Design and Analysis of
Algorithms

Pierre-Alain Fouque

Agenda

e Automata
* Turing Machine and Computability
e Reduction and Hard Problems

* Complexity ...

Automata, Computability
and Complexity

Pierre-Alain Fouque

Based on: http://fuuu.be/polytech/INFOF408/Introduction-To-The-
Theory-Of-Computation-Michael-Sipser.pdf

Introduction: What are the fundamental
capabilities and limitations of computers ?

* Complexity theory: Sorting vs. Scheduling problems
* What makes some problems computationally hard and others easy ?
 What is the root of difficulty ? Approximations ? Worst-case situations ?

* Cryptography requires hard problems rather than easy ones

 Computability theory: Godel, Turing, Church discovered that certain basic
problems cannot be solved by computers
* Determining whether a mathematical statement is true or false ?
* Development of theoretical models of computers

e Automata theory
e Definitions and properties of mathematical models of computation
* Finite automaton: text processing & Context-free Grammar: compilers ...

Strings and Languages

e Alphabet: finite set of symbols (letters) e.g., A;={0,1} or A,={a,b,c..., z} or
A3={O; 1;X;V;Z}

 String over an alphabet: finite sequence of symbols from the alphabet, eg.
01001 is a string over A, abracadabra over A,

 If wis a string overs A, the length of w, written |w| is the number of
symbols it contains. The string of empty length is called the empty string,
written €

* If w has length n, w=w;w,...w,, where w;EA. A substring z of w, if it appears
consecutively within w. The concatenation of x=x;...x, and y=y,...y,, is
Xy=X1...X,Y1...Y,. COncatenation of x with itself k times: x* = x. ... x.

* A language is a set of strings
* Lexicographic order: ¢, 0, 1, 00, 01, 10, 11, 000, 001, ... size+dictionary

Regular Languages

* What is a computer ? Idealized computer called computational model
e Simplest model: finite state machine or finite automaton
* Good models for computer with extremely limited memory

* Finite automata and probabilistic variant called Markov chain useful
for recognizing pattern and predict price changes in financial markets

Machine M;: 3 States, labeled q;, g5, g3
g4: start state and qs: accept state

A\O 1 e, .
1 . 0 Transitions between states
.e 1101 is accepted because M is at the end in q,
0,1

M accepts any string that ends with an even
number of 0 after the last 1

DEFINITION 1.5

Formal definition of a finite automaton

We can describe M| formally by writing M, = (Q, ¥, 6, 1, F'), where

A finite automaton is a S-tuple (Q, %, 0. qo. F'), where 1. Q ={q1,q2,q3},
1. Q is a finite set called the states, 2.2 ={0,1},
2. > is a finite set called the alpbabet, 3. J 1s described as
3. 0: Q x 22— Q@ 1s the traunsition ﬁmction,’ o 1
:. (;() i 8 15 :]}16 stt:rt state, ;mtd . oo @
. F' C @ 1s the set of accept states. o g g
q3 | 92 42

4. ¢ 1s the start state, and
5. F = {(]2}.

If A'is the set of all strings that M accepts, we say that A is the language of machine M: L(M)=A.
We say that M recognizes A or that M accepts A. If the machine accepts no strings, it recognizes the empty language @

Examples

Formal definition of computation

Let M = ('Q, 3,0, ;]0, F') be a finite automaton and let w = wy *1'02 .-+ wy be
a string where each w; 1s a member of the alphabet 3. Then M accepts w if a

sequence of states rg, 7y, ..., in @ exists with three conditions:
1. ro = qo,
2. 0(riyswis1) =riy1, fori=0,...,n—1, and
3.r, € F.

Condition 1 says that the machine starts in the start state. Condition 2 says
that the machine goes from state to state according to the transition function.
Condition 3 says that the machine accepts its input if it ends up in an accept
state. We say that M recognizes language A if A = {w| M accepts w}.

DEFINITION 1.16

A language is called a regular language if some finite automaton
recognizes it.

Regular expressions

" DEFINITION 1.23

Let A and B be languages. We define the regular operations union,
concatenation, and star as follows.

