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Cyclic Groups

Let N be a positive integer. Then Z/NZ = Zy is a group under
addition mod N, and Z}, is a group under the multiplication mod N

Definition (Cyclic Group)

Let G be a finite group of order n, with identity element e. G is
cyclic if there exists an element of order n, called generator of G. A
cyclic group is abelian. If x is a generator, G = {e, x,...,x" 1}

The group Zj, is cyclic when N is a prime.
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Some computations...

In any group G, we can define an exponentiation operation :

o if i =0, then a' is defined to be 1
o ifi>0,thena =a-a-...-a(i— 1 times)
o ifi<0 thena =at-a7l.....a71 (i—1 times)

0 ati=a .2
o (a'y = al
° afl — (ai)fl — (afl)i
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Some relations to know to compute

The order of a group is its size.

o If G is a group and m = |G| its order :
e am=1forallae G
ea =ammforallac GandicZ
o Example : In Z%, = {1,2,4,5,8,10,11,13, 16,17, 19,20}
under the operation of multiplication modulo 21. m = 12.

580 mod 21 = 580 Md 12 5 01 = 52 mod 12 54 01
=25 mod21l =4
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Subgroups and examples

o If Gisagroup, S C G is a subgroup if it is a group under the
same operation as that under which G is a group
@ If we already know that G is a group, there is a simple way to
test whether S is a subgroup :
o itisoneifandonly if x-y=t € Sforall x,y €S
o y~lis the inverse of y in G
@ Fact : Let G be a group and let S be a subgroup of G. Then,
the order of S divides the order of G.

(Z/pZ)* for a prime p is cyclic of order p — 1

e E.g. p =11, the subgroups are $; = {1}, S» = {—1,1},
Ss ={1,4,5,9,3}, and S10 = {1,2,4,8,5,10,9,7,3,6}.

@ For each divisors of p — 1 = 10, a subgroup of that order exists

e 2 is a generator, as well as 2 for ged(k, 10) = 1
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Cyclic Groups and generators

e If g € G is any member of the group, the order of g is defined
to be the least positive integer n st g” =1 We let
(g)=1{g'li€Z} ={g°g",...,g" '} denote the set of
group elements generated by g. This is a subgroup of order n.

@ An element g of the group is called a generator of G if
(g) = G or, equivalently, it its order is m = |G|

@ A group is cyclic if it contains a generator

o If g is a generator of G, then for every a € G, there is a
unique integer i € Zpy, s.t. g’ = a. This i is called the discrete
logarithm of a to base g, and we denote it by DLOG ¢(a).

@ DLOGg 4(a) is a function that maps G to Z,, and moreover
this function is a bijection.

@ The function Z,, to G defined by i — g’ is called the discrete
exponentiation function
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Choosing cyclic group and generators

@ The discrete log function is conjectured to be one-way
(hard-to-compute) for some cyclic groups G. Due to this fact,
we often seek cyclic groups.

@ Examples of cyclic groups :

Q Zj for a prime p
@ a group of prime order

@ Finding generators : How to chose a candidate and test it ?

o Let G be a cyclic group and let m = |G|. Let p* ... p5" be
the prime factorization of m and let m; = m/p; for
i=1,...,n Then, g € G is a generator of G iff for all
i=1,...,n:gm #1.

e IfG is a cyclic group of order m, and g a generator of G :
Gen(G) = {g'|i € Z},} and |Gen(G)| = ¢(m).
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Example : determine all the generators of Z3;

o Its size is m = ¢(11) = 10 and the prime factorization of
10 = 2 - 5. Thus the test for whether a given a € Z3j; is a
generator is that a®> # 1 mod 11 and a® # 1 mod 11.

o Gen(Z3;) =1{2,6,7,8}
e Double-checking : |Zj;| = 10, Zj, = {1,3,7,9}

{2" € Gli € Z3} = {2',2%,27,2° mod 11} = {2,6,7,8}

alll|2|3|4|5|/6 7|8/ 9|10

a?modll |1 4 |9]5[3[3][5 ]9 4|1
a@modll 1101 ]1/1]10]10]10]|1]10
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Algorithm for finding a generator

@ Most common choice of a group in crypto is Zj, for a prime p

@ Idea : Pick a random element and test it. Choose p s.t. the
prime factorization of the order of the group (p — 1) is known.
E.g., chose a prime p s.t. p =2qg + 1 for some prime q

@ The probability that an iteration of the algorithm is
Gen(Zp)| _ o(p=1) _ ¢(29) _ gq=1 _ 1

successful : AR 3 =53 =327 5=3

Algorithm 1 Finding a generator
1: g=(p—1)/2; found « false
2: while found # true do

3: g+ Zy\{l,p—1}

4 if (g2 mod p # 1) && (g9 mod p # 1) then
5: found « true

6: end if

7: end whilereturn g
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Squares mod n

