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Formal definition of a Turing Machine

• Def: A Turing Machine is a 7-uple (Q,𝚺,𝚪,𝛅,q0,qacc,qrej) where Q, 𝚺,𝚪 are all 
finite sets and 

1. Q is the set of states
2. 𝚺 is the input alphabet not containing the special blank symbol B
3. 𝚪 is the tape alphabet, where B∈ 𝚪 and 𝚺⊆𝚪
4. 𝛅:Qx 𝚪 → Qx 𝚪x{L,R} is the transition function
5. qacc ∈Q is the accept state, and 
6. qrej ∈Q is the reject state and qacc ≠ qrej

Other model: input tape in RO mode, output tape: WO mode and working
tapes in RW mode, with infinite tape on the left and right



Configurations
• Turing machine computation: update the current state, the current

tape content, and the current head location. 
• Configuration: uqv with u,v∈𝚪*, q∈Q, the head is on the 1st letter of v 
• Configuration C1 yields configuration C2, C1⤳ C2 in a single step. 
• Assume that a,b,c∈𝚪 and u,v∈𝚪*, and qi, qj∈Q:
• uaqibv yields uqjacv if 𝛅(qi,b)=(qj,c,L) or uaqibv yields uacqjv if 𝛅(qi,b)=(qj,c,R) 
• Start configuration: q0w, 
• Accepting configuration: state is in qacc, 
• Rejecting configuration: state is in qrej, 
• Halting configuration: either in qacc, or qrej



Computation and Language

• Turing Machine M accept input w if there exists a sequence of
configurations C1, C2, …, Ck st:

1. C1 is the start configuration of M on input w 
2. Each Ci yields Ci+1, and 
3. Ck is an accepting configuration.

• The collection of strings that M accepts is the language of M, L(M)
• Def: Call a language Turing-recognizable if some Turing machine 

recognizes it. (can fail to accept, either reject or looping) 
• Def: Call a language Turing-decidable or decidable if some Turing 

machine decides it. (always make a decision accept or reject)



Encoding, Problems and Languages

• The difficulty of a problem depends on the encoding
• Goal of algorithm: solving a generic problem, not a specific instance
• Example: « Determine if an integer n is a prime number ? » 
• PRIMALITY: (decision problem)

• Input: an integer N     (is N given in prime number factorization or in binary ?)
• Output: Is N prime ? 

• SORTING: (search problem)
• Input: a list ℓ of integers
• Output: sort ℓ by increasing order

• For decision problem, L = {w∈ 𝚺|w is the encoding of accepting strings} 
• For search problem, f: 𝚺*➝ 𝚺* is a function
• We are interested in decision problem, but there is connection between them



Time and Space Complexity

• Let M be a Turing machine and w a string on 𝚺. If M(w) halt: 
• Time complexity: is the number of computation steps to compute M(w) 
• Space complexity: is the number of locations visiting during the computation 

on the working tapes 

• Thm: Every multitape Turing machine has an equivalent single tape 
Turing machine
• Increase the tape alphabet with marked letter ȧ, ḃ, ċ, and so on. 
• Concatenate the tapes on a single tape with # separators
• Simulate a transition on the multitape machine by scanning all the single tape 

and each time we encountered a marked letter, remember it on the state.  



Examples of Turing Machine

• Test if a binary string is even ? 
• 𝚺={0,1}, 𝚪={0,1,B}, Q={q0,q1,qa,qr}, 
• 𝛅(q0,(u,B))=(q0,(B,B),(R,S,S)) for all u∈{0,1}: to the right, up to B 
• 𝛅(q0,(B,B))=(q1,(B,B),(L,S,S)): go one step to the Left
• 𝛅(q1,(0,B))=(qa,(B,B),(S,S,S)): accept if the last bit is a 0
• 𝛅(q1,(1,B))=(qr,(B,B),(S,S,S)): reject if the last bit is a 1
• All other transitions will not happened. The output tape is not used.



Example of a Turing machine

• Multiply by 2 a given integer ?
• Test if a string contains as many a than b ?
• Compute x+y is the input is w=x#y with x,y ∈{0,1} ?
• Decide the language of 2n 0-bit for any integer n ?
• If w#w with w ∈{0,1}* ?



High-level description of C={aibjck|i*j=k i,j,k≥1}

• M= On input string w:
1. Scan the input from left to right to be sure that it is a member of a+b+c+ and

reject if it isn’t
2. Return the head to the first letter
3. Cross off an a and scan to the right until a b occurs. Shuttle between the b’s

and c’s, crossing off one of each until all b’s are gone. 
4. Restore the crossed off b’s and repeat stage 3 if there is another a to cross 

off. If all a’s are crossed off, check whether all c’s also are crossed, It yes, 
accept, otherwise reject



E={#x1#x2#...#xn| xi∈{0,1}* and xi≠xj for each i ≠j }
• M works by comparing x1 with x2, through xn, then by comparing x2 with x3

to xn, and so on. An informal description of M deciding E is:

• M= On input w:
1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, 

accept. It that symbol was a #, continue with the next stage. Otherwise reject. 
2. Scan right to the next # and place a mark on top of it. If no # is encountered before

a blank symbol, only x1 was present, so accept. 
3. By zig-zagging, compare the two strings to the right of the marked #s. If they are

equal, reject.
4. Move the rightmost of the two marks to the next # symbol to the right. If no # is

encountered before a blank, move the leftmost mark to the next # to its right and 
rightmost mark to the # after that. This time, if no # is available for the rightmost
mark, all the strings have been compared, so accept.

