the
Generalized Birthday Paradox of [14]. Finally, we compare the perfor-
mance of the BKW and our algorithm. Our algorithm yields an attack in
252 for the actual key-length of HB+ as proposed by Juels and Weis in
Crypto ’05, instead of the conjectured 280.

The next section is a full analysis of BKW. In the third one, we de-
scribe and prove an improved algoritm (LF1). In the fourth, we propose
an heuristic algorithm (LF2) that is more efficient in practice than LF1,
as will be shown in the last section, that is focused on implementation
techniques and complexity results.

2 The BKW Algorithm

The aim of this section is to describe the algorithm and the ideas behind.
We also make a detailed and precise analysis of the success probability,
using explicit Chernoff’s bounds that are recalled in appendix A. This
part is not contained in the previous papers.

2.1 Description

In the following, we denote by a and b two different parameters from a
and b. We use those very close notations since the first come from Blum
et al. in [3] and the second come from [10, 9].

To solve the learning parity with noise problem Blum, Kalai and
Wasserman in [3] use the following idea: by picking carefully a few well-
chosen vectors in a quite large set of samples and computing the xor of
these vectors, we can find basis vectors, i.e. ej where the jth bit is a one
and all other coordinates are null. First, we have to choose a parameter

a. Typical values run from 4 to 6. The main point is that we are able to
find 2a = O(k/ log k) vectors such that

ai1 ⊕ · · · ⊕ ai2a = ej . (1)

Then, since the number (2a) of vectors is small, the bias of the equa-
tions obtained is not too small. Consequently, if we have enough indepen-
dent combinations of vectors equals to ej , then a majority vote enables us
to recover the correct value of sj since 〈s|ai1 ⊕ · · · ⊕ ai2a 〉 = 〈s|ej〉 = sj .

We set b to be dkae. From now on, we will assume for simplicity that k =
a · b. The algorithm has to search enough such independent combinations
of the ai’s. To this end, it splits the k bits of ai into a blocks of b bits.
Then, according to the last b bits, the algorithm computes 2b equivalent
classes and classifies the ai according to these bits. In each class, it chooses
a vector at random, performs the xor with all other vectors of the same
class and finally throws away this vector. Therefore, at the end of this
step, in each equivalent class, the last b bits are zeroes. This procedure is
called recursively beginning at the last block until the second block. Then,
we keep only the equations that are of the form 〈s|ej〉 = ν. If there are
enough of such equations, the majority vote says something meaningful
about the value of sj with high probability. By applying this algorithm
for different j, we can recover all the bits of s.

2.2 Analysis

Now, we will analyse this algorithm. To this end, we present two lemmas
that will be helpful. The first lemma analyses the bias at the end of the
recursion steps, while the second lemma estimates the number of elements
and is useful to show an invariant of the algorithm.

Lemma 1. If (a1, ν1), . . . , (an, νn) are the result of n queries to As,ε, then
the probability that:

〈ai1 ⊕ . . .⊕ ain |s〉 = νi1 ⊕ . . .⊕ νin

is equal to 1+δn

2 .

This lemma is equivalent to lemma 3 of [3].

Proof. For n = 1, the lemma is trivially true. By induction, and using the
ai’s independence, we have:

Pr[〈ai1 ⊕ . . .⊕ ain |s〉 = νi1 ⊕ . . .⊕ νin] =
Pr[

〈
ai1 ⊕ . . .⊕ ain−1 |s

〉
= νi1 ⊕ . . .⊕ νin−1]Pr[〈ain |s〉 = νin]

+Pr[
〈
ai1 ⊕ . . .⊕ ain−1 |s

〉
6= νi1 ⊕ . . .⊕ νin−1]Pr[〈ain |s〉 6= νin]

=
1
2
(1 + δn−1)

1
2
(1 + δ) +

1
2
(1− δn−1)

1
2
(1− δ) =

1
2
(1 + δn).

ut

The following definition and lemma are equivalent to definition 2 and
lemma 4 in [3].

Definition 2. Let As,δ,i be the distribution defined as{
a← {0, 1}(a−i)b × {0}ib; ν ← Ber(1+δ)/2 : (a, 〈s|a〉 ⊕ ν)

}
Also, let As,δ,i denote an oracle which outputs independent samples ac-
cording to this distribution. We define an (s, δ, i)-set of size n as the result
of n queries to oracle As,δ,i.

Lemma 2. Assume we are given an (s, δ, i)-set of size n. We can in time
O(n) construct an (s, δ2, i + 1)-set of size n− 2b.

