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Département d’Informatique 45, rue d’Ulm

75230 Paris cedex 05, France
Pierre-Alain.Fouque@ens.fr,

Louis.Granboulan@ens.fr, Jacques.Stern@ens.fr

Abstract. In this paper we propose a novel cryptanalytic method against
multivariate schemes, which adapts differential cryptanalysis to this set-
ting. In multivariate quadratic systems, the differential of the public key
is a linear map and has invariants such as the dimension of the kernel.
Using linear algebra, the study of this invariant can be used to gain in-
formation on the secret key. We successfully apply this new method to
break the original Matsumoto-Imai cryptosystem using properties of the
differential, thus providing an alternative attack against this scheme be-
sides the attack devised by Patarin. Next, we present an attack against
a randomised variant of the Matsumoto-Imai cryptosystem, called PMI.
This scheme has recently been proposed by Ding, and according to the
author, it resists all previously known attacks. We believe that differential
cryptanalysis is a general and powerful method that can give additional
insight on most multivariate schemes proposed so far.

1 Introduction

The design of efficient and secure cryptosystems is a hard task. Many
alternatives to the traditional public key cryptosystems (RSA, ElGamal)
have been proposed so far but few of them are considered secure. An
interesting line of research is based on multivariate quadratic polynomials
over a finite field. This line of research has been initiated by Matsumoto
and Imai [12]. These systems are attractive since the underlying problem
is known to be NP-complete and the decryption algorithm is more efficient
than the RSA algorithm.

The original cryptosystem of Matsumoto and Imai (MI or C∗) has
been broken by Patarin [13] who has also proposed various techniques
that protect against this attack [15, 14]. A generalisation of MI, called
Hidden Field Equations (HFE) [17], has higher security, but it has nev-
ertheless been broken by Kipnis and Shamir [11]. More efficient attacks



were proposed by Courtois et al. in [5, 6] and culminated with Faugère
and Joux attack and the use of Gröbner bases in [9].

Variants of the original MI scheme remain interesting because they
achieve better performance than variants of HFE. The main variants of
MI that resist the attack by Patarin are on one hand, the Minus method
which consists in discarding a few polynomials in the public key, and
on the other hand the Minus-Plus method, which proposes to discard
some polynomials and to add a few variables. These methods use exter-
nal perturbation of the MI scheme, since variables are removed after the
application of the exponentiation function.

Recently, Ding [7] proposed a new variant of the MI cryptosystem
using some internal perturbation, which occurs before applying the ex-
ponentiation function. He quickly analyses its proposal against all known
attacks on multivariate schemes, and claims that it is immune against
such attacks. The new scheme is nearly as efficient as the original MI and
the author gives some arguments in order to show that its scheme, called
Perturbated MI (PMI), is a more secure extension than the MI Minus
and MI Minus-Plus method.

1.1 Our Results

In this paper, we describe a new technique which is extremely powerful
and that could presumably be used to break other multivariate schemes.
In order to illustrate the power and generality of this method, we first
propose a new attack on the original MI scheme and next describe how
it can be used to mount an attack against the PMI cryptosystem.

The key point of our attack is that in the case of quadratic polyno-
mials, the differential of the public key is a linear map and its kernel or
its rank can be analysed to get some information on the secret key. For
example, in the PMI scheme, we show that the dimension of the kernel
can be used to identify elements that cancel the perturbation. In fact, we
design a one-sided error recogniser for the language of elements that are
not in the kernel of the perturbation. From this test algorithm, we design
two algorithms to reconstruct the kernel. These algorithms are of inde-
pendent interest. With the first method, the complexity of the attack is a
precomputation of order O(nq3r + n6qr), which can be upperbounded by
249 with the proposed parameters in [7], and O(n3× qr× qgcd(`,n)), which
is of order 236 binary operations. Finally, this attack works for scheme
over finite fields of characteristic 2 which are the main structure for effi-
ciency reasons and for MI and PMI this is always the case as we will see.
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In the case of the original MI cryptosystem, we use elements in the kernel
of the transpose of the differential in order to propose a new attack. We
actually prove a bilinear relation between the ciphertext and the kernel
vector. Thus, the kernel allows to recover the plaintext by solving a linear
system.