5. Go to Stage 3.



Non-deterministic Turing machines
• 𝛅:Qx 𝚪 → 𝓟(Qx 𝚪x{L,R}) is the transition 

function with 𝓟 is the set of transitions.
• Thm: Every non-deterministic Turing machine 

has an equivalent deterministic Turing machine
• Simulate the Non-deterministic machine in a

breadth first search and not depth first search

• Corollary: A language is Turing-recognizable iff
some non-deterministic Turing machine 
recognizes it. 
• Corollary: A language is decidable iff some non-

deterministic Turing machine decides it. 
Non-deterministic TM accepts, if there
is one accepting path in the tree



Definition of an algorithm and processors

• Church-Turing thesis: 
• the intuitive notion of algorithms equals Turing machine algorithms

• Universal Turing Machine U(<M>,w):
• Is able to timulate any other Turing machine from the description of that

machine. 
• Take as input the encoding of a Turing machine and a string w, and is able to 

simulate the computation of M on w. 
• It can be seen as a processor able to execute any programs



Decidable languages
• ADFA={<B,w>| B is a DFA that accepts input string w} 
• Thm: ADFA is a decidable language
• Describe a TM that decides ADFA. 
• M= On input <B,w>, where B is a DFA and w is a string

1. Simulate B on input w
2. If the simulation ends in an accept state, accept, if it is in a non-accept state, reject

• ANFA={<B,w>| B is a NFA that accepts input string w} 
• Thm: ANFA is a decidable language
• Convert the NFA into a DFA as we saw in the last course

• EQDFA={<A,B>| A,B are DFA and L(A)=L(B)} is also decidable (difference
symmetric)
• Thm: Regular ⊆Decidable ⊆Turing-recognizable



The halting problem

• What sort of problems are unsolvable by computer ?
• ATM={<M,w>| M is a TM and M accepts w} 
• Thm: ATM is undecidable
• ATM is Turing-recognizable. (Recognizers are more powerful than deciders.)
• The universal Turing machine U recognizes ATM:

• U = On input <M,w> with M a TM and w is a string:
1. Simulate M on input w
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject

• This machine can loops on <M,w> which is why U does not decide ATM



Diagonalization Method
• Georg Cantor (1873): comparing size of infinite size ? 
• Correspondance: exhibit a bijection between two sets 
• Examples: 
• Even integers: f(n)=2n. The two sets have the same size
• Def: A set A is countable if either it is finite or it has the

same size as ℕ
• ℚ set of rational numbers is also countable

• ℝ is uncountable



Some languages are not Turing-recognizable
• To show that the set of all TM is countable: the set of all strings 𝚺* is

countable for any alphabet. With only finitely many strings of each
length, we may form a list of 𝚺* by writing down all strings of length
0, length 1, length 2, and so on. 
• The set of all TM is countable because each TM M has an encoding

into a string <M>. If we omit strings that are not legal TM, we have 
the list of all TM. 
• To show that the set B of all languages are uncountable, we observe 

that the set of all infinite sequences of 0s and 1s is uncountable. 
• One-to-one correspondance via the characteristic function of the 

language



The halting problem is undecidable

• ATM={<M,w>|M is a TM and M accepts w}. 
• Assume that ATM is decidable. Let H a decider for ATM:

• We build a new machine D with H as a subroutine



A Turing-unrecognizable language

• ATM is undecidable. Some language can be unrecognizable. 
• Thm: A language is decidable iff it is both Turing-recognizable and co-

Turing-recognizable (its complement is Turing-recognizable). 
• If A is decidable, A and its complement are Turing-recognizable
• If both A and Ac are Turing-recognizable, run M1 and M2 in parallel. If M1

accept, accept, if M2 accept, reject. (No infinite loop)

• Corollary: ATM
c is not Turing-recognizable.

• ATM is Turing-recognizable. If ATM
c were Turing-recognizable, ATM would be

decidable. Some previous theorem tells us that ATM is not decidable, so ATM
c

must not be Turing-recognizable.



The Halting problem is undecidable
• HALTTM={<M,w>| M is a TM and M halts on input w}
• Thm: HALTTM is undecidable. 
• By contradiction: Assume HALTTM is decidable and show that ATM is decidable
• Key idea: show that ATM is reducible to HALTTM


