Cryptography – BCS 3 Public-Key Cryptography – Cyclic Group and Elliptic Curves

Pierre-Alain Fouque

Université de Rennes 1

September, 29 2020

Pierre-Alain Fouque

æ

御とくほとくほど

Definition

Let N be a positive integer. Then $\mathbb{Z}/N\mathbb{Z} = \mathbb{Z}_N$ is a group under addition mod N, and \mathbb{Z}_N^* is a group under the multiplication mod N

Definition (Cyclic Group)

Let G be a finite group of order n, with identity element e. G is cyclic if there exists an element of order n, called generator of G. A cyclic group is abelian. If x is a generator, $G = \{e, x, \dots, x^{n-1}\}$

Definition

The group \mathbb{Z}_N^* is cyclic when N is a prime.

In any group G, we can define an exponentiation operation :

- if i = 0, then a^i is defined to be 1
- if i > 0, then $a^i = a \cdot a \cdot \ldots \cdot a$ (i 1 times)
- if i < 0, then $a^i = a^{-1} \cdot a^{-1} \cdot \ldots \cdot a^{-1}$ (i 1 times)

For all $a \in G$ and all $i, j \in \mathbb{Z}$:

• $a^{i+j} = a^i \cdot a^j$

•
$$(a^i)^j = a^{ij}$$

•
$$a^{-1} = (a^i)^{-1} = (a^{-1})^i$$

★御▶★注▶★注▶ = 注

Definition

The order of a group is its size.

Fact

• If G is a group and
$$m = |G|$$
 its order :

•
$$a^m = 1$$
 for all $a \in G$

•
$$a^i = a^i \mod m$$
 for all $a \in G$ and $i \in \mathbb{Z}$

• Example : In $\mathbb{Z}_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$ under the operation of multiplication modulo 21. m = 12.

$$5^{86} \mod 21 = 5^{86 \mod 12} \mod 21 = 5^{2 \mod 12} \mod 21$$

= 25 mod 21 = 4

Subgroups and examples

- If G is a group, $S \subseteq G$ is a subgroup if it is a group under the same operation as that under which G is a group
- If we already know that G is a group, there is a simple way to test whether S is a subgroup :
 - it is one if and only if $x \cdot y^{-1} \in S$ for all $x, y \in S$
 - y^{-1} is the inverse of y in G
- Fact : Let G be a group and let S be a subgroup of G. Then, the order of S divides the order of G.

$(\mathbb{Z}/p\mathbb{Z})^*$ for a prime p is cyclic of order p-1

- E.g. p = 11, the subgroups are $S_1 = \{1\}$, $S_2 = \{-1, 1\}$, $S_5 = \{1, 4, 5, 9, 3\}$, and $S_{10} = \{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\}$.
- For each divisors of p-1 = 10, a subgroup of that order exists

▲御▶ ▲ 理▶ ▲ 理▶ ― 理

• 2 is a generator, as well as 2^k for gcd(k, 10) = 1

Cyclic Groups and generators

- If $g \in G$ is any member of the group, the order of g is defined to be the least positive integer n st $g^n = 1$ We let $\langle g \rangle = \{g^i | i \in \mathbb{Z}\} = \{g^0, g^1, \dots, g^{n-1}\}$ denote the set of group elements generated by g. This is a subgroup of order n.
- An element g of the group is called a generator of G if $\langle g \rangle = G$ or, equivalently, it its order is m = |G|
- A group is cyclic if it contains a generator
- If g is a generator of G, then for every a ∈ G, there is a unique integer i ∈ Z_m s.t. gⁱ = a. This i is called the discrete logarithm of a to base g, and we denote it by DLOG_{G,g}(a).
- $DLOG_{G,g}(a)$ is a function that maps G to \mathbb{Z}_m , and moreover this function is a bijection.
- The function \mathbb{Z}_m to G defined by $i \mapsto g^i$ is called the discrete exponentiation function