1.2 Related Works

Differentials have already been successfully applied to break multivariate
schemes such as the Minus transformation of the original Matsumoto-
Imai, or the SFLASH signature scheme or the “2R” scheme proposed
by Patarin [14, 16, 10, 8]. Our work gives a better insight by bringing a
systematic use of the geometric properties of the differential.

1.3 Organisation of the paper

In section 2 of this paper, we describe the MI and PMI cryptosystems.
Then, in section 3 we recall Patarin’s attack on the original MI scheme.
Next in section 4, we describe our attack on the PMI scheme and some
experimental results. Finally, in section 5, we show a new attack on the
original MI scheme.

2 Description of the MI and PMI schemes

2.1 The Matsumoto-Imai cryptosystem

This scheme is based on the following fact : over the finite field Fqn , the
function F : x 7→ xq`+1 is a permutation, when gcd(q` + 1, qn − 1) = 1.
Therefore, we can fix q to be a power of 2 so that Fqn is of characteristic
two 1. Its inverse is x 7→ xh where h is the inverse of q` + 1 in Zqn−1.
Therefore, for any isomorphism π from the vector space of Fqn to the n-
dimensional vector space (Fq)n, the function F = π◦F ◦π−1 is a bijective
system of multivariate quadratic functions since F can be viewed as the
product of two linear maps x 7→ xq`

and x 7→ x.
The scheme described by Matsumoto and Imai in 1988 [12] generates

S and T , two secret affine bijections of (Fq)n to mask the system F . The
system E = T ◦F ◦S is also a system of multivariate quadratic equations
and represents the public key. Patarin showed in 1995 [13] that the public
key has a special form which allows to invert the function.
1 Indeed, if q is odd, we have gcd(q` + 1, qn − 1) ≥ 2 and since q is a prime power, it

is always a power of 2 and the characteristic of Fqn is 2
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2.2 The PMI cryptosystem

Recently at PKC ’04, Ding proposed a randomised variant of MI, called
PMI [7]. Let R : (Fq)n → (Fq)r a secret linear function of small rank (r �
n) and H a secret quadratic system composed of n quadratic equations
over r variables. The PMI public key is the system E′ defined by E′ =
T ◦ (F + H ◦ R) ◦ S. The public key can also be written as E′ =
T ◦F ◦S+T ◦H ◦R◦S due to the linearity of T . Consequently, the PMI
scheme can be seen as the MI scheme E plus a random-looking quadratic
term T ◦H ◦R ◦S. Since there is no trapdoor to invert H or to separate
the MI term and the random term, we need to store all the inputs and
the outputs of the H function. Let P be the set of points which consist
of pairs (λ,µ), where λ is a point that belongs to the image of H, and µ
is the set of pre-images of λ under H. The set P contains qr points. The
secret key includes the set of linear functions R, the set P , and the two
affine bijections S and T .

The secret key allows to invert E′ if one can make exhaustive search
over the qr values of P and so r must be small. More precisely, given a
ciphertext y, the decryption process inverses the affine bijection T and
recovers y′. Then, all elements (λ,µ) in P can be tried one-by-one and
y′

λ = F−1(y′ +λ) is computed. Next, if H(y′
λ) is not equal to µ, we try

the next point in P , otherwise, we compute xλ by S−1(y′
λ). If we have

only one solution, we get the plaintext, otherwise, we use some added
redundancy in the plaintext in order to uniquely recover it.

In his description of PMI [7], Ding analyses all known attack such as
algebraic attacks of Patarin [13], Kipnis and Shamir [11], or XL attacks [4]
and the attack on MI Minus of Patarin, Goubin and Courtois [16].

