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Abstract. The recent developments of side channel attacks have lead
implementers to use more and more sophisticated countermeasures in
critical operations such as modular exponentiation, or scalar multiplica-
tion in the elliptic curve setting. In this paper, we propose a new attack
against a classical implementation of these operations that only requires
two queries to the device. The complexity of this so-called “doubling
attack” is much smaller than previously known ones. Furthermore, this
approach defeats two of the three countermeasures proposed by Coron
at CHES ’99.
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1 Introduction

Modular exponentiation or scalar multiplication are the main parts of the most
popular public key cryptosystems such as RSA [15] or DSA [13]. This very sensi-
tive operation can be efficiently implemented in smart cards products. However,
data manipulated during this computation should often be kept secret, so the im-
plementation of such algorithms must be protected against side channel attacks.
For example, during the generation of an RSA signature by a device, the secret
exponent is used to transform a message related data into a digital signature via
modular exponentiation.

Timings and power attacks, initially presented by Kocher [9,10] are now well
studied and various countermeasures have been proposed. Those attacks repre-
sent a real threat when we consider operations that both involve secret data and
require a long computation time. The consequence is that naive implementation
of RSA based or discrete log based cryptosystems usually leak information about
the secret key.

In this paper we present a new side channel attack, that we called “dou-
bling attack”, which allows to recover the secret scalar used in the binary scalar
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multiplication or the secret exponent used in the binary exponentiation algo-
rithm. It is worth to notice that contrary to previous attacks which work for the
“Left-to-Right” and the “Right-to-Left” implementations of the binary modular
exponentiation, the doubling attack only works for the “Left-to-Right” imple-
mentation. Furthermore, the “Left-to-Right” implementation is often used since
it requires only one variable. The new attack enables to recover the secret key
decryption of RSA [15] or the key decryption of ElGamal [4]. It can also be
used to obtain the secret key of the Diffie-Hellman authentication system. We
only focus on the decryption cases. In this attack we assume that the adversary
mounts a chosen ciphertext attack. This is a valid assumption in a side channel
scenario, since randomized paddings avoiding chosen ciphertext attack, such as
OAEP [1], are checked after the running of the decryption process. As a con-
sequence, the binary exponentiation or multiplication is always performed and
side channel attacks can be mounted on these algorithms. The attack on the
RSA cryptosystem is a direct application of the doubling attack. On discrete-log
based cryptosystems, we describe the attack in the elliptic curve setting, since
the doubling attack allows to defeat classical countermeasures which are mainly
proposed to elliptic curve systems.

In this paper, we first remind classical binary scalar multiplication algo-
rithms. Then, we shortly describe different types of side channel attacks such
as simple power analysis and differential power analysis but also the attack of
Messerges, Dabbish and Sloan [11] in order to motivate the most frequently used
countermeasures.

Then, we present an improvement of Messerges et al attack that applies when
so-called downward algorithms are used. It has a much smaller complexity since
it only requires two queries to the device in order to recover all the secret data.
This new attack is called “doubling attack” since it is based on the doubling
operation in the elliptic curve setting. We also explain how to use this new
attack to defeat Coron’s countermeasures [3].

2 Binary Scalar Multiplication Algorithms

In classical cryptosystems based on the RSA or on the discrete logarithm prob-
lem, the main operation is modular exponentiation. In the elliptic curve setting,
the corresponding operation is the scalar multiplication. From an algorithmic
point of view, those two operations are very similar; the only difference is the
underlying group structure. In this paper, we consider operations over a generic
group, without using any additional property. The consequence is an immediate
application to the elliptic curve setting but it should be clear that all what we
state can be easily transposed to modular exponentiation.

Scalar multiplication is usually performed using the “double-and-add”
method that computes d × P using the binary representation of the scalar
d =

∑n
i=0 di × 2i :

d × P =
n∑

i=0

di × (
2i × P

)
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Two versions of the double-and-add algorithm are usually considered, according
to the order of the terms in the previous sum. The first routine starts from the
most significant bit and works downward. This method is usually called “Left-
to-Right” (see figure 1).

