
User Authentication :
Passwords, Biometrics and

Alternatives

Pierre-Alain Fouque

Introduction

• Username and passwords to access local device or remote account
• Authentication: The process of using supporting evidence to

corroborate an asserted identity
• Identification (recognition) establishes an identity from available

information without an explicit identity having been asserted
• picking out known criminals in a crowd or finding who matches a given

fingerprint; each crowd face is checked against a list of database faces
• For identification, since the test is one-to-many, problem complexity

grows with the number of potential candidates
• Authentication involves a simpler one-to-one test

Introduction

• Corroborating an asserted identity may be an end-goal or a sub-goal
towards the end-goal authorization (determining whether a requested
privilege or resource access should be granted to the requesting entity)
• E.g.: users may be asked to enter a password (for the account currently in use) to

authorize installation or upgrading of O.S. or application software

• We are interested here on user authentications – humans being
authenticated by a computer system
• Our main topic are passwords, hardware-based tokens, and biometric

authentications

Password authentication

• Passwords provide basic user authentication
• each user authorized to use a system is assigned an account identified by a character

string username (or numeric userid)
• To gain access (``log in’’) to their account, the user enters the username

and a password
• This pair is transmitted to the system, which has stored information to test

whether the password matches the one expected for that userid. If so,
access is granted.
• A correct password does not ensure that whoever entered it is the authorized user.

That would require a guarantee that no one other than the authorized user could
ever possibly know, obtain, or guess the password– which is unrealistic. A correct
match indicates knowledge of a fixed character string—or possibly a ``lucky guess’’

• But passwords remain useful as a (weak) means of authentication.

Storing hashes vs. cleartext

• To verify entered userid-password pairs, the system stores sufficient
information in a password file F with one row for each userid
• Storing cleartext passwords pi in F would risk directly exposing all pi if F

were stolen; system administrators and other insiders, including those
able to access filesystem backups, would also have all passwords
• Instead, each row of F stores a pair (userid,hi), where hi=H(pi) is a

password hash; H is a publicly one-way hash function. The system
computed hi from the user-entered pi to test for a match

Pre-computed dictionary attack

If password hashing alone is used as above, an attacker can perform a pre-
computed dictionary attack:
1. Construct a long list of candidate passwords w1, …, wt

2. For each wj, compute hj=H(wj) and store a table T of (hj,wj) stored by hj

3. Steal the password file F containing stored values hi=H(pi)
4. ``Look up’’ the password pi corresponding to a specified targeted userid ui

with password hash hi by checking whether hi appears in T as any value hj; if
so, wj works as pi. If instead the goal is to trawl (find passwords for arbitrary
userids), sort F’s rows by values hi, then compare sorted tables F and T for
matching hashes hj and hi representing H(wj) and H(pi); this may yield many
matching pairs and wj will work as ui’s password pi

Targeted vs. Trawling scope

• The pre-computed attack considered:
• A targeted attack specifically aimed at pre-identified users (often one);
• A password trawling attack aiming to break into any account by trying many

or all accounts

Approaches to defeat password authentication

• Password authentication can be defeated by several approaches:
1. Online password guessing. Guesses are sent to the legitimate servers
2. Offline password guessing. No per-guess online interaction is needed
3. Password capture attacks. An attacker intercepts or observes

passwords: observing sticky-notes, shoulder-surfing, server-side
interception, proxy or middle-person attacks, phishing and social
engineering, hardware or software keylogger, ….

