Overview of Cryptography

Prof: Pierre-Alain Fouque

Reference: http://cacr.uwaterloo.ca/hac/about/chap1.pdf

Vernam Ciphers a.k.a. One-Time Pad

- Let A={0,1}. A binary message m₁m₂...m_t is operated by a binary key k₁k₂...k_t of the same length to produce the ciphertext string c₁c₂...c_t:
- $c_i = m_i \bigoplus k_i$ for all i=1...t.
- To decrypt, it suffices to compute $c_i \bigoplus k_i$ to recover m_i .
- If we encrypt two messages with the same key, we can obtain $c\oplus c' = m\oplus m'$, where $c=m\oplus k$ and $c'=m'\oplus k$ since $k\oplus k=0$ and $k\oplus 0=k$.

Unbreakable cipher used during the cold war: unconditional security Main drawbacks:

- 1. the key must be random,
- 2. key must be as long as the message, and
- 3. key must be changed for each message.

Unconditional vs. Computational Security

- A powerful adversary with infinite time cannot obtain information about the plaintext given only the ciphertext
- If a ciphertext c is obtained, anyone can produce a plaintext p and a key k such that c=p⊕k for any plaintext |p|=|c|
- The adversary cannot distinguish plaintext with equal length
- However, in practice keys are reused across several ciphertexts
- In a practical point of view, computational security is preferred: it is computationally hard to recover the plaintext (but possible for an adversary with infinite time...).
- E.g.: for a block cipher, we can exhaust all keys 2¹²⁸ operations

Vigenere Cipher

 Vigenere is based on the same idea as Vernam with {a,b,c,...z} alphabet or ascii characters

- Vigenere cipher reuses the same key
- IC (index of coincidence) = $\sum_{a \in A} p_a$ where
- $\ensuremath{p_a}$ is the probability of character a
- IC is invariant with substitution
- IC is higher when the distribution is not uniform

Cryptanalysis Vigenere Cipher

- Assume the key length is known, one can extract substrings encrypted with the same letter
- Such encryption is called a shift encryption since the whole alphabet is shifted
- Easier to break than substitution: once the encryption of one letter is known, we can deduce all the substitution
- Learning the length: Guess all length and compute the IC
- ICM: $\sum_{a \in A} p_a p'_a$ where p_a and p'_a are the probabilities of two strings

The key space

- The size of the key space is the number of encryption/decryption key pairs available in the cipher system. A key is a compact way to specify the encryption function (from the set of all encryption functions).
- E.g. a substitution of block length t has (2^t)! encryption functions
- A necessary, but usually not sufficient, condition for an encryption scheme to be secure is that the key space be large enough to preclude exhaustive search. E.g. 26! ≈4x10²⁶.

Encrypting long messages

 Mode of operations: how using a block cipher to encrypt large messages ?

Problems: - deterministic

Electronic Codebook (ECB) mode encryption

Other modes: CFB, OFB, PCBC, CTS (Ciphertext stealing)

Electronic Code Book is deterministic ... CBC better

Original image

Encrypted using ECB mode

Randomization is useful ...

Cipher Block Chaining (CBC) mode encryption

Stream Cipher and CTR mode of operations

Vernam cipher is unconditionally secure

Main problem: key reuse

- Generate the key with a smaller one using a pseudorandom number generator : output looks random but bitstring generated deterministically with from a secrete seed
- Cryptographically secure pseudorandom generator are hard to design: rand from c language is not good
- Block cipher can be used as follows
- If stream cipher are resymchronized, same key is generated (WPA)
- In order to make it stateless, a nonce is usually added to generate different keystream

Counter (CTR) mode encryption