Proof. Let us call (a1, ν1), . . . (an, νn) the elements of the (s, δ, i)-set. Vec-
tors aj have their last ib coordinates equal to 0. We partition them with
regard to their value on the precedent b coordinates, obtaining a partition
with at most 2b classes. In each class, we pick a vector at random and
add it (modulo 2) to all the others vectors in that class, and then discard
it. Compiling the results for each class, and using lemma 1, we obtain a
(s, δ2, i + 1)-set of size (at least) n− 2b. ut

Consequently, according to lemma 1, at the end of the algorithm, the
bias of the equation 1 is δ−2a−1

where δ = (1− 2ε).
The next lemma give the number of combinations of equations that

must xored to the vector ej in order to have a high probability of success.

Lemma 3. Let Asi,δ,a be the distribution defined as{
ν ← Ber

(1+δ2a−1)/2
: si ⊕ ν)

}
Also, let Asi,δ,a denote an oracle which outputs independent samples ac-
cording to this distribution.

Then it is possible to guess the value of si with cδ−2a
calls to the oracle

with error probability bound by 2e−c/20.

Proof. We define that a sample ai, ν is compatible with the i-th bit of s
if si · ai = ν.

The idea for guessing the ith bit is to compute for si = 0 and si = 1,
the number of compatible samples and predict that si = b according to
the majority number of compatible samples.

Therefore, in order to upper bound the probability of failure of the
BKW algorithm, we have to upper bound the following probability where
xi = 1− si: Pr[xi has more compatible samples than si].

To this end, we upper bound the previous probability by the sum of
two more easily computable probabilities.

pr1 = Pr[xi is compatible with at least
1 + αδ2a−1

2
·N samples]

pr2 = Pr[si is compatible with at most
1 + αδ2a−1

2
·N samples]

If si is correct, then it is compatible with ai, ν with probability 1+δ2a−1

2
and otherwise with probability 1/2. We will justify the last assertion later.
Let us denote by N the number of equations cδ−2a

. The random variable
Xj for j = 1 to N , is equal to 1 if si is compatible with the jth sample,
and 0 otherwise.

Bounding pr2. The expectation of Xj , E[Xj] = Pr[Xj = 1] = 1+δ2a−1

2

We sum these random variables and denote by X their sum, X =
∑N

j=1 Xj ,

and so E[X] = N ·E[Xj] = N · 1+δ2a−1

2 .

pr2 is equal to Pr[X ≤ (1+αδ2a−1
)(N/2)] which can be bounded using

Chernoff bounds (cf. appendix A). To this end, we have (1 −∆)E[X] =
(1 + α · δ2a−1

) · (N/2).
To determine ∆, we divide the right-hand side by E[X], and we get

1−∆ =
1 + α · δ2a−1

1 + δ2a−1 ≈ 1− (1− α) · δ2a−1

and so ∆ = (1− α) · δ2a−1
.

pr2 ≤ e−(cδ−2a
/4)·(1+δ2a−1

)·(1−α)2δ2a−1·2 ≤ e−(c/4)(1−α)2(1+δ2a−1
)

≤ e−(c/4)(1−α)2

Bounding pr1. In order to upper bound pr1, we use the fact that for
a bad guess, the expectation E[X] is equal to N

2 , and the theorem 3 in
appendix A. We have

pr1 ≤ Pr[X > (1 + ∆)µ] ≤ e−N∆2/(3·2)

Here, ∆ = α · δ2a−1
and as N = cδ−2a

, then N∆2 = cα2 and

pr1 ≤ e−cα2/6

Pr[xi · ai = ν|xi = 1 − si] = 1/2. It remains to justify that when si is
not correct, then si · ai = ν with probability 1/2. Let (a, ν) ← As,ε and
xi = 1− si. We want to show that Pr[xi · ai = ν] = 1/2. To this end, we
split the event into two incompatible events:

Pr[xi · ai = si · ai] Pr[si · ai = ν] + Pr[xi · ai 6= si · ai] Pr[si · ai 6= ν]
= Pr[(xi ⊕ si) · ai = 0]Pr[si · ai = ν]

+Pr[(xi ⊕ si) · ai 6= 0]Pr[si · ai 6= ν]
= (1/2) · (Pr[si · ai = ν] + Pr[si · ai 6= ν])
= 1/2

since the first equation comes from the fact that ai and ν are indepen-
dent and second equation as since xi 6= si and ai is taken uniformly, the
probability that ai = 0 is exactly 1/2.

Choosing α = 3−
√

6 finishes the proof. ut

The main ingredient of the algorithm is that with a small number of
vectors, a combination of such vectors yields a basis vector. If the number
required is too high, then the bias of equation (1) is too small and the
number of queries becomes very large.

We are now ready to prove the theorem that gives the complexity of
the BKW algorithm.

Theorem 1. For k = a · b, the BKW algorithm (q = 20 · ln(4k) · 2b ·
δ−2a

, t = O(kaq),m = kq, θ = 1/2)-solves the LPNk,ε problem .