S = 0
for i from n down to 0

S = 2.S
if di = 1 then S = S + P

return S

Fig. 1. Downward “Left-to-Right” double-and-add(P ,d)

The second routine starts from the least significant bit and works upward.
This method is also known as “Right-to-Left” (see figure 2).

S = 0
T = P
for i from 0 to n

if di = 1 then S = S + T
T = 2.T

return S

Fig. 2. Upward “Right-to-Left”double-and-add(P ,d)

The first implementation is the most frequently used since it requires less
memory. Up to now, no distinction was made on the security of those routines
since all proposed attacks can be adapted to both implementations. In the fol-
lowing sections, we focus on the downward implementations and we show that
it may be much more easily attacked than upward versions.

3 Power Analysis Attacks

It is well known that naive double-and-add algorithms are subject to power
attacks introduced by Kocher et al [10]. More precisely, they introduced two
types of power attacks : Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) we now shortly remind.

3.1 Simple Power Analysis

The first type of attack consists in observing the power consumption in order to
guess which instruction is executed. For example, in the previous algorithm, one



272 P.-A. Fouque and F. Valette

can easily recover the exponent d =
∑n

i=0 di2i by distinguishing the doubling
from the addition instruction. To avoid this attack, downward double-and-add
algorithm is usually modified using so-called “dummy” instructions (see figure 3).

S[0] = 0
for i from n down to 0

S[0] = 2.S[0]
S[1] = S[0] + P
S[0] = S[di]

return S[0]

Fig. 3. Downward double-and-add(P ,d) resistant against SPA

Although this new algorithm is immune to SPA, a more sophisticated treat-
ment of power consumption measures can still enable to recover the secret scalar
d.

3.2 Differential Power Analysis

DPA uses power consumption to retrieve information on the operand of the
instruction. More precisely, it no longer focuses on which instruction is executed
but on the Hamming weight of the operands used by the instruction. Such an
attack has been described in the elliptic curve setting in [3,14].

This technique can also be used in a different way. Messerges, Dabbish and
Sloan introduced “Multiple Exponent Single Data” attack [11]. Note that, for
our purpose, a better name would be “Multiple Scalar Single Data”. We first
assume that we have two identical equipments available with the same imple-
mentation of algorithm 3, one with an unknown scalar d and another one with
a chosen scalar e. In order to discover the value of d, using correlation between
power consumption and operand value, we can apply the following algorithm.
We guess the bit dn of d which is first used in the double-and-add algorithm and
we set en to this guessed value. Then, we compare the power consumption of
the two equipments doing the scalar multiplication of the same message. If the
consumption is similar during the two first steps of the inner loop, it means that
we have guessed the correct bit dn. Otherwise, if the consumption differs in the
second step, it means that the values are different and that we have guessed the
wrong bit. So, after this measure, we know the most significant bit of d. Then,
we can improve our knowledge on d by iterating this attack to find all bits as it
is illustrated in the algorithm of figure 4.

This kind of attack is well known and some classical countermeasures are
often implemented. For example, the Chaum’s blinding technique [2] can be used
to protect an RSA implementation since it prevents an attacker from knowing
the data used in the exponentiation. This method cannot be applied directly for
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for i from 0 to n
ei = 0

for i from 0 to n
en−i = 1
choose M randomly
double-and-add(P ,d) on equipment 1
double-and-add(P ,e) on equipment 2
if no correlation at step (i + 1) en−i = 0

return e

Fig. 4. MESD attack to find secret scalar d

computations based on the Discrete Logarithm problem as there is no public
exponent associated with the secret exponent, as in RSA.

4 Usual DPA Countermeasures for Double-and-Add
Algorithm

The most well know countermeasures for scalar multiplication on elliptic curve
have been published by Coron [3]. In this paper, the author describes three
different countermeasures which are respectively based on the blinding of the
scalar, on the blinding of the point or on the blinding of the multiplication. We
now recall the description of the first two countermeasures. Then we explain, in
section 5, how to defeat them.