He also proposes a practical implementation with q = 2, n = 136,
r = 6 and F (x) = x25×8+1. He claims that the security level for this choice
of parameters is 2136. The value ` has been chosen with a special form,
such that gcd(2n−1, 2`−1) = 2gcd(n,`)−1 = 2gcd(136,5×8)−1 = 28−1. This
special form allows to perform more efficient encryption and decryption
using lookup tables for the multiplications in the finite field.

In this paper, we apply differential cryptanalysis to the PMI scheme,
and we show that the special form of the exponent in the practical system
proposed by Ding allows more efficient attack than the attack in the
generic case where gcd(`, n) = 1.
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3 Patarin’s Attack on the MI cryptosystem

Our attack against the PMI cryptosystem is a probabilistic reduction to
Patarin’s attack on the MI scheme. Therefore, prior the description of our
attack, we recall Patarin’s attack. While we also propose an alternative
attack to the MI scheme in section 5, we present Patarin attack since it is
easier to understand. Both his attack and our attack do not recover the
secret key but finds a linear system which can be solved to recover the
plaintext corresponding to a given ciphertext.

Let x ∈ (Fq)n a plaintext and y ∈ (Fq)n the corresponding ciphertext.
The main idea of Patarin attack is to find several bilinear relations in the x
and y coordinates. Using plaintext/ciphertext pairs (x,y), it is possible to
recover the coefficients of the relations by solving a linear system. Finally,
knowing these coefficients and a given ciphertext, it is possible to decrypt
y by solving a linear system.

Let us define a = π−1(S(x)) and b = π−1(T−1(y)). Consequently,
F (a) = b or b = aq`+1. By raising each member of the last equation to
the power q` − 1 and by multiplying each one by ab, we get

abq
`
= aq2`

b (1)

which holds over the finite field Fqn . We can rewrite this equation by
B(a, b) = 0 where B(a, b) = a · bq` − aq2` · b. If we represent equation
(1 ) in (Fq)n, we get n bilinear equations in the n coordinates of a and
of b. As a and b are affine transformations of x and y via the secret
affine bijections S and T , the n bilinear expressions in a and b, may also
be written as n bilinear expressions in x and y. Each expression can be
written as

∑n
i=1

∑n
j=1 βi,jxiyj +

∑n
i=1 βi,0xi +

∑n
j=1 β0,jyj + β0,0 = 0.

For each plaintext/ciphertext pair (x,y), the equation above, where
all the βi,j are the (n+1)2 unknowns, has at least the n solutions described
by the n bilinear expressions deduced from equation (1). Therefore, using
O((n + 1)2) plaintext/ciphertext pairs, solving the resulting system of
O((n + 1)2) equations in the (n + 1)2 unknowns βi,j will recover the n
bilinear expressions.

Finally, given a ciphertext y to decrypt, these n equations will give
us n linear equations in the coefficients of x. Unfortunately, all these
equations are not independent. The solutions of this system correspond to
the solutions of (1). There are qgcd(n,`) such solutions, as shown by Patarin:
let us consider the equation (1) where the unknown is a. A ciphertext y
fixes a unique b value. One solution is a = 0. If a 6= 0 (and so b 6= 0) the
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equation can be written as

aq2`−1 = bq
`−1

We can write q2` − 1 as (q` + 1)(q` − 1) and take the inverse of q` + 1
modulo qn−1 since by assumption F is a permutation. Consequently, the
equation becomes aq`−1 = bh×(q`−1) = b′ where h is the inverse of q` + 1.
This last equation has exactly gcd(q`− 1, qn− 1) = qgcd(`,n)− 1 solutions
as shown in appendix A since the right solution is one solution.

