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Abstract. In this paper we describe a method to compute with encrypted rational num-
bers. It is well-known that homomorphic schemes allow calculations with hidden integers,
i.e. given integers x and y encrypted in E(x) and E(y), one can compute the encrypted
sum E(x + y) or the encrypted product E(kx) of the encrypted integer x and a known
integer k without having to decrypt the terms E(x) or E(y). Such cryptosystems have
a lot of applications in electronic voting schemes, lottery or in multiparty computation
since they allow to keep the privacy of the terms and return the result in encrypted
form. However, from a practical point of view, it might be interesting to compute with
rationals. For instance, a lot of financial applications require algorithms to compute with
rational values instead of integers such as bank accounts, electronic purses in order to
make payments or micropayments, or secure spreadsheets. We present here a way to solve
this problem using the Paillier cryptosystem which offers the largest bandwidth among
all homomorphic schemes. The method uses two-dimensional lattices to recover the nu-
merator and denominator of the rationals. Finally we implement this technique and our
results in order to build an encrypted spreadsheet showing the practical possibilities of
the homomorphic properties applied on rationals.

1 Introduction

A lot of financial applications use calculations such as sums of expenses, or multi-
plications by a public constant (rates). It is easy to show that electronic purses or
bank accounts have to be encrypted from the users or clients point of view whereas
some values can be public such as interest rates in order to update accounts at
the end of each month. Therefore, we need to add or subtract two encrypted ex-
penses (rational numbers) or to multiply encrypted numbers by a public rational.
For example, if a bank wants to keep secret the accounts of its clients to the
bank employees, a safe way consists in encrypting the bank accounts. There are
two problems to solve : the first challenge is to encode rationals r such that the
homomorphic properties of the cryptosystems still hold, and the second challenge
is to reconstruct the numerator and denominator of the encrypted rational when
recovery of the rationals is needed.

The basic idea to reduce the problem to compute with integers does not work.
Indeed, one can think to multiply each value by 105 before encrypting them,
provided we allow a precision of 10−5. In this case, one can perform additions



but not multiplications by a scalar. Consequently, one must use an encoding that
respect both the multiplication and addition.

We can also remark that the encoding of the numerator and the denominator
does not provide a valid solution. Indeed, let us consider the following encoding of
the rational a/b as [E(a), E(b)]. If we have a multiplicative homomorphic scheme as
the plain-RSA, then the multiplication of two rationals is a trivial task. However,
the addition of two rationals is not possible, and furthermore, the addition is the
more useful operation in spreadsheet.

1.1 Related Works

From a theoretical point of view, it is important to securely compute with en-
crypted data. Computing with hidden values or securely doing mathematical
operations such as comparison of two encrypted numbers are deep operations in
cryptography. The latter is known as the millionaire problem. It has been ex-
tensively studied to build efficient auction protocols. For example, at the last
Financial Crypto, Baudron and Stern [3] have devised an algorithm to solve this
problem. The problem is the following : given a set of encrypted bids {E(vi)}i,
find max(E(vi)) without decrypting the bids. The important point of the Baudron
and Stern algorithm is that the calculation is done without interactions between
the participants.

The former problem of “computing with encrypted data” has been studied
by numerous authors in the past twenty years. Sander, Young and Yung have
proposed in [20] a protocol that non-interactively computes any function in NC1.
This is an important result as it is an open problem to reduce the round of
computation in general multiparty computation protocols. It is a particular case
of the more general classical problem : Alice has an input x and Bob has circuit
C. Alice should known the value C(x) but nothing else “substantial” about C.
Bob should learn nothing else “substantial” about Alice’s input x. In our case,
the function C can be learnt by anyone. Several papers more extensively discuss
secure circuit evaluation such as [1].