Proof. The original queries form a (s, δ, 0)-set of size q. Using lemma 2
(a − 1) times, we obtain a (s, δ2a−1

, 0)-set of size q − (a − 1)2b. Keeping
only the equations with one non-zero coordinate, then using lemma 3, we
obtain one bit of s with error probability at most 1/(2k). Repeating this
for different bits of s, we find s with probability at least 1/2. ut

3 An Improved Algorithm: LF1

This algorithm is a variation of the BKW algorithm. In the BKW algo-
rithm, the last step wastes a lot of time and queries. The idea is to deal in
the last step with equations over b bits instead of one. Moreover, we will
use the Walsh-Hadamard transform to quickly find the best possibility
over b bits.

This algorithm does not use any heuristics. This section is devoted
to prove the correctness and the performances of this algorithm. It needs
lots of queries (less than BKW, though).

We now state our main theorem:

Theorem 2. For k = a · b, there is an algorithm that
q = (8b + 200) · δ−2a

+ (a− 1)2b, t = O(kaq),m = kq + b2b, θ = 1/2
solves the LPNk,ε problem.

Proof. For any b-bit vector x, we say that a sample ai, ν is x-compatible
if 〈ai|x〉 = ν. The q inital queries constitues a (s, δ, 0)-set of size q. By
iterating lemma 2, we obtain an (s, δ2a−1

, a)-set S of size q− (a−1) ·2b =
N = (8b + 200)δ−2a

.
We now try every possibility for the first b bits and choose the one

that is compatible with the greatest number of examples. The naive time
complexity is 22b, but using a fast Walsh-Hadamard transform reduces it
to b2b.

Using the same analysis as for the BKW algorithm, except that we
choose α = 3/4, we get that the probability of failure is less than

e−200/64 + 2be−(8b+200)9/96 ≤ 1/(2a).

Repeating this a times allows us to recover all the bits of s with
probability at least 1/2. ut

In this section, we have shown that we can lower the query complexity
to q = (a− 1)2b + (8b + 200)δ−2a

. Time and memory complexity remains
comparatively small.

4 A Heuristic Algorithm: Computing all sums: LF2

Following [14], instead of picking a vector in each class (cf. proof of 2), we
could compute the sum of any couple of class elements. Unfortunately, we
lose the independence that is necessary to use Chernoff bounds. However,

linear relations between equations are not numerous and our implemen-
tation confirms this phenomenon has no visible effect on the success of
the algorithm.

This also allows us to overcome a lack of queries: if there are only
2b′(b′ > b/2) queries available, the first partitioning is made according to
the last b1 bits where b1 = 2b′−b−1.5. And for all the subsequent phases,
we will have 2b equations. Bounding the number of requests was an easy
and effective defence against BKW and LF1, but it does not work against
this new version.

For example, we succeed in breaking a LPN problem with k = 66, ε =
1/4 with 10000 queries (10 authentications) with 1 GB memory in 30
seconds.

5 Implementation

We want to do the partitioning, using only small additional memory and
(almost) linear time. First, we divide our memory in 2b/2 packs of size
3.2b/2. We begin at the first equation in the first pack. Its last b/2 bits
give the address of the pack where we send it. Here, it takes the place
of an other equation, which is sent to the pack corresponding to its last
b/2 bits, and so on. It could happen that a pack is full. In this case, the
equation is lost. But few equations are lost in the process, and very few
if the packs are a little bigger.

We now use an array of size 2b/2, each case being able to contain 10
equations. We put the equations of the first pack in this array, according
to the values of bits 2b/2 + 1 to 2b(in reverse order). We could afford ten
equations that have the same value (the average being 3).

Then we compute the xor between the first and the others for LF1,
or the xor of all couples of equations in the same case for LF2, and put
our new equations back to the pack.

We make an implementation in C, and make it run on a Pentium 4,
with a CPU frequency of 3 GHz, and a little less than 1 GB of memory.

For ε = 1/4, using 1 GB of memory, our implementation breaks a
LPN problem with k = 99 (we split the equations in four parts of sizes
24,24,27,24) with LF2, instead of a theoretic k = 96 with LF1. But we
were able to break only a k = 92 with our implementation of LF1 because
we need additional memory for pointers to equations. In both cases, the
computing time was around 30 seconds.

5.1 Accurate complexity

The factor 8b + 200 in the complexity is a rough upper bound. It can
often be replaced by 25. On the other hand, reading and writing in a large
memory (1 GB for example) could take tens of cycle per 32-bit int. If one
uses a hard drive’s memory, it will be a lot worse, even if one programs
very carefully to make almost only sequential access to the drive.