As a consequence, the solution that we are looking for is a particular
vector of the kernel of some system related to the original system, and
the second member of the equation [3, p. 59]. Therefore, we compute
the kernel of the system matrix which is of dimension gcd(n, `). Next,
we perform an exhaustive search in qgcd(n,`) − 1 coefficients of the kernel
vector, in order to recover the correct value x.

In section 5, we propose a new differential attack on the MI scheme by
studying the kernel of the transpose of the differential of the public key.
We show that there exist n bilinear forms between a ciphertext E(k) and
the vector fk that generates the kernel of the transpose of the differential,
which is of dimension 1 if gcd(`, n) = 1. Then, given a ciphertext, we are
able to reconstruct the vector fk since the n bilinear forms are indepen-
dent as there is a unique solution for the n bilinear forms. Finally, since
the vector fk is in the kernel of the transpose of the differential and that
this map is linear in k, we can solve n linear equations in the k variables
of n coordinates. We refer the reader to section 5 for details.

4 Cryptanalysis of the PMI cryptosystem

4.1 Overview of the attack

Let us recall the notations : F is the system of quadratic equations corre-
sponding to the internal function of the MI cryptosystem, E = T ◦F ◦S
the public key of MI, and E′ = E+T ◦H ◦R ◦S the public key of PMI.

Our attack is based on the following remark: the PMI scheme is a
noisy MI cryptosystem. We find the linear space K that cancels the noise,
and apply an attack of MI to the restriction of PMI to this linear space.

More precisely, we define the linear space K as follows: it is the kernel
of the linear part of the affine function R ◦ S. The space K is of dimen-
sion dim(kerR) = n − r because S is a bijection and rank(R) = r. If
we are able to compute K, then we can apply the attacks against MI
(either Patarin’s attack or our attack described in section 5) to the PMI
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cryptosystem restrict to elements of one of the qr affine spaces that are
parallel to K. When restrict to one of these affine spaces, the public key of
PMI is exactly E translated by a constant. The attack of PMI amounts
to qr attacks against MI (this is feasible because qr must be of moderate
size to allow fast decryption). A ciphertext is decrypted by applying the
attack to the affine space that contains its corresponding plaintext.

In order to recover the space K, we devise an efficient test algorithm
that can spot that a given vector k does not belong to K. The information
used in this test is the dimension of the kernel of the linear part of the
differential of the public key.

4.2 The dimension of the kernel of the differential

For any function G : (Fq)n → (Fq)m, let us consider its differential
dGk(x) = G(x+k)−G(x). Because G is a quadratic function, its differ-
ential is an affine function. Let us consider LG,k(x) = dGk(x)− dGk(0)
the linear part of the differential. In fact, it is a bilinear function that can
also be defined by LG,k(x) = BG(x,k) = G(x+k)−G(x)−G(k)+G(0),
and is also called the polar form. We are interested in dim(kerLG,k) when
G is the public key of the cryptosystem.

Property 1. Let k and k′ be elements of (Fq)n, and G and G′ be systems
of quadratic equations, and S and T be affine bijections. The following
properties hold: LG,k+k′ = LG,k + LG,k′ , LG+G′,k = LG,k + LG′,k,
LT ◦G◦S,k = T ◦LG,S(k) ◦S +T ◦G ◦S(0)−T ◦G(0), and LG,0 = 0.

Lemma 1. If E is the public key of a MI system over Fq of characteristic
2, of dimension n and exponent q` + 1, then dim(kerLE,k) = gcd(`, n).

First, dim ker(LE,k) = dim ker(LF,k), because T and S are bijections.
Let us define x = π(x) and k = π(k). If F is the internal function of

the MI cryptosystem, thenBF (x,k) is equal to π(xq` ·k+x·kq`
). A vector

x 6= 0 of (Fq)n is in the kernel of LF,k if and only if xq` · k + x · kq`
= 0.

This last equation can be written as xq`+1 ·
(

k
x +

(
k
x

)q`
)

= 0.