4. Password interface bypass: aim to defeat authentication mechanisms
by gaining unauthorized access by exploiting software vulnerabilities

5. Defeating recovery mechanisms

Password composition policies and strength

• To ease the burden of remembering passwords, many users choose
(rather than strings of random characters) words found in common-
language dictionaries
• Since guessing attacks exploit this, many system impose password

composition policies with rules specifying minimum lengths (8 or 10)
and requiring password characters (LUDS) Lowercase, Uppercase,
Digits and Special characters
• Such passwords are said to be stronger but this term misleads in that

such increased complexity provides no more protection against
capture attacks

Disadvantages of passwords

• Usability challenges multiply as the number of passwords that users
must manage grows from just a few to tens of hundreds
• Usability disadvantages include users being told:
• Not to write their passwords down
• To follow complex composition policies
• Not to re-use passwords across accounts
• To choose each password to be easy remember but difficult for others to

guess
• To change passwords every 30—90 days if password expiration policies are in

use

Advantages of passwords

• Passwords
• Are simple, easy to learn, and already understood by all current computer users
• Are free (requiring no extra hardware at the client or system/server)
• Require no extra physical device to carry
• Allow relatively quick login, and password managers may help further (for small

keyboard mobile device, apps commonly store passwords);
• Are easy to change or recover if lost
• Have well-understood failure modes (forgetful users learn to write passwords

down somewhere safe)
• Require no trust in a new third party (contrary to certificates)
• Are easily delegated

Password-guessing strategies and defenses

• Online Password guessing and rate-limiting
• can be mounted against any publicly reachable password-protected server.

Userid-password pairs, with password guesses, are submitted sequentially to
the legitimate server, which indicates if the attempt is successful or not
• An obvious defensive tactic, for sites that care at all about security, is to rate-

limit or throttle guesses across fixed time windows—enforcing a maximum
number of incorrect login attempts per account

• Offline Password guessing
• Assumed that an attacker has stolen a copy of a system’s password hash file
• On Unix-based systems: /etc/passwd : verifiable text and no rate-limiting

Password-guessing strategies and defenses
• Iterated Hashing (password stretching)
• Offline attacks can be slowed down using iterated hashing (password

stretching): after hashing a password once with hash function H, rather than
storing H(pi), the result is itself hashed against d-fold H(…H(H(pi))…). d=1000
slows attacks by a factor 1000

• Password salting
• To combat dictionary attack, common practice is to salt passwords before

hashing. For userid ui, on registration of each password pi, rather than storing
hi=H(pi), the system selects t>=64, a random t-bit value si as salt and stores (ui,
si, H(pi,si)) with pi, si concatenated before hashing
• The password is altered by the salt in a deterministic way before hashing. For

trawling attacks, the work is harder by a factor 2t in computation and storage
• Complexity not increased for a targeted userid

Password-guessing strategies and defenses

• A bonus of salting is that two users with the same passwords will
almost certainly have different password hashes in the hash file
• Pepper (secret salt)
• A secret salt (pepper) is like a regular salt but not stored: slow down by a

different than the iterated hashing. When user ui selects a new password pi,
the system chooses a random value 1<=ri<=R, stores the secret-salted hash
H(pi,ri) and then erases ri. To later verify a password for account ui, the system
sequentially tries all values r*=ri in a deterministic order. If R is 20 bits, on
average slow-down by a factor 219. Pepper can be combined with salt …

Password-guessing strategies and defenses
• Specialized password-hashing functions
• PBKDF2 (password-based KDF number 2), Argon2i, bcrypt, scrypt against

efficient hash function with specialized hardware

Password-guessing strategies and defenses

• System-assigned passwords and brute-force guessing
• The difficulty of guessing passwords is maximized by selecting each

password character randomly and independently. An n-character
password chosen from a b characters then results in bn possible pwd
• Brute-force guessing: sequential enumeration. The probability of

success is 100% after bn guesses, 50% after bn/2 guesses. If the
passwords need not be a full n characters, a common strategy first try
all one-character passwords, then all two-character passwords, …

Probability of guessing success

• Maximum guessing probabilities of 1/210 (Low) and 1/220 (Higher)
• Parameters:
• G: the number of guesses the attacker can make per time unit
• T: the number of time units per guessing period
• R=bn: the size of the password space (equiprobable passwords)