Quadratic Residue modn

@ Def : an element a mod n is a quadratic residue mod n if there
exists b with a = b?> mod n

@ other elements are called non-quadratic residue
@ 1,4,9,5,3 are square mod11l
@ other values 2,3,6,7,8,10 are not square mod 11

all1]2]3]4]5]6]7]8]9]10
amodl1l ||1]4|9|5[3|3[5[904] 1
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Elliptic Curves

Elliptic curve is a group for the addition

an elliptic curve & is a set of points satisfying the equation
y? = x3+ ax + b over Z/pZ

These points form a group with an additive notation

This group is not cyclic, but from one element we can define a
cyclic group

From one point G, the (G) is the group generated by the
point G with the addition (defined in the next slide)

Specific point at infinity : oo identity element for this group
From G, we can define kx G = G+ G+ ...+ G (k—1) times

If the order of the group (G) (number of different points) is
prime, it is difficult to invert the scalar multiplication operation
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Elliptic Curve point multiplication : Double-and-Add

Algorithm 2 Double-and-add d = dy + 2dy + 2°do + ... +2™d,

1

N>R N

N« P

:Q(—OO

: for i from 0 to m do
if di =1 then

end if
N < point — double(n)
end forreturn Q = dP

Q < point — add(Q, N)
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El Gamal Encryption — ECIES

Informal description

O Alice gets Bob's public key, g*. He knows his own private key x

@ Alice generates a fresh, ephemeral value y, and g¥ (public)

© Alice computes ¢ from m, the symmetric encryption of m with
key k (authenticated encryption scheme) : ¢ = E(k; m)

@ Alice sends the public ephemeral g” and the ciphertext ¢
@ Bob, knowing x and g¥, k = KDF(g*) and recovers m from ¢

Common Parameters

o Key Derivation Function) : HMAC-SHA-1-80 with 80-bit
@ symmetric encryption scheme AES-GCM noted E

o elliptic curve parameters : (G) of order n, oo infinity

@ Bob's PK : Kg = kgG, kg € [1,n — 1] random private key

@ optional shared information : S; and S,
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El Gamal Encryption — ECIES

Encryption : To encrypt a message m Alice :

generates a random r € [1,n — 1] and computes R = rG
derives a shared secret S = P,, P = (Px, P,) = rKpg # 0)
uses a KDF to derive symmetric encryption and MAC keys :
ke|lkm = KDF(S||51)

encrypts the message : ¢ = E(kg; m)

computes the tag of c and S, : d = MAC(kw; c||S2)
output R|c|d

Decryption : To decrypt the ciphertext R||c||d

o

2]
o

derives the shared secret : S = P, with P = (Px, P,) = kgR :
P = kgR = kgrG = rkg G = rKpg, or output failed if P = oo

kEHkM = KDF(S”Sl), output failed if d =£ MAC(/(M; C||52)
uses symmetric encryption scheme to decrypt m = E~1(kg; )
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ECDSA Elliptic Curve Digital Signature Algorithm

Signature process : da private key

@ e = SHA —2(m), convert it to an integer.
@ Let z be the L, leftmost bits of e where L, the bit length of n.
© Choose a cryptographically secure random k € [1,n — 1]

© Compute the curve point (x1,y1) = k X G

@ Compute r = x; mod n. If r =0, go to step 3.

© Compute s = k~1(z + rdy) mod n. If s =0, go to step 3.
@ The signature is (r,s). ((r, —s mod n) is also valid)
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Verification : Q4 = daG public key
Q Check Qa # 00, Qa €&, nx Qa =0
@ r,s € [1,n—1], if not, return invalid
Compute e = SHA — 2(m) and z the L, leftmost bits of e

(s ]
© Compute u; = zs~ mod n and u» = rs~! mod n

Q (x1,y1) =u1 X G+ up X Qa. If (x1,y1) = 0o, Return Invalid.
@ Return Valid if r = x; mod n, invalid otherwise

@ Do not use twice the same k (PlayStation 3)

o if the first significant bits of k are known, it is possible to
recover the secret key !

@ Checkthat C =3 x G+ u x Qa=kx G
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Sage and Elliptic Curve

Weierstrass equation : y2 + aixy +azy = x3 4+ aox? 4+ asx + ag

@ sage : EllipticCurve([0,0,1,-1,0]) : Elliptic Curve defined by
y? 4+ y = x3 — x over Rational Field

e Elliptic curves over Z/NZ with N prime are of type "elliptic
curve over a finite field" :

@ sage : F=Zmod(95); EllipticCurve(F, [2,3]) : y? = x> +2x +3
over Ring of integers modulo 95

@ definition of point : sage P = E(-1,1)

@ group order : P.order()
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