Since x 6= 0, if we denote k/x by X, then the previous equation is
X +Xq`

= 0 in the finite field Fqn . If X 6= 0 (k 6= 0), then the equation
becomes Xq`−1 = 1 in a finite field of characteristic 2. Since X = 1
is solution, there is at least one solution. As a consequence, there are
qgcd(`,n)−1 solutions according to the results in appendix A, and therefore
dim(kerLE,k) = gcd(`, n).
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Note that X = 1 is always a solution, that means x = k, and therefore
k is always in the kernel. There are no other solutions when gcd(`, n) = 1.

Lemma 2. If E′ is the public key of the PMI cryptosystem and k ∈ K,
then dim(kerLE′,k) = gcd(`, n).

We prove that if k ∈ K, then LE′,k = LE,k. First we notice that k ∈ K
is equivalent to R ◦ S(k) = R ◦ S(0).

Then we compute LE′,k(x)−LE,k(x) = LT ◦H◦R◦S,k(x) = T ◦H ◦
R ◦S(x+k)−T ◦H ◦R ◦S(x)−T ◦H ◦R ◦S(k) +T ◦H ◦R ◦S(0),
therefore T−1(LE′,k(x)−LE,k(x)) = H(R◦S(x+k))−H(R◦S(x))−
H(R ◦S(k))+H(R ◦S(0)) = 0, which means that T−1 ◦LE′,k = T−1 ◦
LE,k. Therefore dim(kerLE′,k) = dim(ker(T−1◦LE′,k)) = dim(ker(T−1◦
LE,k)) = dim(kerLE,k).

Lemma 3. If E′ is the public key of the PMI cryptosystem and k 6∈ K,
then often dim(kerLE′,k) 6= gcd(`, n).

As before, LE′,k is the sum of LE,k and LT ◦H◦R◦S,k. However, when,
k 6∈ K, the second linear application is not null. The argument behind
lemma 3 is that LT ◦H◦R◦S,k is a random-looking linear application, and
therefore the dimension of the kernel of the sum LE′,k follows the distri-
bution of the dimension of the kernel of random linear maps.

In fact, it is slightly more complicated, because k is always in the
kernel of LT ◦H◦R◦S,k, and therefore also in the kernel of LE′,k, whose
dimension then is at least 1. Moreover, if gcd(`, n) > r, then there are
gcd(`, n)− r additional vectors in the kernel of LE′,k, because ker(LE,k)
of dimension gcd(`, n) and ker(R ◦ S) of dimension n − r in a space of
dimension n have an intersection of dimension at least gcd(`, n) − r. In
the case of the practical scheme proposed by Ding where gcd(`, n) = 8
and r = 6, we can deduce that dim(ker(LE′,k)) ≥ 3.

Lemma 3 can be verified experimentally, as shown in table 1.
As a consequence of the lemmas, we get the following corollary.

Corollary 1. If E′ is the public key of the PMI cryptosystem and if
dim(kerLE′,k) 6= gcd(`, n), then k 6∈ K.

In conclusion, we have now an efficient test to know if a vector is not
in K. We define T (k) to be this test: T (k) = 1 if dim(kerLE′,k) 6=
gcd(`, n), meaning that k is not in K with probability one, and T (k) = 0
if dim(kerLE′,k) = gcd(`, n), meaning that k can be in K or not. Now,
we must transform this test into an algorithm for recovering K.
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Table 1. Experimental results for the probability distribution of dim(ker(LE′,k)).