* Union: AUD = {z|z € Aorx € B}.
» Concatenation: Ao B = {zy|x € Aand y € B}.

« Star: A* = {xy22... 2| k > 0 and each z; € A}.

EXAMPLE 1.24 ..

Let the alphabet ¥ be the standard 26 letters {a,b, ..., z}. If A = {good, bad}
and B = {boy, girl}, then

AU B = {good, bad, boy, girl},
Ao B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {g, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }.

Results

* The class of regular
languages is closed under
the union operation

* In other words, If A; and A,
are regular languages, so is
A,UA,

* Proof: If M, recognizes A,
and M, recognizes A,, create
a new machine that runsin
parallel M; and M, and
accept if one of them accepts

Let M, recognize Ay, where M, = (Q1,%,61,q:1. F1), and
A’IQ recognize Ag, where Afz B (QQ, E, 527 qa, Fz)

Construct M to recognize A; U Ay, where M = (Q, %, 6, qo, F).

1. Q = {(r1,7m2)| m1 € Q7 and 2 € Q2}.
This set is the Cartesian product of sets 1 and @5 and is written Q7 x Q5.
It is the set of all pairs of states, the first from @4 and the second from Q5.

2. 3, the alphabet, is the same as in M; and M,. In this theorem and in all
subsequent similar theorems, we assume for simplicity that both M; and
M have the same input alphabet 3. The theorem remains true if they
have different alphabets, ¥, and ¥5. We would then modify the proof to
let X =%, U 2.

3. 4, the transition function, is defined as follows. For each (r1,7r2) € Q and
eacha € ¥, let

6((r1,r2),a) = (61(r1.a), 82(r2,a)).
Hence § gets a state of M (which actually is a pair of states from M, and
My), together with an input symbol, and returns M’s next state.
4. o is the pair (¢1, ¢2).

5. F is the set of pairs in which either member is an accept state of My or M.
We can write it as

= {(”"117’2): rn € Florry € Fz}-

This expression is the same as F' = (F} x Q2) U (Q; x Fy). (Note that it is
not the same as F' = F; x Fy. What would that give us instead??)

3 This expression would define M’s accept states to be those for which both members of
the pair are accept states. In this case M would accept a string only if both M) and M
accept it, so the resulting language would be the intersection and not the union. In fact,
this result proves that the class of regular languages is closed under intersection.

Closure under concatenation operation

THEOREM 1.26 ...

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A, are regular languages then so is A; o A,.

To prove this theorem let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata M; and M; recognizing
the regular languages 4, and A;. But now, instead of constructing automaton
M to accept its input if either M, or My accept, it must accept if its input can
be broken into two pieces, where M; accepts the first piece and M, accepts the
second piece. The problem is that M doesn’t know where to break its input
(i.e., where the first part ends and the second begins). "To solve this problem we
introduce a new technique called nondeterminism.

Non-deterministic automata

FIGURE 1.27
The nondeterministic finite automaton NV,

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately ap-
parent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The nondeterministic automaton shown in Fig-
ure 1.27 violates that rule. State ¢; has one exiting arrow for 0, but it has two for
1; go has one arrow for 0, but it has none for 1. In an NFA a state may have zero,
one, or many exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label €. In general, an NFA may have arrows

NFA computation

Symbol read @ Start
0 _________________________
Deterministic Nondeterministic @
computation computation
1

£ @ @

k‘\.k\.h o A~
- . L]

ﬁo \ 1 _________

* acceptor reject * accept @ @ @ 44 @
Denmnistc an () (99
Deterministic and nondeterministic computations with an accepting

branch

FIGURE 1.29
The computation of N} on input 010110

3

N FA E Xa I I I p | e As mentioned, every NFA can be converted into an equivalent DFA, but some-

times that DFA may have many more states. The smallest DFA for A contains
eight states. Furthermore, understanding the functioning of the NFA is much
EXAMPLE J1.30 i s s easier, as you may see by examining the following ﬁgure for the DFA.

Let A be the language consisting of all strings over {0.1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following

four-state NFA N, recognizes A.

