Turing Machine

Pierre-Alain Fouque

M1 cyberschool

Formal definition of a Turing Machine

- Def: A Turing Machine is a 7-uple (Q,Σ,Γ,δ,q₀,q_{acc},q_{rej}) where Q, Σ,Γ are all finite sets and
- 1. Q is the set of states
- 2. Σ is the input alphabet not containing the special blank symbol B
- 3. Γ is the tape alphabet, where $B \in \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. $\delta: Qx \Gamma \rightarrow Qx \Gamma x\{L,R\}$ is the transition function
- 5. $q_{acc} \in Q$ is the accept state, and
- 6. $q_{rej} \in Q$ is the reject state and $q_{acc} \neq q_{rej}$

Other model: input tape in RO mode, output tape: WO mode and working tapes in RW mode, with infinite tape on the left and right

Configurations

- Turing machine computation: update the current state, the current tape content, and the current head location.
- Configuration: uqv with $u,v \in \Gamma^*$, $q \in Q$, the head is on the 1st letter of v
- Configuration C_1 yields configuration C_2 , $C_1 \rightarrow C_2$ in a single step.
- Assume that $a,b,c\in\Gamma$ and $u,v\in\Gamma^*$, and $q_i, q_j\in Q$:
 - uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$ or uaq_ibv yields uacq_jv if $\delta(q_i, b) = (q_j, c, R)$
 - Start configuration: q₀w,
 - Accepting configuration: state is in q_{acc} ,
 - Rejecting configuration: state is in q_{rej},
 - Halting configuration: either in q_{acc} , or q_{rej}

Computation and Language

- Turing Machine M accept input w if there exists a sequence of configurations C₁, C₂, ..., C_k st:
 - 1. C_1 is the start configuration of M on input w
 - 2. Each C_i yields C_{i+1} , and
 - 3. C_k is an accepting configuration.
- The collection of strings that M accepts is the language of M, L(M)
- Def: Call a language Turing-recognizable if some Turing machine recognizes it. (can fail to accept, either reject or looping)
- Def: Call a language Turing-decidable or decidable if some Turing machine decides it. (always make a decision accept or reject)

Encoding, Problems and Languages

- The difficulty of a problem depends on the encoding
- Goal of algorithm: solving a generic problem, not a specific instance
- Example: « Determine if an integer n is a prime number ? »
- PRIMALITY: (decision problem)
 - Input: an integer N (is N given in prime number factorization or in binary ?)
 - Output: Is N prime ?
- SORTING: (search problem)
 - Input: a list ℓ of integers
 - Output: sort ℓ by increasing order
- For decision problem, $L = \{w \in \Sigma \mid w \text{ is the encoding of accepting strings}\}$
- For search problem, f: $\Sigma^* \rightarrow \Sigma^*$ is a function
- We are interested in decision problem, but there is connection between them

Time and Space Complexity

- Let M be a Turing machine and w a string on Σ . If M(w) halt:
 - Time complexity: is the number of computation steps to compute M(w)
 - Space complexity: is the number of locations visiting during the computation on the working tapes
- Thm: Every multitape Turing machine has an equivalent single tape Turing machine
 - Increase the tape alphabet with marked letter a, b, c, and so on.
 - Concatenate the tapes on a single tape with # separators
 - Simulate a transition on the multitape machine by scanning all the single tape and each time we encountered a marked letter, remember it on the state.

Examples of Turing Machine

- Test if a binary string is even ?
- $\Sigma = \{0,1\}, \Gamma = \{0,1,B\}, Q = \{q_0,q_1,q_a,q_r\},\$
- $\delta(q_0,(u,B))=(q_0,(B,B),(R,S,S))$ for all $u \in \{0,1\}$: to the right, up to B
- $\delta(q_0,(B,B))=(q_1,(B,B),(L,S,S))$: go one step to the Left
- $\delta(q_1, (0, B)) = (q_a, (B, B), (S, S, S))$: accept if the last bit is a 0
- $\delta(q_1, (1,B)) = (q_r, (B,B), (S,S,S))$: reject if the last bit is a 1
- All other transitions will not happened. The output tape is not used.

