Cryptography – BCS Public-Key Cryptography – RSA

Pierre-Alain Fouque

Université de Rennes 1

September, 15 2020

Agenda

- Group and Ring
- @ Greatest common divisor
- 3 Euclidean Algorithm
- Prime Numbers
- 5 Numeration in base b
- 6 Chinese Remainder Theorem
- Euler Totient Function
- 8 Euler Theorem

Group

Definition (Group)

A group G is a set of elements with a binary operation \cdot such that

- **1** Closure : For all $a, b \in G$, $a \cdot b \in G$.
- 2 Associativity: For all a, b and c in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3 Identity element : Let G, st $e \cdot a = a \cdot e = a$. It is unique and is called the identity element.
- **③** Inverse element : For each $a \in G$, there exists an element $b \in G$, denoted a^{-1} (or -a, if the operation is denoted "+"), st $a \cdot b = b \cdot a = e$, where e is the identity element.
- **5** abelian optional : If $a \cdot b = b \cdot a$, G is called abelian.

Definition (Group morphism)

A function $a:G\to H$ between two groups (G,\cdot) and (H,\star) is called a homomorphism if for all $g,k\in G, \quad a(g\cdot k)=a(g)\star a(k)$

Example & Subgroup

Examples

- \bullet $(\mathbb{N},+)$, (\mathbb{Z},\times) are not group
- \bullet $(\mathbb{Z},+)$, $(\{-1,+1\},\times)$, (\mathbb{Q},\times) are groups

Definition (Subgroup)

It is a group H contained within a bigger one, G. The identity element of G is in H, and whenever h_1 and h_2 are in H, then so are $h_1 \cdot h_2$ and h_1^{-1} . The elements of H, equipped with the group operation on G restricted to H, form a group

Example

- $(3\mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$ as $0 \in 3\mathbb{Z}$, and if $h_1,h_2 \in 3\mathbb{Z}$, $h_1 + h_2$ is in $3\mathbb{Z}$ and $-h_1 \in 3\mathbb{Z}$
- The quotient group $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ where $\overline{a} = \{k \in \mathbb{Z} | k = a \bmod n\}$

Ring, Field

Definition (Ring - Example $(\mathbb{Z},+,\cdot)$)

- R is an abelian group under addition, i.e. : + is associative : (a + b) + c = a + (b + c) for all $a, b, c \in R$ + is commutative : a + b = b + a for all $a, b \in R$ • 0 is the additive identity : $0 \in R$ st a + 0 = a for all $a \in R$ - a is the additive inverse of a: If $a, -a \in R$, st a + (-a) = 0
- ② $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$ (\cdot is associative) There is an element $1 \in R$ st $a \cdot 1 = a$ and $1 \cdot a = a$ for all $a \in R$ (1 is the multiplicative identity)
- **3** Multiplication is distributive with respect to addition $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$ $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$

Definition (Field - Example $(\mathbb{Q}, +, \cdot)$)

A ring with an identity element for \cdot st all non-zero element has an inverse for \cdot

Euclidean Division

Proposition (Euclidean Division)

Let $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$. There exists a unique pair $(q,r) \in \mathbb{Z} \times \mathbb{Z}$ st

$$a = bq + r \text{ and } 0 \le r < |b|.$$

q, r are called the quotient and the remainder of the euclidean division of a by b.

Lemma

Let H be a subgroup of \mathbb{Z} . There exists a unique $n \in \mathbb{N}$ st $H = n\mathbb{Z}$.

Example

Let a and b two non-zero integers. The set $a\mathbb{Z}+b\mathbb{Z}=\left\{au+bv|u,v\in\mathbb{Z}\right\}$, is a subgroup of \mathbb{Z} . There exists a unique integer $d\geq 1$ st $a\mathbb{Z}+b\mathbb{Z}=d\mathbb{Z}$.

Greatest common divisor

Definition

The integer d is called the Greatest common divisor of a and b, and written $d = \gcd(a, b)$.

Bézout Property

There exist two integers u and v st d = au + bv.

Lemma

The gcd of a and b is the unique integer st :

- 1 it is a divisor of a and b.
- 2 it is a multiple of any common divisor of a and b.

Definition

a and b are coprime (a is prime with b), if gcd(a, b) = 1.

Greatest common divisor

Lemma

a and b are coprime iff $\exists (u, v) \in \mathbb{Z}^2$ st au + bv = 1.

Corollary

The integers $\frac{a}{d}$ and $\frac{b}{d}$ are coprime.

Least Common Multiple

Definition

Given two non-zero integers a and b, the set $a\mathbb{Z} \cap b\mathbb{Z}$ is a subgroup of \mathbb{Z} . The integer m st

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$$

is called the least common multiple of a and b.

Proposition

$$gcd(a, b) lcm(a, b) = |ab|.$$

Euclidean Algorithm (Computation of the gcd)

Definition

Define a finite sequence of integers $(r_i)_{i\geq 0}$, called the sequence of remainders (defined to a and b), as follows : we define

$$r_0 = a$$
 and $r_1 = b$.