5.2 Performances of our algorithm

First, we give a comparison between BKW and LF1.
For ε = 1/4, we have the following results:
The value given is the maximum value for k you could hope to break

with the given memory. The needed time is roughly the time for sorting
the memory a times.

Memory available BKW LF1
1 GB 39 96

252 bytes 104 225
280 bytes 180 426

The following tables contains a more exhaustive study of LF1. It
should be read in the following way: It takes 246 bytes of memory to
solve a LPN problem with k = 256 and ε = 1/8.

ε\k 64 128 256 512 768 1024
0.01 13 19 33 56 74 98
0.05 16 25 40 67 90 118
0.125 18 29 46 77 113 131
0.25 24 34 55 89 131 150
0.4 28 45 66 106 157 174
0.49 33 55 88 130 192 208

We suggest to take a safety margin, in order to be able to resist to
small improvements like LF2. We have explored a variety of other im-
provements, but none of them gave substantial results.

We recommend to use k = 512 to achieve 80 bits security for ε = 1/4.
Choosing the value of ε depends upon a compromise between the key size
and the computing time for an authentication. Using tables 2 and the
above one should help. The couple k = 768, ε = 0.05 with r = 249 seems
quite good.

6 Conclusion

In this article, we give a better algorithm to solve the LPN problem, thus
breaking the HB+ protocol with suggested size parameters. However, with
a moderate increase of the key length, our attack becomes infeasible. Our
algorithm gives a more precise idea of the complexity of the LPN problem.

On the other side, remark 1 allows to decrease the length of one of
the secret parameters.

So, summing everything, we have shown that to achieve 80 bits se-
curity, HB+ should be used with |s1| = 80 and |s2| = 512 instead of
|s1| = |s2| = 224. The overall complexity of this protocol remains almost
unchanged.

Proving algorithm LF2 is in our opinion quite difficult although fea-
sible.

Acknowledgment. We would like to thank Louis Granboulan for
various discussions and suggestions about this work.

References

1. E. R. Berlekamp, R. J. McEliece, V. Tilborg. On the Inherent Intractability of
Certain Coding Problem. IEEE Transactions on Information Theory 24, 1978,
pp. 384-386.

2. A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic Primitives
Based on Hard Learning Problems. Crypto ’93, pp. 278-291, LNCS 773, Springer-
Verlag, 1994.

3. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant Learning, the Parity Prob-
lem, and the Statistical Query Problem Journal of the ACM 50,4, July 2003,
pp. 506-519.

4. J. Bringer, H. Chabanne, and E. Dottax. HB++: A Lightweight Authentica-
tion Protocol Secure againt Some Attacks. IEEE International Conference on
Pervasive Services, Workshop on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing, SecPerU, 2006 Available at http://eprint.iacr.org/

2005/440.
5. H. Gilbert, M. Robshaw, and H. Sibert. An Active Attack Against HB+ -

A Provably Secure Lightweight Authentication Protocol. Available at http:

//eprint.iacr.org/2005/237.
6. O. Goldreich and L. Levin. A Hard Predicate for all one-way functions, STOC

’89, pp. 25-32, ACM 1998.
7. J. Hastad. Some Optimal Inapproximability Results, STOC ’97, pp. 1-10, ACM

1997.
8. N. Hopper and M. Blum. Secure Human Identification Protocols ASIACRYPT

’01, pp. 52-66, LNCS 2248, Springer-Verlag, 2001.
9. A. Juels and S. Weis. Authenticating Pervasive Devices with Human Proto-

cols Crypto 2005, pp. 293-308, LNCS 3621, Springer-Verlag, 2005. Updated ver-
sion available at: http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/
publications/pdfs/lpn.pdf.

10. J. Katz and J. Sun Shin. Parallel and Concurrent Security of the HB and HB+
Protocols. Eurocrypt ’06, pp., LNCS 4004, Springer-Verlag, 2006.

11. M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM,
45(6): 983-1006, 1998.

12. M. Mitzenmacher and E. Upfal. Probability and computing, Cambridge Univer-
sity Press, 2005

13. O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography STOC 2005, pp. 84-93, ACM 2005.

14. D. Wagner. A Generalized Birthday Problem Crypto 2002, pp. 288-303, LNCS
2442, Springer-Verlag, 2002.

A Chernoff’s Bounds

We need the following Chernoff’s bounds that have been proved in [12].

Theorem 3. Let X1, . . . , Xn be n independent Bernoulli trials such that
Pr(Xi) = p. Let X =

Pn
i=1 Xi and µ = E[X] = n · p. Then, the following

Chernoff bounds hold:

1. for 0 < ∆ ≤ 1, Pr(X ≥ (1 + ∆)µ) ≤ e−µ∆2/3

2. for 0 < ∆ < 1, Pr(X ≤ (1−∆)µ) ≤ e−µ∆2/2