FIGURE 1.31

The NFA N5 recognizing A
FIGURE 1.32

One good way to view the computation of this NFA is to say that it stays in the A DFA recognizing A

start state g, until it “guesses” that it is three places from the end. At that point,
if the input symbol is a 1, it branches to state g, and uses g3 and ¢4 to “check” on
whether its guess was correct.

Suppose that we added € to the labels on the arrows going from g5 to g3 and
from g3 to ¢4 in machine N, in Figure 1.31. So both arrows would then have
the label 0, 1, € instead of just 0, 1. What language would N; recognize with this
modification? Try modifying the DFA in Figure 1.32 to recognize that language.

NFA formal definition

NFA the transition function takes a state and an input symbol or the empty string
and produces the set of possible next states. In order to write the formal definition,
we need to set up some additional notation. For any set) we write P(Q) to be
the collection of all subsets of). Here P(Q) is called the power set of (). For any
alphabet ¥ we write 3. to be ¥ U {e}. Now we can write the formal description
of the type of the transition function in an NFA as §: Q x 3.—P(Q).

DEFINITION 1.37

A mnondeterministic finite automaton is a S-tuple (Q, %, 4, qo, F),
where

1. @ is a finite set of states,

2. ¥ is a finite alphabet,

3. 0: Q x ¥.—P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C @ is the set of accept states.

Recall the NFA Ny:

O,1

(a)—

The formal description of Ny is (@, .4, q1. F'), where

1‘ Q — {Q]SQQt (J:31Q4}a
2. % = {01},

3. 0 is given as

0

1

4. ¢ is the start state, and

q1
q2
q3
q4

{(h} {(]1=C12}

{q3}
0

{qa}

0

{qa}
{Q4}

{

=R oo

b

Equivalence of DFA and NFA

Every nondeterministic finite automaton has an equivalent deterministic finite
automaton.

PROOF IDEA Ifa language is recognized by an NFA, then we must show the
existence of a DFA that also recognizes it. The idea is to convert the NFA into an
equivalent DFA that simulates the NFA,

Recall the “reader as automaton” strategy for designing finite automata. How
would you simulate the NFA if you were pretending to be a DFA? What do you
need to keep track of as the input string is processed? In the examples of NFAs
you kept track of the various branches of the computation by placing a finger
on each state that could be active at given points in the input. You updated the
simulation by moving, adding, and removing fingers according to the way the
NFA operates. All you needed to keep track of was the set of states having fingers
on them.

If k is the number of states of the NFA, it has 2% subsets of states. Each subset
corresponds to one of the possibilities that the DFA must remember, so the DFA
simulating the NFA will have 2% states. Now we need to figure out which will
be the start state and accept states of the DFA, and what will be its transition
function. We can discuss this more easily after setting up some formal notation.

COROLLARY ‘.40 ...

A language is regular if and only if some nondeterministic finite automaton rec-
ognizes It.

Closure under regular operation: union,

concatenation

FIGURE 1.46

Construction of an NFA N to recognize A; U Ay

O
0O

O
OO

O
000

@)
Q
O

-~

N

-

N
4)
O O z > o O @
O O o o @
. _

FIGURE 1.48
Construction of N to recognize A; o A

Closure under star operation

FIGURE 1.50
Construction of N to recognize A*

Formal definition of a regular expression

FORMAL DEFINITION OF A REGULAR EXPRESSION

1.52

Say that R is a regular expression if R is

DEFINITION

1. a for some a in the alphabet %,
2. g,
3.0,
4

5
6. (IR7), where R; is a regular expression.

. (R1 U Ry), where Ry and R, are regular expressions,
. (Ry o Ry), where Ry and R, are regular expressions, or

In items 1 and 2, the regular expressions a and e represent the
languages {a} and {e}, respectively. In item 3, the regular expres-
sion () represents the empty language. In items 4, 5, and 6, the
expressions represent the languages obtained by taking the union

or concatenation of the languages 12, and R, or the star of the
language I?,, respectively.

Don’t confuse the regular expressions € and (). The expression € represents
the language containing a single string—namely, the empty string—whereas ()
represents the language that doesn’t contain any strings.

EXAMPLE

--

1.53

In the following instances we assume that the alphabet ¥ is {0.,1}.

10.
11.

12.

0*10* = {w| w contains a single 1}.