• Assume password guesses can be verified by online or offline attack
• The probability q that the password is guessed by the end of the

period is the proportion of the password space an attacker can cover:
• If GT>R, q=1.0
• q=GT/R otherwise GT <= R

Example: Offline guessing

• T=1 year (3.154x107 s)
• truly random passwords of length n=10 from an alphabet b=95

(printable characters): R=bn=9510=6x1019; and G=100 billion guesses
per second (modest number of modern GPUs)
• q=GT/R=(1011)(3.154x107)/6(1019)=0.05257
• Success probability over 5% greater than both 2-10 and 2-20

• Lower Bound on length: n=lg(R) / lg(b) where R=GT/q
• Alternatively to model an online attack, one can determine what

degree of rate-limiting suffices for a desired q, from G=qR/T

Password distributions

Other remarks

• Heuristic password-cracking tools: JohnTheRipper and oclHashcat
• Login passwords vs. Passkeys : passwords may be used to derive

cryptographic keys for file encryption. Such password-derived
encryption keys (passkeys) are subject to offline guessing attacks and
require high guessing resistance
• Password management: NIST SP 800-63B
• Account recovery and secret questions
• Password managers
• Graphical passwords

One-Time password generators and hardware tokens

Multiple factors
• Two-factor authentication (2FA) requires the methods be from two

different categories

Biometric authentication
• Biometric authentication: physical biometrics (what you are);

behavioral biometrics (what you do)
• Biometrics are non-secrets

Biometric process: enrollment and verification
• Features are extracted from the Reference template
• Matching score s=0 (no similarity) s=100 (100% agreement)
• Threshold t If s>=t, the system declares the sample to be from the same individual
• False rejects: a legitimate user’s new sample is declared to not match their own

template. False Reject Rate (FRR): FRR=Prob[System declares XV does not matches
XL| XV is sampled from L]
• False accept: an imposter’s sample is (wrongly) declared to match the legitimate

user’s template. False Accept Rate (FAR)
• Fixing a threshold t and legitimate user L with reference template XL, let XV denote the

biometric samples to be matched.
• FAR=Prob[XV matches XL| XV is different from L]

• EER: Equal Error Rate: is the point at which FAR = FRR simplified single-point
comparisons – the system with lower EER is preferred

Biometric system tradeoff

DET (Detection Error Tradeoff) and ROC
Relative/Receiver operating curves

Entropy, passwords, and partial-guessing metrics
• Data, information representation, and entropy: a 16-bit word might

be used to convey four values. The same information can be conveyed
in 2 bits. For the given probabilities, in information theory we say that
there are 2 bits of entropy

Shannon entropy

• qi>0: the probability of event xi from a space X of n possible events
(1≤i≤n, ∑i qi=1). xi=Pi will be a password chosen from a space of n
allowable passwords, with the set of passwords chosen by a system
• A random variable X takes values xi=Pi with probability qi according to

a probability distribution DX: DX models the probability of users
choosing specific passwords
• Shannon entropy: H(X)=H(q1,…qn)= ∑i qilg(1/qi)=-∑i qilg(qi) lg=base-2

logarithm. H(X) measures the average uncertainty of X=minimum
number of bits needed on average

Interpretation of entropy

• For each xi:I(xi)=-lg(qi) as the information conveyed by event {Xi=xi}
• The less probable an outcome, the more information its observation

conveys; observing a rare event conveys more than a common event
and observing an event of probability 1 conveys no information
• The average (expected value) of the r.v. I is H(X)=EX(IX)=EX(-lg(qi))
• Entropy properties:

1. H(X)≥0. minimum 0 occurs only when there is no uncertainty at all qi=1
2. H(X)≤lg(n) all qi=1/n (uniform distribution = flat)
3. If q1<q2, if we increase q1 and decrease q2 so that q1=q2, H(X) increases

Guessing
function:
which
single
password
has highest
probability
?

