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Cyclic Groups

Definition
Let N be a positive integer. Then Z/NZ = ZN is a group under
addition mod N, and Z∗N is a group under the multiplication mod N

Definition (Cyclic Group)

Let G be a finite group of order n, with identity element e. G is
cyclic if there exists an element of order n, called generator of G . A
cyclic group is abelian. If x is a generator, G = {e, x , . . . , xn−1}

Definition
The group Z∗N is cyclic when N is a prime.
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Some computations...

In any group G , we can define an exponentiation operation :

if i = 0, then ai is defined to be 1
if i > 0, then ai = a · a · . . . · a (i − 1 times)
if i < 0, then ai = a−1 · a−1 · . . . · a−1 (i − 1 times)

For all a ∈ G and all i , j ∈ Z :

ai+j = ai · aj

(ai )j = aij

a−1 = (ai )−1 = (a−1)i
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Some relations to know to compute

Definition
The order of a group is its size.

Fact
If G is a group and m = |G | its order :

am = 1 for all a ∈ G
ai = ai mod m for all a ∈ G and i ∈ Z

Example : In Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}
under the operation of multiplication modulo 21. m = 12.

586 mod 21 = 586 mod 12 mod 21 = 52 mod 12 mod 21
= 25 mod 21 = 4
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Subgroups and examples

If G is a group, S ⊆ G is a subgroup if it is a group under the
same operation as that under which G is a group
If we already know that G is a group, there is a simple way to
test whether S is a subgroup :

it is one if and only if x · y−1 ∈ S for all x , y ∈ S
y−1 is the inverse of y in G

Fact : Let G be a group and let S be a subgroup of G . Then,
the order of S divides the order of G .

(Z/pZ)∗ for a prime p is cyclic of order p − 1

E.g. p = 11, the subgroups are S1 = {1}, S2 = {−1, 1},
S5 = {1, 4, 5, 9, 3}, and S10 = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}.
For each divisors of p− 1 = 10, a subgroup of that order exists
2 is a generator, as well as 2k for gcd(k, 10) = 1
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Cyclic Groups and generators

If g ∈ G is any member of the group, the order of g is defined
to be the least positive integer n st gn = 1 We let
〈g〉 = {g i |i ∈ Z} = {g0, g1, . . . , gn−1} denote the set of
group elements generated by g . This is a subgroup of order n.
An element g of the group is called a generator of G if
〈g〉 = G or, equivalently, it its order is m = |G |
A group is cyclic if it contains a generator
If g is a generator of G , then for every a ∈ G , there is a
unique integer i ∈ Zm s.t. g i = a. This i is called the discrete
logarithm of a to base g , and we denote it by DLOGG ,g (a).
DLOGG ,g (a) is a function that maps G to Zm, and moreover
this function is a bijection.
The function Zm to G defined by i 7→ g i is called the discrete
exponentiation function
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Choosing cyclic group and generators

The discrete log function is conjectured to be one-way
(hard-to-compute) for some cyclic groups G . Due to this fact,
we often seek cyclic groups.
Examples of cyclic groups :

1 Z∗
p for a prime p

2 a group of prime order

Finding generators : How to chose a candidate and test it ?
Let G be a cyclic group and let m = |G |. Let pα11 . . . pαn

n be
the prime factorization of m and let mi = m/pi for
i = 1, . . . , n. Then, g ∈ G is a generator of G iff for all
i = 1, . . . , n : gmi 6= 1.
IfG is a cyclic group of order m, and g a generator of G :
Gen(G ) = {g i |i ∈ Z∗m} and |Gen(G )| = ϕ(m).
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Example : determine all the generators of Z∗11

Its size is m = ϕ(11) = 10 and the prime factorization of
10 = 2 · 5. Thus the test for whether a given a ∈ Z∗11 is a
generator is that a2 6= 1 mod 11 and a5 6= 1 mod 11.
Gen(Z∗11) = {2, 6, 7, 8}
Double-checking : |Z∗11| = 10, Z∗10 = {1, 3, 7, 9}

{2i ∈ G |i ∈ Z∗10} = {21, 23, 27, 29 mod 11} = {2, 6, 7, 8}

a 1 2 3 4 5 6 7 8 9 10
a2 mod 11 1 4 9 5 3 3 5 9 4 1
a5 mod 11 1 10 1 1 1 10 10 10 1 10

Pierre-Alain Fouque
Cryptography – BCS 3 Public-Key Cryptography – Cyclic Group and Elliptic Curves



Algorithm for finding a generator

Most common choice of a group in crypto is Z∗p for a prime p

Idea : Pick a random element and test it. Choose p s.t. the
prime factorization of the order of the group (p − 1) is known.
E.g., chose a prime p s.t. p = 2q + 1 for some prime q

The probability that an iteration of the algorithm is
successful : |Gen(Z∗

p )|
|Z∗

p |−2 = ϕ(p−1)
p−3 = ϕ(2q)