4.1 Coron’s First Countermeasure

During the computation of a scalar multiplication, this scalar can be blinded by
adding a multiple of the number E of points of the curve. For this purpose, the
algorithm needs a random value r which length is fixed to 20 bits in [3]. Then,
the algorithm computes (d + rE)P which is obviously equal to dP . This coun-
termeasure, depicted in figure 5, is very efficient since the scalar value changes
for each computation.

pick random value r
d′ = d + rE
return double-and-add(P ,d′)

Fig. 5. Implementation 1 secure against DPA
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4.2 Coron’s Second Countermeasure

The second solution is based on the same idea as Chaum’s blind RSA signa-
ture scheme. However, since we use a discrete log based problem, applying this
method requires twice the time needed for a single scalar multiplication. To be
more efficient, it is proposed in [3] to store a secret point R and the associated
value S′ = dR. The multiplication of P by d is performed by computing d(P +R)
and then subtracting S′ to the result. The variability is obtained by doubling R
and S′ at each execution as shown in figure 6.

pick b ∈ {0, 1} at random
R = (−1)b.2.R
S′ = (−1)b.2.S′

S = double-and-add(P + R, d)
return S − S′

Fig. 6. Implementation 2 secure against DPA

In this paper we will not focus on the third countermeasure proposed by
Coron since it has been partially broken by Goubin in [5]. Our attack does not
work on this countermeasure and does not allow to enhance Goubin’s attack.

These two countermeasures are well admitted to be efficient against power
attacks. Other recently proposed countermeasures, such as randomized NAF [6]
or [7,17,8] mainly focus on improving efficiency in terms of speed.

5 The New Attack

We introduce a new attack mainly based on two reasonable assumptions. This
attack is able to recover the secret scalar with a few requests to the card. The
adversary needs to send chosen messages directly to the double-and-add algo-
rithm. Indeed, when considering decryption of the ElGamal cryptosystem or of
the RSA cryptosystem for instance, the padding can only be verified at the end
of the computation.

The idea of the attack is based on the fact that, even if an adversary is not
able to tell which computation is done by the card, he can at least detect when
the card does twice the same operation. More precisely, if the card computes 2.A
and 2.B, the attacker is not able to guess the value of A nor B but he is able to
check if A = B. Such an assumption is reasonable since this kind of computation
usually takes many clock cycles and depends greatly on the value of the operand.
This assumption has been used in a stronger variant and validated by Schramm
et al. in [16]. Indeed, they are able to distinguish collisions during one DES round
computation which is much more difficult than distinguishing collisions during
a doubling operation. If the noise is negligible, a simple comparison of the two
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power consumption curves during the doubling will be sufficient to detect this
equality.

If the noise is more important we propose two solutions to detect equalities.
The first and easiest one is to compare the average of several consumptions
curves with A and B. However asking twice the same computation may be
impossible. In that case, a better solution is to use the tiny differences on many
clock cycles since a point doubling usually takes a few thousand cycles. By
summing the square of the differences between these curves on each clock cycle,
we can decrease the influence of noise. This approach is precised in appendix A.

5.1 Description of the Doubling Attack

The so-called “doubling attack” is based on the fact that similar intermediate
values may be manipulated when working with points P and 2P . However this
idea only works when using the downward routine.