Informally a cryptosystem is algebraically homomorphic if given the encryp-
tion of two plaintexts x and y, one can construct the encryption of the plaintexts
x + y and xy in polynomial time without revealing x or y. The existence of
these schemes has been left open. In 1978, Rivest, Adleman, and Dertouzos [19]
suggested investigating encryption schemes with additional homomorphic prop-
erties since they allow to compute with encrypted data. In 1991, Feigenbaum
and Merritt [11] directly addressed algebraic homomorphic schemes of the form
stated above. In [5], Boneh and Lipton showed that deterministic algebraically
homomorphic encryption schemes over ring ZN can be broken in subexponential
time under a (reasonable) number theoretic assumption. In their argument, it is
essential though, that the scheme be deterministic.
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Homomorphic cryptosystems provide an efficient way to solve the “Secure
Function Evaluation” Problem for some mathematical operations. In particular,
we focus here on, (×,+)-homomorphic schemes such as [4, 15–17], which are prob-
abilistic and enable to perform addition of two encrypted values or multiplication
by a known integer. Homomorphic schemes were proposed to solve more efficiently
the problem of computing with integers under computational assumptions. These
special kind of public-key cryptosystems have applications in electronic schemes
or lotteries [4, 9, 12, 2]. These algorithms can also be used to build efficient mul-
tiparty computation protocols with reduced communication complexity [8].

Finally, Poupard and Stern used lattices and rationals to build a key recovery
system in [18].

1.2 Our Results

In this paper, we study a new version of a cryptocomputer. Instead of searching
cryptosystems which only allow to perform + and × operations over the integers,
we cover additions and multiplications by a scalar of bounded rational numbers.
We can thus construct an encrypted spreadsheet with bounded rationals and
analyze its implementation. A limitation of our paper is to use bounded rationals.
In fact, we need to recover the encoded rationals using a lattice and the output of
the Gauss algorithm depends on the size of the shortest vector. However, thanks
to the large bandwidth of Paillier scheme, a large number of operations can be
done.

1.3 Notations and Definitions

Throughout this paper, we use the following notation: for any integer N ,

– we use ZN to denote the set of the integers modulo N ,
– we use Z

∗
N to denote the multiplicative group of invertible elements of ZN ,

– we use ϕ(N) to denote the Euler totient function, i.e. the cardinality of Z
∗
N ,

– we use λ(N) to denote Carmichael’s lambda function defined as the largest
order of the elements of Z

∗
N .

It is well known that if the prime factorization of an odd integer N is
∏η

i=1 qi
fi

then ϕ(N) =

η∏
i=1

qi
fi−1(qi − 1) and λ(N) = lcmi=1...η

(
qi
fi−1(qi − 1)

)
.

1.4 Outline of the paper

In section 2 we recall preliminary tools such as the Paillier cryptosystem, homo-
morphic properties and the Gauss algorithm. Then in section 3, we show how to
encode and decode rationals bounded by integers modulo N . Next, we describe
additions and products in section 4. Finally, we describe practical parameters and
our spreadsheet application.
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2 Preliminary tools

2.1 The Paillier cryptosystem

Various cryptosystems based on randomized encryption schemes E(M) which en-
crypt a message M by raising a basis g to the power M have been proposed so
far [13, 4, 7, 23, 15–17]. Their security is based on the intractability of computing
discrete logarithm in basis g without a secret element, the secret key. Given this
secret as a trapdoor, the computation becomes easy. We call those cryptosys-
tems trapdoor discrete logarithm schemes. As an important consequence of this
encryption technique, those schemes have homomorphic properties that can be
informally stated as follows:

E(M1 +M2) = E(M1) · E(M2) and E(k ·M) = E(M)k

Paillier has presented three closely related such cryptosystems in [17]. We only
recall the first one. This cryptosystem is based on the properties of the Carmichael
lambda function in Z

∗
N2 . We state its main two properties: for any w ∈ Z

∗
N2 ,

wλ(N) = 1 mod N, and wNλ(N) = 1 mod N2

Key Generation Let N be an RSA modulus N = pq, where p and q are prime
integers. Let g be an integer of order Nα modulo N2. The public key is pk = (N, g)
and the secret key is sk = λ(N).

Encryption To encrypt a message M ∈ ZN , randomly choose x in Z
∗
N and

compute the ciphertext c = gMxN mod N2.

Decryption To decrypt c, compute M =
L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N where the

L-function takes as input an element from the set SN = {u < N2|u = 1 mod N}
and computes L(u) = u−1

N
.