` = 41, n = 137 and r = 6

dimension k ∈ K k 6∈ K
1 1 ≈ 0.59

> 1 0 ≈ 0.41

` = 40, n = 136 and r = 6

dimension k ∈ K k 6∈ K
3 0 ≈ 0.686

4 0 ≈ 0.290

5 0 ≈ 0.023

6 0 ≈ 5.10−4

7 0 ≈ 2.10−6

8 1 ≈ 0

> 8 0 ≈ 0

4.3 Recovering K

We are looking for dim(K) independent vectors that generate K. Let us
define α = Pr[T (k) = 0] and β = Pr[k ∈ K] = q−r. The following table
summarises the distribution of the values of T applied to a random k.

k ∈ K k 6∈ K
T (k) = 0 β α− β α

T (k) = 1 0 1− α 1− α

β 1− β

In the case where gcd(`, n) = 8 we have α − β � β and therefore
the test T has almost no false positives. In the case where gcd(`, n) = 1
we have β � α and therefore the test T cannot give direct proof of
membership of K. A specific algorithm to recover K is needed.

The property we use is the linearity of K: if k,k′ ∈ K, then k+k′ ∈ K.
Two algorithms are described below. The first algorithm uses a statistical
bias for T (k + k′). The second algorithm searches some large clique in a
graph. A concrete attack of the PMI cryptosystem will use a mix of both
techniques.

Technique 1. The key idea is: if for many different k′ ∈ K, k + k′ is
in K, then k is always in K. Therefore, if for many different k′ such that
T (k′) = 0, T (k + k′) = 0, then k is in K with high probability.

We make the hypothesis that for any fixed value k and random value
k′ the probability that T (k + k′) = 0 is independent of the probability
that T (k′) = 0. Under this hypothesis, we compute p(k) = Pr[T (k+k′) =
0 / T (k′) = 0].

For a random k, the value k + k′ when T (k′) = 0 is uniformly dis-
tributed and p(k) = α. However, if k ∈ K, then one can write p(k) =
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Pr[k′ ∈ K / T (k′) = 0]+Pr[k′ 6∈ K / T (k′) = 0].Pr[T (k+k′) = 0 /k+k′ 6∈
K] = β

α + α−β
α

α−β
1−β .

Under the hypothesis that β � α, if k ∈ K then p(k)/α = (1−β/α)2

1−β +
β
α2 ' 1+β(α−1−1)2. Therefore the difference between the values of p(k)
depending on whether k ∈ K or not is of the order of αβ and, by taking
N = 1/(αβ)2 elements k′ such that T (k′) = 0 and computing the average
of T (k+k′), we can decide whether k ∈ K or not. The complexity of this
test is about β−2.

We checked experimentally this hypothesis, for the parameters ` =
41, n = 137 and r = 6. Testing if p(k)/α − 1 > 1

2β(α−1 − 1)2 is not
sufficient to have an error-free test of membership of K. However, testing
if p(k)/α − 1 > β(α−1 − 1)2 appear to be sufficient to detect about half
of the members of K.

Each value k has a probability q−r of being in K and we need n distinct
elements of K. The whole complexity for finding K is nq3r.

Technique 2. In this technique, we define a graph whose vertices are the
elements k such that T (k) = 0, i.e. elements that may be in the kernel.
For each pair (k,k′) of vertices, we compute T (k + k′). If the result is
0, then we put an edge between these two vertices. All vertices such that
k ∈ K are connected, i.e. the elements of K are in a large clique.

In practice, we don’t construct the whole graph. We construct its re-
striction to N vertices. We are looking for vertices that correspond to n−r
independent elements of K. If N > n/β, it is likely that the graph contains
such vertices. The clique containing the elements of K contains at least
βN vertices. Under the same hypothesis as above, that the probability
that T (k + k′) = 0 is independent of the probability that T (k) = 0, this
graph restricted to N vertices has αN2 edges. Apart from the vertices
that correspond to elements of K, the edges are randomly distributed.
General results on random graph [2] gives us that the expected number
of vertex in the clique of maximal order in random graph of N vertex with
a probability α between each edge is 2 log N

log 1/α + O(log logN). Therefore, if

βN is significantly greater than 2 log N
log 1/α , then there will be a unique large

clique, that gives a basis of K. When β � α, this condition is equivalent
to N ≈ β−1 log β−1 and the whole complexity for finding K is q2r log2 qr.