Let us first consider an example. Let d = 78 = 64 + 8 + 4 + 2, i.e. n = 6 and

(d0, d1, d2, d3, d4, d5, d6) = (0, 1, 1, 1, 0, 0, 1)

Then we compare the sequence of operations when the downward binary scalar
multiplication algorithm of figure 3 is used to compute d × P (on the left) and
d × (2P ) (on the right) :

i di comput. of dP comput. of d(2P )
6 1 2 × 0 2 × 0

0 + P 0 + 2P
5 0 2 × P 2 × 2P

2P + P 4P + 2P
4 0 2 × 2P 2 × 4P

4P + P 8P + 2P
3 1 2 × 4P 2 × 8P

8P + P 16P + 2P
2 1 2 × 9P 2 × 18P

18P + P 36P + 2P
1 1 2 × 19P 2 × 38P

38P + P 76P + 2P
0 0 2 × 39P 2 × 78P

78P + P 156P + 2P
return 78P return 156P

If we focus on the doubling operations, we notice that some of them manipulate
the same operand. More precisely, we observe that the doubling operation at rank
i in the computation of dP is the same as the doubling operation at rank i − 1
in the computation of d(2P ) if and only if di−1 = 0. Consequently, all the bits
(except the least significant one) can be deduced from the SPA analysis of only
two power consumption curves, the first one obtained during the computation
of dP and the second one with d(2P ).
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More formally, let us denote the partial sums Sk(P ) =
∑i=k

i=0 dn−i2k−i × P .
This value is the content of S[0] in the algorithm 3 after k+1 iterations. Therefore
we also refer to Sk(P ) as an intermediate result of the binary scalar multipliation
algorithm. So this value is used in the next doubling operation in any case.
Besides

Sk(P ) =
k∑

i=0

dn−i2k−i × P

=
k−1∑

i=0

dn−i2k−1−i × (2P ) + dn−k × P

= Sk−1(2P ) + dn−k × P

Thus the intermediate result of the downward double-and-add algorithm with
P at step k will be equal to the intermediate result with 2P at step k − 1 if and
only if dn−k is null.

Using the same example as before, we obtain :

value of step k 0 1 2 3 4 5 6
value of dn−k 1 0 0 1 1 1 0
value of Sk(P ) P 2P 4P 9P 19P 39P 78P
value of Sk(2P ) 2P 4P 8P 18P 38P 78P 156P

In conclusion, we just need to compare the doubling computation at step
k + 1 for P and at step k for 2P to recover the bit dn−k. If both computations
are identical, dn−k is equal to 0 otherwise dn−k is equal to 1. This can also be
observed by shifting the second measurement curve by one step to the right and
comparing it to the first curve. Therefore, with only two requests to the card, it
is possible to recover all the bits of the secret scalar.

Note that this attack also works with addition-subtraction chains such as
Non Adjacent Form representation [12]. It allows to recover all the zeros in
the NAF coding which represent roughly two third of the bits according to the
paper of Morain and Olivos [12]. The missing information can be recovered by
exhaustive search or by a more efficient method such as an adaptation of the
baby step giant step algorithm for short Diffie-Hellman exponent. Indeed, if the
prime group order is a 160-bit prime number, then only 54 bits remain to be
discovered. Moreover, the Baby Step Giant Step algorithm can be used to reduce
the complexity of the discovery of the discrete logarithm to 227 in time and in
memory.

5.2 Application of the Doubling Attack to Coron’s Countermeasures

The first countermeasure of Coron uses a 20-bit random value to blind the secret
scalar at each request to the card. This size of random value is sufficient to
resist usual DPA attacks. However it is not enough to resist our new doubling
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attack. Indeed, due to the birthday paradox, after 210 requests with P and 210

requests with 2P , there should exist a common scalar with high probability.
In order to recover this collision on the scalar, the attacker needs to compare
each curve obtained with P to each curve obtained with 2P . With the method
described before, assuming the same scalar is used, it is possible to find the
position of zeroes in this scalar. The right pair will be distinguished as it will give
a scalar with enough zeroes. Indeed, if the corresponding scalars are different,
it is unlikely that common intermediate values appear on both computations.
Hence identifying the right pair is quite easy and requires only 220 comparisons.
In case several bits of the scalar cannot be clearly identified due to the noise,
they can be recovered by exhaustive search. The attack is summarized in figure 7

while no correct pair is found
request computation with P and store measurement C(P ) in
set A
request computation with 2P and store measurement C(2P )
in set B
compare C(P ) with all set B
compare C(2P ) with all set A
if two measurements have many common intermediate squar-
ing, a correct pair is found

exhaustive search for undefined bits of the scalar recovered with
the correct pair.