・ロト ・御 ト ・ ヨト ・ ヨト …

3

- The discrete log function is conjectured to be one-way (hard-to-compute) for some cyclic groups *G*. Due to this fact, we often seek cyclic groups.
- Examples of cyclic groups :

 - 2 a group of prime order
- Finding generators : How to chose a candidate and test it?
- Let G be a cyclic group and let m = |G|. Let p₁^{α1} ... p_n^{αn} be the prime factorization of m and let m_i = m/p_i for i = 1,..., n. Then, g ∈ G is a generator of G iff for all i = 1,..., n : g^{m_i} ≠ 1.
- If G is a cyclic group of order m, and g a generator of G : $Gen(G) = \{g^i | i \in \mathbb{Z}_m^*\}$ and $|Gen(G)| = \varphi(m)$.

▶ ▲ 문 ▶ ▲ 문 ▶

• Its size is $m = \varphi(11) = 10$ and the prime factorization of $10 = 2 \cdot 5$. Thus the test for whether a given $a \in \mathbb{Z}_{11}^*$ is a generator is that $a^2 \neq 1 \mod 11$ and $a^5 \neq 1 \mod 11$.

•
$$Gen(\mathbb{Z}_{11}^*) = \{2, 6, 7, 8\}$$

 \bullet Double-checking : $|\mathbb{Z}_{11}^*|=$ 10, $\mathbb{Z}_{10}^*=\{1,3,7,9\}$

$$\{2^i \in G | i \in \mathbb{Z}_{10}^*\} = \{2^1, 2^3, 2^7, 2^9 \text{ mod } 11\} = \{2, 6, 7, 8\}$$

а	1	2	3	4	5	6	7	8	9	10
<i>a</i> ² mod 11	1	4	9	5	3	3	5	9	4	1
a ⁵ mod 11	1	10	1	1	1	10	10	10	1	10

Algorithm for finding a generator

- Most common choice of a group in crypto is \mathbb{Z}_p^* for a prime p
- Idea : Pick a random element and test it. Choose p s.t. the prime factorization of the order of the group (p 1) is known. E.g., chose a prime p s.t. p = 2q + 1 for some prime q
- The probability that an iteration of the algorithm is successful : $\frac{|\text{Gen}(\mathbb{Z}_p^*)|}{|\mathbb{Z}_p^*|-2} = \frac{\varphi(p-1)}{p-3} = \frac{\varphi(2q)}{2q-2} = \frac{q-1}{2q-2} = \frac{1}{2}$

Algorithm 1 Finding a generator

1:
$$q = (p-1)/2$$
; found \leftarrow false

2: while found \neq true do

3:
$$g \leftarrow \mathbb{Z}_p^* \setminus \{1, p-1\}$$

4: if
$$(g^2 \mod p
eq 1)$$
 && $(g^q \mod p
eq 1)$ then

- 5: found \leftarrow true
- 6: end if
- 7: end whilereturn g

Quadratic Residue mod n

- Def : an element *a* mod *n* is a quadratic residue mod *n* if there exists *b* with *a* = *b*² mod *n*
- other elements are called *non-quadratic residue*
- 1, 4, 9, 5, 3 are square mod 11
- other values 2, 3, 6, 7, 8, 10 are not square mod 11

а	1	2	3	4	5	6	7	8	9	10
a ² mod 11	1	4	9	5	3	3	5	9	4	1

Elliptic curve is a group for the addition

- an elliptic curve $\mathcal E$ is a set of points satisfying the equation $y^2 = x^3 + ax + b$ over $\mathbb Z/p\mathbb Z$
- These points form a group with an additive notation
- This group is not cyclic, but from one element we can define a cyclic group
- From one point G, the $\langle G \rangle$ is the group generated by the point G with the addition (defined in the next slide)
- Specific point at infinity : ∞ identity element for this group
- From G, we can define $k \times G = G + G + \ldots + G (k-1)$ times
- If the order of the group $\langle G \rangle$ (number of different points) is prime, it is difficult to invert the scalar multiplication operation