The integers cλ(N) mod N2 and gλ(N) mod N2 are equal to 1 when they are
raised to the power N so they are N th roots of unity. Furthermore, such roots
are of the form (1 +N)β = 1 + βN mod N2. Consequently, the L-function allows

to compute such values β mod N and L((gM)
λ(N)

mod N2) = M · L(gλ(N) mod
N2) mod N .

One can note that g can be set to 1 + N in order to make encryption more
efficient since E(m,x) = (1 +mN)xN mod N2.

Security. It is conjectured that the so-called composite residuosity class problem,
that exactly consists in inverting the cryptosystem, is intractable. This problem is
easier than inverting RSA with public exponent N modulo N , but it is unknown
whether the two problems are equivalent. The semantic security is based on the
difficulty to distinguish N th residues modulo N2. We refer to [17] for details.
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2.2 The Gauss algorithm

The Gauss algorithm solves the problem of finding a basis in a 2-dimensional
lattice: it computes a basis achieving the two first minima. One can prove that the
algorithm outputs such basis in polynomial time [14, 22]. Vallée in [22] has proved
that the number of iterations is in the worst case 3 + log1+

√
2 max(‖u‖, ‖v‖), and

the number of iterations is constant on average [10]. Finally, let (u′, v′) be the
first vector of the reduced basis. It is the shortest vector in the lattice; therefore
gcd(u′, v′) = 1.

Input: a basis (u,v) of a lattice L
Output: a reduced lattice basis (u,v)
if ‖u‖ < ‖v‖, then interchange u and v

do

r← u− qv where q =
⌊
〈u,v〉
‖v‖2

⌉
u← v
v← r

until ‖u‖ ≤ ‖v‖
return (u,v)

Where bxe represents the integer closest to the real x.

3 Encoding and decoding bounded rationals by integers
modulo N

In the Paillier cryptosystem presented above, the message M to be encrypted
should be an integer modulo N . In this section we explain how a bounded rational
t can be encrypted and recovered using the Paillier cryptosystem.

3.1 Encoding rationals in integers

Encoding of bounded rational. Let a bounded rational number t = r/s where
r, s ∈ Z, s 6= 0, −R < r < R, 0 < s < S gcd(r, s) = 1, and gcd(s,N) = 1 since
s < p and s < q. We denote by t′ the representation of t in ZN which is defined
as :

t′ = rs−1 mod N (1)

The integer s−1 exists since gcd(s,N) = 1. By calculating rs−1 mod N , an
integer t′ mod N is obtained which can be used for encrypting the rational t with
the Paillier cryptosystem.

One can note that this encoding of rational respects the classical operations,
namely if E(r) is a encrypted rational and E(i) an encrypted integer, then E(r)×
E(i) = E(r + i) and E(r)/E(i) = E(r − i).
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Decoding of bounded rational. When retrieving the message information
with the decrypting formula, the resulting message M equals t′ mod N , i.e.
rs−1 mod N .

Now the rational t must be recovered from rs−1 mod N . Recovery consists in
fact in recovering r < R and s < S from rs−1 mod N . Recovery of r and s and
thus of t can be correctly done by using two-dimensional lattice theory.

A lattice is a subgroup of some power Z. It can be represented by a basis, two
non-colinear vectors of the lattice.

Consider the two-dimensional lattice L defined as:

L : ∀(x, y) ∈ Z
2, x = yt′ mod N (2)

The lattice L could then also be defined as:

L : ∀(x, y) ∈ Z, sx = yr mod N (3)

From formula 2 can be deduced that the vectors (N, 0) and (t′, 1) form a basis
of the two-dimensional lattice L.

From formula 3 can be deduced that the vector (r, s) also is a vector of the
lattice L. Moreover, in order to obtain optimal values for r and s, the vector
(r, s) should be a minimal vector of the lattice L. The shortest vector can be
computed from the original basis and thus from t′ and N by using the algorithm
of Gauss [6]. The first vector of the basis corresponds to this rational. Therefore,
we know that gcd(r, s) = 1 and we obtain numerator and denominator that are
coprime.