2q−2 = q−1
2q−2 = 1

2

Algorithm 1 Finding a generator
1: q = (p − 1)/2 ; found ← false
2: while found 6= true do
3: g ← Z∗p \ {1, p − 1}
4: if (g2 mod p 6= 1) && (gq mod p 6= 1) then
5: found ← true
6: end if
7: end whilereturn g
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Squares mod n

Quadratic Residue modn

Def : an element a mod n is a quadratic residue mod n if there
exists b with a = b2 mod n

other elements are called non-quadratic residue
1, 4, 9, 5, 3 are square mod11
other values 2, 3, 6, 7, 8, 10 are not square mod 11

a 1 2 3 4 5 6 7 8 9 10
a2 mod 11 1 4 9 5 3 3 5 9 4 1
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Elliptic Curves

Elliptic curve is a group for the addition
an elliptic curve E is a set of points satisfying the equation
y2 = x3 + ax + b over Z/pZ
These points form a group with an additive notation
This group is not cyclic, but from one element we can define a
cyclic group
From one point G , the 〈G 〉 is the group generated by the
point G with the addition (defined in the next slide)
Specific point at infinity : ∞ identity element for this group
From G , we can define k ×G = G +G + . . .+G (k − 1) times
If the order of the group 〈G 〉 (number of different points) is
prime, it is difficult to invert the scalar multiplication operation
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Elliptic Curve point multiplication : Double-and-Add

Algorithm 2 Double-and-add d = d0 + 2d1 + 22d2 + . . .+ 2mdm

1: N ← P
2: Q ←∞
3: for i from 0 to m do
4: if di = 1 then
5: Q ← point− add(Q,N)
6: end if
7: N ← point− double(n)
8: end forreturn Q = dP
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El Gamal Encryption – ECIES

Informal description
1 Alice gets Bob’s public key, g x . He knows his own private key x

2 Alice generates a fresh, ephemeral value y , and g y (public)
3 Alice computes c from m, the symmetric encryption of m with

key k (authenticated encryption scheme) : c = E (k ;m)

4 Alice sends the public ephemeral g y and the ciphertext c

5 Bob, knowing x and g y , k = KDF (g xy ) and recovers m from c

Common Parameters
Key Derivation Function) : HMAC-SHA-1-80 with 80-bit
symmetric encryption scheme AES-GCM noted E

elliptic curve parameters : 〈G 〉 of order n, ∞ infinity
Bob’s PK : KB = kBG , kB ∈ [1, n − 1] random private key
optional shared information : S1 and S2
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El Gamal Encryption – ECIES

Encryption : To encrypt a message m Alice :

generates a random r ∈ [1, n − 1] and computes R = rG

derives a shared secret S = Px , P = (Px ,Py ) = rKB 6=∞)
uses a KDF to derive symmetric encryption and MAC keys :
kE‖kM = KDF (S‖S1)

encrypts the message : c = E (kE ;m)

computes the tag of c and S2 : d = MAC (kM ; c‖S2)

output R‖c‖d

Decryption : To decrypt the ciphertext R‖c‖d
1 derives the shared secret : S = Px with P = (Px ,Py ) = kBR :

P = kBR = kB rG = rkBG = rKB , or output failed if P =∞
2 kE‖kM = KDF (S‖S1) ; output failed if d 6= MAC (kM ; c‖S2)

3 uses symmetric encryption scheme to decrypt m = E−1(kE ; c)
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ECDSA Elliptic Curve Digital Signature Algorithm

Signature process : dA private key
1 e = SHA− 2(m), convert it to an integer.
2 Let z be the Ln leftmost bits of e where Ln the bit length of n.
3 Choose a cryptographically secure random k ∈ [1, n − 1]
4 Compute the curve point (x1, y1) = k × G

5 Compute r = x1 mod n. If r = 0, go to step 3.
6 Compute s = k−1(z + rdA) mod n. If s = 0, go to step 3.
7 The signature is (r , s). ((r ,−s mod n) is also valid)
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ECDSA

Verification : QA = dAG public key
1 Check QA 6=∞, QA ∈ E , n × QA =∞
2 r , s ∈ [1, n − 1], if not, return invalid
3 Compute e = SHA− 2(m) and z the Ln leftmost bits of e

4 Compute u1 = zs−1 mod n and u2 = rs−1 mod n

5 (x1, y1) = u1 × G + u2 × QA. If (x1, y1) =∞, Return Invalid.
6 Return Valid if r = x1 mod n, invalid otherwise

Do not use twice the same k (PlayStation 3)
if the first significant bits of k are known, it is possible to
recover the secret key !
Check that C = u1 × G + u2 × QA = k × G
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Sage and Elliptic Curve

Weierstrass equation : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

sage : EllipticCurve([0,0,1,-1,0]) : Elliptic Curve defined by
y2 + y = x3 − x over Rational Field
Elliptic curves over Z/NZ with N prime are of type "elliptic
curve over a finite field" :
sage : F=Zmod(95) ; EllipticCurve(F, [2,3]) : y2 = x3 + 2x + 3
over Ring of integers modulo 95
definition of point : sage P = E(-1,1)
group order : P.order()
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