1
2. ¥*1%" = {w| w has at least one 1}.

3. ¥*001¥* = {w| w contains the string 001 as a substring}.
4. 1*(01*)* = {w]| every 0 in w is followed by at least one 1}.
5.
6
7
8
9

(LX)* = {w| wis a string of even length}.’

. (2EX)* = {w] the length of w is a multiple of three}.

. 01U 10 = {01, 10}.

. 0X*0U1¥*1 U0 U1 = {w| w starts and ends with the same symbol}.
. (0Ug)1r = 01* U 1™,

The expression 0 U € describes the language {0, e}, so the concatenation
operation adds either 0 or € before every string in 1*.

(Oue)(1ue)={e 0,1,01}.

10 = 0.

Concatenating the empty set to any set yields the empty set.

0 = {e}.

The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 strings, giving only the empty string.

Equivalence with finite automata

Regular expressions and finite automata are equivalent in their descriptive
power. This fact is surprising because finite automata and regular expressions
superficially appear to be rather different. However, any regular expression can
be converted into a finite automaton that recognizes the language it describes,
and vice versa. Recall that a regular language is one that is recognized by some
finite automaton.

THEOREM 1.54 ...

A language is regular if and only if some regular expression describes it.

This theorem has two directions. We state and prove each direction as a separate
lemma.

Nonregular languages

To understand the power of finite automata you must also understand their lim-
itations. In this section we show how to prove that certain languages cannot be
recognized by any finite automaton.

Let’s take the language B = {0"1"| n > 0}. If we attempt to find a DFA
that recognizes B3, we discover that the machine seems to need to remember
how many 0s have been seen so far as it reads the input. Because the number of
Os 1sn’t limited, the machine will have to keep track of an unlimited number of
possibilities. But it cannot do so with any finite number of states.

Next, we present a method for proving that languages such as B are not regu-
lar. Doesn’t the argument already given prove nonregularity because the number
of 0s is unlimited? It does not. Just because the language appears to require un-
bounded memory doesn’t mean that it is necessarily so. It does happen to be true
for the language B3, but other languages seem to require an unlimited number of
possibilities, yet actually they are regular. For example, consider two languages
over the alphabet ¥ = {0,1}:

C' = {w| w has an equal number of 0s and 1s}, and

D = {w

w has an equal number of occurrences of 01 and 10 as substrings}.

At first glance a recognizing machine appears to need to count in each case,
and therefore neither language appears to be regular. As expected, C' is not
regular, but surprisingly D is regular!® Thus our intuition can sometimes lead
us astray, which is why we need mathematical proofs for certainty. In this section
we show how to prove that certain languages are not regular.

The pumping lemma

THEOREM 1.70 ...

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each 7 > 0, xy'z € A,
2. |yl > 0, and
3. |zy| < p.

Recall the notation where |s| represents the length of string s, * means that i
copies of y are concatenated together, and y" equals €.

When s is divided into zyz, either = or z may be &, but condition 2 says that
y # €. Observe that without condition 2 the theorem would be trivially true.
Condition 3 states that the pieces = and y together have length at most p. Itis an
extra technical condition that we occasionally find useful when proving certain
languages to be nonregular. See Example 1.74 for an application of condition 3.

Example pumping lemma

EXAMPLE 1.73 ..

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given
by the pumping lemma. Choose $ to be the string 0717, Because s is a member
of BB and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = xyz, where for any ¢ > 0 the string zy*z is in B. We
consider three cases to show that this result is impossible.

1. The string y consists only of 0s. In this case the string xyyz has more 0s
than 1s and so is not a member of B, violating condition 1 of the pumping
lemma. This case is a contradiction.

2. The string y consists only of 1s. This case also gives a contradiction.

3. The string y consists of both 0s and 1s. In this case the string zyyz may
have the same number of 0s and 1s, but they will be out of order with some
1s before 0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is reg-
ular, so B is not regular. Note that we can simplify this argument by applying
condition 3 of the pumping lemma to eliminate cases 2 and 3.

In this example, finding the string s was easy, because any string in B of
length p or more would work. In the next two examples some choices for s do
not work, so additional care is required.