Let r_0, r_1, \cdots, r_i for $i \geq 1$. It $r_i \neq 0$, r_{i+1} is the remainder of the euclidean division of r_{i-1} by r_i . If $r_i = 0$, the process will stop and the sequence of remainders is $r_0, r_1, \cdots, r_{i-1}, r_i$. There exists a unique integer $n \geq 1$ st :

$$0 < r_n < r_{n-1} < \ldots < r_1 < r_0 \text{ and } r_{n+1} = 0.$$

Proposition

$$r_n = \gcd(a, b).$$

Computation of Bézout Relation

Definition

Two sequences of integers $(u_i)_{0 \le i \le n}$ and $(v_i)_{0 \le i \le n}$ st

$$u_0 = 1$$
, $u_1 = 0$ and $v_0 = 0$, $v_1 = 1$,

$$u_{i+1} = u_{i-1} - u_i q_i$$
 and $v_{i+1} = v_{i-1} - v_i q_i$ for $i = 1, ..., n-1$,

where q_i is the quotient of the euclidean division of r_{i-1} by r_i .

Proposition

$$r_n = au_n + bv_n$$

Theorem (Complexiy)

$$n \le \frac{3}{2\log 2}\log b + 1$$

Computation of inverse mod n

Inverse of a mod n

• The inverse of a mod n is an integer $b + n\mathbb{Z}$ such that

$$ab = 1 \mod n$$

 If we compute the Extended Euclidean Algorithm on a, n we get two integers u, v such that

$$au + nv = \gcd(a, n)$$

• If gcd(a, n) = 1, au + nv = 1 and we compute this relation mod n, we get

$$au = 1 \mod n$$

meaning that u is the inverse of $a \mod n$.

• Sometimes, we have to add a multiple of n to get a value between 1 and n-1.

Prime Numbers

Definition (Prime Number)

Any integer $p \ge 2$ whose only positive divisors are 1 and p.

Lemma

Let p an integer ≥ 2 . Then, p is prime iff p is not the product of two integers strictly larger than 1.

Corollary (Euclide)

The set of prime numbers is infinite.

Fundamental Theorem of Arithmetic

Theorem

Any integer $n \ge 2$ can be uniquely written as

$$n=p_1^{n_1}\ldots p_r^{n_r},$$

where the n_i are non negative integers, and the p_i are primes st $p_{i-1} < p_i$ for all i = 2, ..., r, called the decomposition of n into prime factors.

Theorem $(\pi(x) : \text{Number of primes } \leq x - \pi(x) \simeq \frac{x}{\log x})$

For all real $x \ge 2$, we have

$$\left(\frac{\log 2}{2}\right)\frac{x}{\log x} \le \pi(x) \le (9\log 2)\frac{x}{\log x}.$$

Numeration in base $b \ge 2$

Theorem

Let x a non negative integer. We can write x uniquely as

$$x = a_n b^n + a_{n-1} b^{n-1} + \ldots + a_1 b + a_0$$

where $n \in \mathbb{N}$, $a_0, \ldots, a_n \in \mathbb{N}$ st $0 \le a_i \le b-1$ and a_n is non zero.

 $x = a_n a_{n-1} \dots a_1 a_0$: decomposition of x in base b and $x = (a_n \dots a_0)_b$.

Theorem (Fast Exponentiation)

We can compute x^n with $O(\log n)$ multiplications

Chinese Remainder Theorem

$\mathsf{Theorem}$

Let m and n two non negative coprime integers.

$$f: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
,

defined st for all $a \in \mathbb{Z}$

$$f(a) = (a + m\mathbb{Z}, a + n\mathbb{Z}),$$

is an onto ring morphism, whose kernel is mn \mathbb{Z} . The rings $\mathbb{Z}/mn\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ are isomorphs given the map $a + mn\mathbb{Z} \mapsto (a + m\mathbb{Z}, a + n\mathbb{Z})$

Euler Totient Function

Definition

For all $n \ge 1$, the integer $\varphi(n)$ is the number of integers between 1 and n, and coprime with n.

$$\varphi(n) = \big\{ 1 \le k \le n : \gcd(k, n) = 1 \big\}$$

Lemma

For all prime p and integer $r \ge 1$, we get

$$\varphi(p^r) = p^r - p^{r-1}$$

Lemma

Let $n \ge 1$. An integer a and \bar{a} its class mod $n\mathbb{Z}$. Then, \bar{a} is invertible in $\mathbb{Z}/n\mathbb{Z}$ iff $\gcd(a,n)=1$.

$$(\mathbb{Z}/n\mathbb{Z})^* = \{\bar{a} : 1 \leq a \leq n \text{ and } \gcd(a,n) = 1\}$$

Euler Totient Function

Corollary (The order of $(\mathbb{Z}/n\mathbb{Z})^*$ is $\varphi(n)$.)

The ring $\mathbb{Z}/n\mathbb{Z}$ is a field iff n is prime.

Corollary

Let m and n two non-negative coprime integers. We get

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Theorem

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Euler Theorem

Theorem (Euler, 1760)

Let n a non-negative integer. For all integer a coprime with n,

$$a^{\varphi(n)} = 1 \mod n$$

Proposition

Let G an abelian group of order n, with identity element e.

For all
$$x \in G$$
, we have $x^n = e$.

Corollary (Fermat Little Theorem)

Let p be a prime number. For all integer a non divisible by p,

$$a^{p-1} = 1 \bmod p$$

In particular, for all integer a, we get $a^p = a \mod p$