Elliptic Curve point multiplication : Double-and-Add

El Gamal Encryption – ECIES

Informal description

- Alice gets Bob's public key, g^x . He knows his own private key x
- 2 Alice generates a fresh, ephemeral value y, and g^{y} (public)
- Alice computes c from m, the symmetric encryption of m with key k (authenticated encryption scheme) : c = E(k; m)
- **(**) Alice sends the public ephemeral g^{y} and the ciphertext c
- So Bob, knowing x and g^y , $k = KDF(g^{xy})$ and recovers m from c

Common Parameters

- Key Derivation Function) : HMAC-SHA-1-80 with 80-bit
- symmetric encryption scheme AES-GCM noted E
- elliptic curve parameters : $\langle G \rangle$ of order *n*, ∞ infinity
- Bob's PK : $K_B = k_B G$, $k_B \in [1, n-1]$ random private key
- optional shared information : S_1 and S_2

El Gamal Encryption – ECIES

Encryption : To encrypt a message m Alice :

- generates a random $r \in [1, n-1]$ and computes R = rG
- derives a shared secret $S = P_x$, $P = (P_x, P_y) = rK_B \neq \infty$)
- uses a KDF to derive symmetric encryption and MAC keys : $k_E || k_M = KDF(S || S_1)$
- encrypts the message : $c = E(k_E; m)$
- computes the tag of c and S_2 : $d = MAC(k_M; c \| S_2)$
- output R||c||d

Decryption : To decrypt the ciphertext R || c || d

- derives the shared secret : $S = P_x$ with $P = (P_x, P_y) = k_B R$: $P = k_B R = k_B r G = r k_B G = r K_B$, or output failed if $P = \infty$
- $k_E \|k_M = KDF(S\|S_1); \text{ output failed if } d \neq MAC(k_M; c\|S_2)$

③ uses symmetric encryption scheme to decrypt $m = E^{-1}(k_E; c)$

Signature process : d_A private key

- e = SHA 2(m), convert it to an integer.
- 2 Let z be the L_n leftmost bits of e where L_n the bit length of n.
- Solution Choose a cryptographically secure random $k \in [1, n-1]$
- Compute the curve point $(x_1, y_1) = k \times G$
- Solution Compute $r = x_1 \mod n$. If r = 0, go to step 3.
- Compute $s = k^{-1}(z + rd_A) \mod n$. If s = 0, go to step 3.
- The signature is (r, s). $((r, -s \mod n)$ is also valid)

Verification : $Q_A = d_A G$ public key

- 2 $r, s \in [1, n-1]$, if not, return invalid
- Sompute e = SHA 2(m) and z the L_n leftmost bits of e
- Compute $u_1 = zs^{-1} \mod n$ and $u_2 = rs^{-1} \mod n$
- $(x_1, y_1) = u_1 \times G + u_2 \times Q_A. \text{ If } (x_1, y_1) = \infty, \text{ Return Invalid.}$
- Return Valid if $r = x_1 \mod n$, invalid otherwise
 - Do not use twice the same k (PlayStation 3)
 - if the first significant bits of k are known, it is possible to recover the secret key !
 - Check that $C = u_1 \times G + u_2 \times Q_A = k \times G$

- Weierstrass equation : $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$
- sage : EllipticCurve([0,0,1,-1,0]) : Elliptic Curve defined by $y^2 + y = x^3 x$ over Rational Field
- Elliptic curves over $\mathbb{Z}/N\mathbb{Z}$ with N prime are of type "elliptic curve over a finite field" :
- sage : F=Zmod(95); EllipticCurve(F, [2,3]) : y² = x³ + 2x + 3 over Ring of integers modulo 95
- definition of point : sage P = E(-1,1)
- group order : P.order()