However, although this technique seems to be better than the previous
one, we do not know a max-clique algorithm that benefits from the fact
that we have a random and dense graph which has a very large clique.
In practice, as we said before, a concrete attack of the PMI cryptosystem
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will use a mix of technique 1 (to find some elements very likely to be
members of K) and technique 2 (to extract from them a large clique).

4.4 Recovering the plaintext

Assume we have correctly found the kernel K. Now, we have to reconstruct
a family of n bilinear equations in the x and y variable for each affine
subspace parallel to K. When this has been done, then for fixed y we
can try to solve each system in the x unknowns and decide the correct
solution using redundancy.

The question one may ask is whether we still find n − gcd(`, n) in-
dependent equations for each affine subspace. What can be said is that
the original n equations from the MI scheme are clearly friend when x is
restricted to a subspace. Accordingly the number of independent equa-
tions can only increase, which is in favour of the attacker. Now, given a
ciphertext y, its corresponding plaintext is in some subspace parallel to
K and for such ciphertext, each family of equations allow to recover at
least n − gcd(`, n) coordinates of x. Finally, an exhaustive search allows
us to find the missing coordinates in time qgcd(`,n) as well as the correct
subspace to choose.

5 Alternative attack against the MI scheme

In this section, we show a new attack against the MI scheme. We apply
the same technique as in the PMI scheme. First of all, we compute the
differential and next we study the kernel of the transpose of this applica-
tion. In order to simplify the exposition of the attack, we assume in the
following that gcd(`, n) = 1 and q = 2.

5.1 Overview

As for Patarin’s attack, this attack tries to find n bilinear forms in the
ciphertext coordinates and in a vector related to the plaintext. Next,
when a ciphertext is given, the n linear equations in the vector related to
the plaintext allow us to recover this vector. Finally, since this vector is
related to the plaintext by a linear system, we can easily decrypt.

More precisely, the attacks computes two bilinear systems, C(x,y)
and D(x,y), such that for fk

> in the kernel of LE,k
> we have

C(E(k),fk) = 0 and D(k,fk) = 0

This allows to compute k from E(k).
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5.2 Description

For the MI scheme, the differential can be written as

LF,k(x) = xq` · k + x · kq`
= kq`+1 ·

(
x

k
+

(x
k

)q`
)

If we define the following three linear functions over Fqn : µk(x) = F (k)·x,
where F (k) = kq`+1, ψ(x) = xq`

+ x and θk(x) = x
k , then

LF,k = µk ◦ ψ ◦ θk

Let us define µk = π ◦ µk ◦ π−1, ψ = π ◦ ψ ◦ π−1 and θk = π ◦ θk ◦ π−1

for k = π−1(S(k)). Therefore

LE,k = T ◦ µk ◦ψ ◦ θk ◦ S

where all terms are linear functions of Fn
q . The matrix of LF,k is a product

of n× n matrices of Fq.
Let fk

> be in the kernel of the transpose LE,k
>. This means that the

product (fk)(LE,k) is the null vector 0, which is equivalent to

(fk)(T .µk.ψ.θk.S) = 0

where fk is a n-dimensional row vector and T , µk, θk, and S are n× n
invertible matrices and ψ is a n × n matrix. Since θk and S are one-to-
one, this is equivalent to (fk)(T .µk) ∈ Kerψ>, the application ψ> being
independent of k.

Recall that in the case where gcd(`, n) = 1 the kernel of LE,k is of
dimension 1 and is generated by k. The transpose LE,k

> also has a kernel
of dimension 1. The kernel of ψ> is one-dimensional and independent of
k. Therefore if q = 2, Kerψ> = {0, f̂} and the previous equation can be
rewritten as (fk)(T .µk) = (f̂).