Example of a Turing machine

- Multiply by 2 a given integer ?
- Test if a string contains as many a than b?
- Compute x+y is the input is w=x#y with x, $y \in \{0,1\}$?
- Decide the language of 2ⁿ 0-bit for any integer n ?
- If w#w with $w \in \{0,1\}^*$?

High-level description of C={aⁱb^jc^k|i*j=k i,j,k≥1}

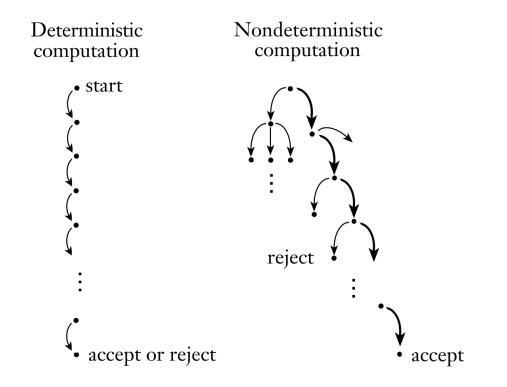
- M= On input string w:
 - Scan the input from left to right to be sure that it is a member of a⁺b⁺c⁺ and reject if it isn't
 - 2. Return the head to the first letter
 - 3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and c's, crossing off one of each until all b's are gone.
 - 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's are crossed off, check whether all c's also are crossed, It yes, accept, otherwise reject

$E = \{ \#x_1 \#x_2 \#... \#x_n | x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

- M works by comparing x_1 with x_2 , through x_n , then by comparing x_2 with x_3 to x_n , and so on. An informal description of M deciding E is:
- M= On input w:
 - 1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. It that symbol was a #, continue with the next stage. Otherwise reject.
 - 2. Scan right to the next # and place a mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so accept.
 - 3. By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, reject.
 - 4. Move the rightmost of the two marks to the next # symbol to the right. If no # is encountered before a blank, move the leftmost mark to the next # to its right and rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so accept.
 - 5. Go to Stage 3.

Non-deterministic Turing machines

- δ :Qx $\Gamma \rightarrow \mathcal{P}(Qx \Gamma x\{L,R\})$ is the transition function with \mathcal{P} is the set of transitions.
- Thm: Every non-deterministic Turing machine has an equivalent deterministic Turing machine
 - Simulate the Non-deterministic machine in a breadth first search and not depth first search
- Corollary: A language is Turing-recognizable iff some non-deterministic Turing machine recognizes it.
- Corollary: A language is decidable iff some nondeterministic Turing machine decides it.



Non-deterministic TM accepts, if there is one accepting path in the tree

Definition of an algorithm and processors

- Church-Turing thesis:
 - the intuitive notion of algorithms equals Turing machine algorithms
- Universal Turing Machine U(<M>,w):
 - Is able to timulate any other Turing machine from the description of that machine.
 - Take as input the encoding of a Turing machine and a string w, and is able to simulate the computation of M on w.
 - It can be seen as a processor able to execute any programs

Decidable languages

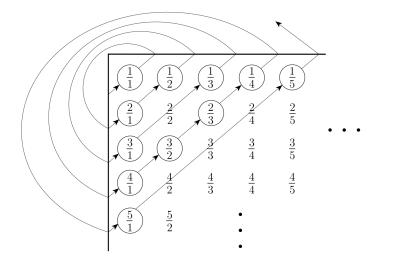
- A_{DFA}={<B,w>| B is a DFA that accepts input string w}
- Thm: A_{DFA} is a decidable language
 - Describe a TM that decides A_{DFA} .
 - M= On input <B,w>, where B is a DFA and w is a string
 - 1. Simulate B on input w
 - 2. If the simulation ends in an accept state, accept, if it is in a non-accept state, reject
- A_{NFA}={<B,w>| B is a NFA that accepts input string w}
- Thm: A_{NFA} is a decidable language
 - Convert the NFA into a DFA as we saw in the last course
- EQ_{DFA}={<A,B>| A,B are DFA and L(A)=L(B)} is also decidable (difference symmetric)
- Thm: Regular ⊆Decidable ⊆Turing-recognizable