3.2 Decoding rationals in integers

In the above section we showed how lattice theory can be used to encode and
recover rationals using the Paillier cryptosystem. In this section, we prove the
unicity of the recovered solution (r, s) if the conditions of Theorem 1 are respected.

Theorem 1. If t′ = rs−1 mod N , −R ≤ r ≤ R and 0 < s ≤ S, then the
algorithm of Gauss uniquely recovers r and s provided 2RS < N .

Proof. We first prove that there cannot exist two linearly independent solutions
in the lattice L generated by (N, 0) and (t′, 1). Let (r1, s1) and (r2, s2) with
−R ≤ ri ≤ R and 0 < si ≤ S two different solutions. Such (r1, s1) and (r2, s2)
would form a basis of a sub-lattice L′ of the lattice L. The determinant N of the
basis of L divides the determinant of the basis of L′:

N |det(L′) where det(L′) =
r1 s1

r2 s2
= |r1s2 − r2s1|

Furthermore:

|r1s2 − r2s1| ≤ 2RS < N
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by assumption.
Therefore,

N |det(L′) < N (4)

From formula 4, one can conclude that the determinant of the basis L′ equals
0 and therefore the vectors (r1, s1) and (r2, s2) are colinear and cannot form a
basis.

Thus, if the Gauss algorithm outputs (r, s) of the proper form, we are done.
Otherwise, we have to argue in a more subtle manner and consider the lattice
L̃ consisting of pairs (Sx,Ry) with (x, y) ∈ L. The determinant of this lattice
is ∆ = SRN and its shortest vector is of norm ≤

√
2RS (coming from the

encrypted rational). As before, it can be shown that there cannot be two linearly
independent vectors of norm

√
2RS since they would generate a sublattice with

determinant 2R2S2 < ∆. Thus the Gauss algorithm run on L̃ outputs the correct
rational number.

In order to recover the rational we need to restrict the rational to have nu-
merator smaller than R and denominator smaller than S. Such numbers will be
hereafter called bounded rationals.

4 Addition and multiplication with rationals

Applying Theorem 1, the implications for the homomorphic addition and product
properties of the Paillier cryptosystem can be computed.

4.1 Addition

Lemma 1. The algorithm of Gauss uniquely recovers the sum of ` terms of the
form ris

−1
i with −R ≤ ri ≤ R and 0 ≤ si ≤ S if 2(`+ 1)RS2`−1 < N .

Proof. Adding r1s
−1
1 , r2s

−1
2 , . . . , and r`s

−1
` where −R ≤ ri ≤ R and 0 ≤ si ≤ S

for i = 1, . . . , `, results in:

r1
s1

+
r2
s2

+ . . .+
r`
s`

=
r1
∏

i=2,... ,` si + r2
∏

i=1,... ,`,i 6=2 si + . . .+ r`
∏

i=1,... ,`−1 si∏`
i=1 si

(5)

So with |r1
∏

i=2,... ,` si+r2
∏

i=1,... ,`,i 6=2 si+ . . .+r`
∏

i=1,... ,`−1 si| ≤ `RS`−1 and

|
∏`

i=1 si| ≤ S`, theorem 1 implies that:

2`RS2`−1 < N (6)
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4.2 Multiplication

When we need to multiply a bounded rational t = r/s by a known bounded
rational t′ = r′/s′, we transform t′ into an integer in ZN by computing k =
r′ × (s′−1 mod N) mod N . Then, we raise E(r × (s−1 mod N)) to the power k.

Lemma 2. The algorithm of Gauss uniquely recovers the product of two factors
of the form ti = ris

−1
i , ri and si are integers and −R < ri < R and 0 < si < S,

if 2R2S2 < N . If ` multiplications are done, the bound is 2R`S` < N .

Proof. Since the numerator is r1r2 < R2 and the denominator s1s2 < S2, we need
to have 2R2S2 < N . It is easy to show thanks to theorem 1, when we multiply `
bounded rationals, that

2(RS)` < N (7)

5 Choice of parameters

Formula 6 and formula 7, respectively for the addition and product operations,
show the limitations of the recovery method. Once the limit is reached, the ho-
momorphic properties cannot be used anymore: a decryption and encryption step
is needed before processing more operations.