From µk(x) = F (k) · x, we deduce that µk is linear in

F (k) = F (π−1(S(k))) = π−1(T−1(E(k)))

i.e. linear in E(k), and therefore the equation (fk)(T .µk) = (f̂) is bi-
linear in fk and E(k). Accordingly whenever a ciphertext y = E(k) is
given, the corresponding fk can be found by solving a linear system.

Finally, as (fk)(LE,k) = 0 and LE,k is linear in the k variable we
have again a bilinear relation between k and fk. Now, since fk is known
from y, we get a system with n equations in n coordinates of the variable
k. This system has a kernel of dimension one, and consequently, we can
easily decrypt.
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A Some useful mathematical results

Lemma 4. For any integers q, i and n, gcd(qn− 1, qi− 1) = qgcd(n,i)− 1

Proof. Let (rk)k≥0 be the sequence of integers obtained by the Euclidean
algorithm from r0 = n and r1 = i. If k0 is the largest integer such that
rk0 6= 0, then rk0 = gcd(n, i).

Similarly, let (Rk)k≥0 be the sequence of polynomials obtained from
the Euclidean algorithm from R0 = Xn − 1 and R1 = Xi − 1. We recall
that n1 is the largest integer such that Rn1 = gcd(Xn − 1, X i − 1). We
show by recurrence on n that for 0 ≤ k ≤ k0 + 1, Rk = Xrk − 1. It is
correct by assumption for k = 0 and k = 1. Assuming that k ≥ 2 and
k ≤ k0 + 1. Let us write rk−2 = αrk−1 + rk. Then,

Xrk−2 − 1 = (Xrk−1 − 1)(Xrk−2−rk−1 +Xrk−2−2rk−1 + · · ·+Xrk−2−αrk−1)
+Xrk − 1

Therefore, Xrk−1 is the remainder of the division of Rk−2 = Xrk−2−1 by
Rk−1 = Xrk−1 − 1 since rk < rk−1. So, Rk0+1 = X0 − 1 = 0 and Rk0 6= 0.
Consequently, k1 = k0 and Rk1 = Rk0 = Xrk0 − 1 = Xgcd(i,n) − 1. If we
replace X by q, we get the lemma.

The following lemma is useful to exactly estimate the kernel dimen-
sion. We require exact value and not upper bounds on the number of
solutions as done in [13].

Lemma 5. In a finite field Fqn with qn elements, the equation Xj = A
has either 0 solution or gcd(j, qn − 1) solutions.

Proof. The multiplicative group of the finite field Fqn has qn−1 elements.
The simple case is when gcd(j, qn − 1) = 1. Therefore, j is invertible
modulo (qn − 1) and we denote by h the inverse of j. Then, if we raise
the equation Xj = A to the power h, we get X = Xjh = Ah = A′, and
so there is only one solution.

On the other hand, if gcd(j, qn − 1) = d 6= 1. Let j′ = j/d, then
gcd(j′, qn−1) = 1 and let h′ be the inverse of j′ modulo qn−1. We can raise
the equation to the power h′ and get Xd = Xjh′ = Xj′dh′ = Ah′ = A′.
This equation may have no solution if A′ is not a d-th power of some value
of Fqn . We now show that the equation Xd = A′ has d solutions when A′

is a d-th power. We know that there is at least one solution which can
be found by a randomised algorithm of Adleman, Manders and Miller [1].
The other solutions are obtained by multiplying the original solution by
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the d roots of unity. We finally explain why there are d d-th roots of
unity. Since the multiplicative group of a finite field is a cyclic group,
there is a primitive element g, that generates the whole group. Therefore,
g′ = g

qn−1
d is a d-th root of unity and for 0 ≤ i < d, g′i ranges over the

set of all roots. This completes the proof of the lemma.

If j = qi − 1, then we can combine both lemmas. In a finite field
Fqn with qn elements, the equation Xqi−1 = A has either 0 solution or
qgcd(i,n) − 1 solutions.
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