The halting problem

- What sort of problems are unsolvable by computer ?
- A_{TM}={<M,w>| M is a TM and M accepts w}
- Thm: A_{TM} is undecidable
 - A_{TM} is Turing-recognizable. (Recognizers are more powerful than deciders.)
 - The universal Turing machine U recognizes A_{TM} :
 - U = On input <M,w> with M a TM and w is a string:
 - 1. Simulate M on input w
 - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject
- This machine can loops on $\langle M, w \rangle$ which is why U does not decide A_{TM}

Diagonalization Method

- Georg Cantor (1873): comparing size of infinite size ?
- Correspondance: exhibit a bijection between two sets
- Examples:
 - Even integers: f(n)=2n. The two sets have the same size
 - Def: A set A is countable if either it is finite or it has the same size as N
 - \mathbb{Q} set of rational numbers is also countable
 - \mathbb{R} is uncountable



•

Some languages are not Turing-recognizable

- To show that the set of all TM is countable: the set of all strings Σ* is countable for any alphabet. With only finitely many strings of each length, we may form a list of Σ* by writing down all strings of length 0, length 1, length 2, and so on.
- The set of all TM is countable because each TM M has an encoding into a string <M>. If we omit strings that are not legal TM, we have the list of all TM.
- To show that the set B of all languages are uncountable, we observe that the set of all infinite sequences of 0s and 1s is uncountable.
- One-to-one correspondance via the characteristic function of the language

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \};$$

$$A = \{ 0, 00, 01, 000, 001, \cdots \};$$

$$\chi_A = 0 1 0 1 1 0 0 1 1 \cdots$$

The halting problem is undecidable

- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M accepts } w \}.$
- Assume that A_{TM} is decidable. Let H a decider for A_{TM} :

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$

• We build a new machine D with H as a subroutine

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what *H* outputs. That is, if *H* accepts, *reject*; and if *H* rejects, *accept*."

 $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases} \quad D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle. \end{cases}$

A Turing-unrecognizable language

- A_{TM} is undecidable. Some language can be unrecognizable.
- Thm: A language is decidable iff it is both Turing-recognizable and co-Turing-recognizable (its complement is Turing-recognizable).
 - If A is decidable, A and its complement are Turing-recognizable
 - If both A and A^c are Turing-recognizable, run M₁ and M₂ in parallel. If M₁ accept, accept, if M₂ accept, reject. (No infinite loop)
- Corollary: A_{TM}^c is not Turing-recognizable.
 - A_{TM} is Turing-recognizable. If A_{TM}^{c} were Turing-recognizable, A_{TM} would be decidable. Some previous theorem tells us that A_{TM} is not decidable, so A_{TM}^{c} must not be Turing-recognizable.

The Halting problem is undecidable

- HALT_{TM}={<M,w>| M is a TM and M halts on input w}
- Thm: $HALT_{TM}$ is undecidable.
 - By contradiction: Assume $HALT_{TM}$ is decidable and show that A_{TM} is decidable
 - Key idea: show that A_{TM} is reducible to $HALT_{TM}$

PROOF Let's assume for the purpose of obtaining a contradiction that TM R decides $HALT_{TM}$. We construct TM S to decide A_{TM} , with S operating as follows.

- $S=\text{``On input } \langle M,w\rangle\text{, an encoding of a TM }M$ and a string w:
 - **1.** Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on w until it halts.
 - 4. If M has accepted, accept; if M has rejected, reject."

Clearly, if R decides $HALT_{TM}$, then S decides A_{TM} . Because A_{TM} is undecidable, $HALT_{TM}$ also must be undecidable.