For the addition can be concluded that the S parameter should be kept as small
as possible in order to optimize the number of computations on ciphered data. For
the product the numerator and denominator of the known rational should be kept
as small as possible in order to optimize the number of computations on ciphered
data. Indeed, before the numerator or denominator of the encrypted rational will
be larger than the bound R or S, the spreadsheet must decrypt the rational,
approximate it by a rational which have smaller numerator and denominator.
We call this phase the “canonical form algorithm”. One can use the continued
fraction algorithm to approximate the decrypted rational by a bounded rational
with smaller numerator and denominator. One can see that if we fix |N | = 1024,

R = 109 < 230 and S = 105 < 217, one can only accept ` < b |N |−|R|−1
2|S| c + 1 ≈ 30

additions or ` < b |N |−1
|R|+|S|c ≈ 21 multiplications. This impacts the number of

additions and multiplications that can be executed before the running of the
canonical form algorithm.

A way to increase the number of possible additions or multiplications before
runnig the canonical form algorithm is to use a cryptosystem with larger band-
width. To this task, one can use a modulus with larger size or the technique of
Damg̊ard and Jurik [9] in order to increase the size of the bandwidth, N s−1, using
the same modulus N with computations done in N s where s is some integer. This
latter technique allows us to multiply the number of additions or multiplications
by a factor (s− 1).
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Finally, one can note that the bounds that we compute are not very tight.
In practice, we can perform more additions or multiplications since the Gauss
algorithm works nicer than the provable bounds.

6 Practical implementation

The method presented in the above sections has been successfully implemented
in a Microsoft Excel 2000 spreadsheet running under Microsoft Windows 2000.
This spreadsheet illustrates the properties as explained in the paper throug com-
putations which encrypted data.

Excel does not support computations with large numbers as required by the
Paillier cryptosystem. In order to solve this problem, the spreadsheet is only
a graphical interface showing the process and the computation results. This is
realized by implementing some self-designed buttons in the spreadsheet to which
Visual Basic commands are associated. Those Visual Basic commands perform
three different steps:

1. Data from specific spreadsheet cells is put in some ASCII files;
2. One or several executables are started in the Microsoft Windows 2000 envi-

ronment;
3. The results of the executables which is also stored in ASCII files is retrieved

and shown in the spreadsheet.

The executables in step 2 are compiled with Borland C++ 5.0 for Windows
functions. In order to make the necessary computations with large numbers, the
NTL library [21] of C++ functions is used. One of the biggest problems in the
spreadsheet is to prevent Excel from starting step 3 before step 2 has finished
as those steps are independent processes for the Windows Operating System. In
order to prevent this and make the spreadsheet run smoothly, some timers have
been added in the Visual Basic code.

Although the chosen method is not the most efficient and even looks a little
cumbersome, it makes both parts of the implementation (the graphical interface
and the computations) independent not only from each other but also from the
operating system, thus facilitating their reuse in future projects.

The spreadsheet consists of four actual sheets:

1. The addition homomorphic property of the Paillier cryptosystem with inte-
gers;

2. The product homomorphic property of the Paillier cryptosystem with integers;
3. The addition homomorphic property of the Paillier cryptosystem with ratio-

nals and their recovery;
4. The limitation of the recovery method for the additional homomorphic pro-

perty of the Paillier cryptosystem.

9



The spreadsheet confirms the results from the paper and illustrates the practi-
cal possibilities of the presented method to use the Paillier cryptosystem in order
to compute with encrypted data consisting of rational numbers.

7 Conclusion

We proposed a method to use the Paillier cryptosystem and its homomorphic
properties with rational numbers. The recovery of the numbers make use of two-
dimensional lattice theory and especially the Gauss algorithm. Furthermore, we
showed the conditions which have to be checked in order to uniquely recover the
rationals uniquely. We implemented the method in a practical spreadsheet which
makes computations on ciphered rationals and illustrates the limitations.

An open problem is to find a method to round or truncate the encrypted
computation results, resetting the size of the parameters on the way.
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