Fig. 7. Attack of Coron’s first countermeasure

If the number of undefined bits is too large, one can notice that the number of
correct pairs increases as the square of the number of extra requests. With about
215 requests in each group, the number of correct pairs will be approximately
210 which may help to decrease the work of the exhaustive search.

The second countermeasure is even more vulnerable to the doubling attack.
Indeed, the random value which blinds P is itself doubled at each execution.
The attack goes as follows : a point P is first sent as the first request. Then
the card executes its routine with the value P + R. The adversary then requests
the computation with the point 2P . With probability 1

2 , the card will use the
point 2P + 2R = 2(P + R). So the attacker is then able to compare the two
measurements and to recover the secret scalar. If the noise is too important, the
adversary can use a statistical approach. He can choose a random point Q, send
Q and 2Q to the card and make the difference between the first curve and the
second one shifted by one step to the right. By summing the square of those
differences, we can recover all the bits of the secret scalar. Indeed, when the bit
at step i is equal to 0, half of the differences at step i + 1 are null. So the curve
representing the sum of the differences will be flatter at positions corresponding
to a zero than at positions corresponding to a one.
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6 Conclusion

A new powerful attack on scalar multiplication and modular exponentiation
has been presented which takes advantage of some implementation choices that
were not considered as a security concern up to now. As regards to this attack,
it appears that the “bad” choice was the most commonly used, due to efficiency
criteria. This vulnerability considerably weakens usual countermeasures used to
defeat power attacks.

Since no attack as efficient as the doubling attack is known on the upward
double-and-add algorithm (from the least to the most significant bit), we rec-
ommend to use this routine to compute scalar multiplication combined with the
appropriate countermeasures.

It is an open problem to study whether our attack and Goubin’s attack can
be combined in order to defeat the combination of Coron countermeasures.
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A Statistical Approach of Noise Reduction

Let c denotes the number of cycles of a point doubling operation. More precisely,
we only consider the cycles that are data dependant, i.e., for which the power
consumption differs when operands are changed. The power consumption (with-
out noise) of the computation with A and B at cycle i are respectively named
CA(i) and CB(i). The noise N can be modeled by random independent variables
NA(i), NB(i) with mean µ and variance σ. The power consumption observed on
cycle i are then equal to CA(i) + NA(i) and CB(i) + NB(i). The indicator I is
defined as follow:

I =
1
c

c∑

i=1

(CA(i) + NA(i) − CB(i) − NB(i))2

=
1
c

c∑

i=1

(CA(i) − CB(i))2 +
1
c

c∑

i=1

(NA(i) − NB(i))2

+
2
c

c∑

i=1

(NA(i) − NB(i))(CA(i) − CB(i))

If c is large enough, we can evaluate the mean of the indicator when A = B
and A �= B. In the first case, I = 1

c

∑c
i=1(NA(i) − NB(i))2, which is a sum of

assumed independent variables Y (i) = (NA(i) − NB(i))2. The mean of Y (i) is

E(Y ) = E((NA(i) − NB(i))2)

= V ar((NA(i) − NB(i)) − [E(NA(i) − NB(i))]2

= V ar(NA(i)) + V ar(NB(i)) − 0 = 2σ2

So the mean of the indicator, if A = B, is E(I(A = B)) = 2σ2.
In the second case (A �= B), assuming that

∀i ≤ c, ε1 ≤ |CA(i) − CB(i)| ≤ ε2

the mean of the indicator can be bounded as follow
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2σ2 + ε2
1 ≤ E(I(A �= B)) ≤ 2σ2 + ε2

2

With this bound in mind, it appears that the indicator can be used to distin-
guish if the manipulated data are equal or not. The confidence on this indicator
relies on its variance and the number of clock cycles c to perform the operation.
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