User Authentication :
Passwords, Biometrics and
Alternatives

Pierre-Alain Fouque

Introduction

* Username and passwords to access local device or remote account

* Authentication: The process of using supporting evidence to
corroborate an asserted identity

* |dentification (recognition) establishes an identity from available
information without an explicit identity having been asserted

* picking out known criminals in a crowd or finding who matches a given
fingerprint; each crowd face is checked against a list of database faces

* For identification, since the test is one-to-many, problem complexity
grows with the number of potential candidates

e Authentication involves a simpler one-to-one test

Introduction

* Corroborating an asserted identity may be an end-goal or a sub-goal
towards the end-goal authorization (determining whether a requested
privilege or resource access should be granted to the requesting entity)

* E.g.: users may be asked to enter a password (for the account currently in use) to
authorize installation or upgrading of O.S. or application software

* We are interested here on user authentications — humans being
authenticated by a computer system

* Our main topic are passwords, hardware-based tokens, and biometric
authentications

Password authentication

* Passwords provide basic user authentication

e each user authorized to use a system is assigned an account identified by a character
string username (or numeric userid)

* To gain access (log in”’) to their account, the user enters the username
and a password

* This pair is transmitted to the system, which has stored information to test

whether the password matches the one expected for that userid. If so,
access is granted.

* A correct password does not ensure that whoever entered it is the authorized user.
That would require a guarantee that no one other than the authorized user could
ever possibly know, obtain, or guess the password— which is unrealistic. A correct
match indicates knowledge of a fixed character string—or possibly a “"lucky guess”

e But passwords remain useful as a (weak) means of authentication.

Storing hashes vs. cleartext

* To verify entered userid-password pairs, the system stores sufficient
information in a password file F with one row for each userid

* Storing cleartext passwords p; in F would risk directly exposing all p. if F
were stolen; system administrators and other insiders, including those
able to access filesystem backups, would also have all passwords

* Instead, each row of F stores a pair (userid,h;), where h=H(p;) is a
password hash; H is a publicly one-way hash function. The system
computed h. from the user-entered p; to test for a match

Pre-computed dictionary attack

If password hashing alone is used as above, an attacker can perform a pre-
computed dictionary attack:

1.

2.
3.
4

Construct a long list of candidate passwords w, ..., w;
For each w;, compute h;=H(w;) and store a table T of (h;,w;) stored by h,
Steal the password file F containing stored values h.=H(p;)

“Look up™ the password p; corresponding to a specified targeted userid u;
with password hash h; by checking whether h; appears in T as any value h;; if
so, w; works as p;. If mstead the goal is to trawl (find passwords for arbltrary
userlds) sort F's rows by values h,, then compare sorted tables F and T for
matching hashes h. and h. representmg H(w;) and H(p;); this may yield many
matching pairs and W, will work as u;’s password o}

Targeted vs. Trawling scope

* The pre-computed attack considered:
* A targeted attack specifically aimed at pre-identified users (often one);

* A password trawling attack aiming to break into any account by trying many
or all accounts

Approaches to defeat password authentication

* Password authentication can be defeated by several approaches:

1.
2.
3.

Online password guessing. Guesses are sent to the legitimate servers
Offline password guessing. No per-guess online interaction is needed

Password capture attacks. An attacker intercepts or observes
passwords: observing sticky-notes, shoulder-surfing, server-side

interception, proxy or middle-person attacks, phishing and social
engineering, hardware or software keylogger,

Password interface bypass: aim to defeat authentication mechanisms
by gaining unauthorized access by exploiting software vulnerabilities

Defeating recovery mechanisms

Password composition policies and strength

* To ease the burden of remembering passwords, many users choose
(rather than strings of random characters) words found in common-
language dictionaries

 Since guessing attacks exploit this, many system impose password
composition policies with rules specifying minimum lengths (8 or 10)
and requiring password characters (LUDS) Lowercase, Uppercase,
Digits and Special characters

* Such passwords are said to be stronger but this term misleads in that
such increased complexity provides no more protection against
capture attacks

Disadvantages of passwords

» Usability challenges multiply as the number of passwords that users
must manage grows from just a few to tens of hundreds

* Usability disadvantages include users being told:
* Not to write their passwords down
* To follow complex composition policies
* Not to re-use passwords across accounts

* To choose each password to be easy remember but difficult for others to
guess

* To change passwords every 30—90 days if password expiration policies are in
use

Advantages of passwords

* Passwords
* Are simple, easy to learn, and already understood by all current computer users
 Are free (requiring no extra hardware at the client or system/server)
* Require no extra physical device to carry

* Allow relatively quick login, and password managers may help further (for small
keyboard mobile device, apps commonly store passwords);

* Are easy to change or recover if lost

* Have well-understood failure modes (forgetful users learn to write passwords
down somewhere safe)

* Require no trust in a new third party (contrary to certificates)
* Are easily delegated

Password-guessing strategies and defenses

* Online Password guessing and rate-limiting

e can be mounted against any publicly reachable password-protected server.
Userid-password pairs, with password guesses, are submitted sequentially to
the legitimate server, which indicates if the attempt is successful or not

* An obvious defensive tactic, for sites that care at all about security, is to rate-

limit or throttle guesses across fixed time windows—enforcing a maximum
number of incorrect login attempts per account

e Offline Password guessing

* Assumed that an attacker has stolen a copy of a system’s password hash file
* On Unix-based systems: /etc/passwd : verifiable text and no rate-limiting

Password-guessing strategies and defenses

* [terated Hashing (password stretching)

e Offline attacks can be slowed down using iterated hashing (password
stretching): after hashing a password once with hash function H, rather than
storing H(p;), the result is itself hashed against d-fold H(...H(H(p;))...). d=1000
slows attacks by a factor 1000

* Password salting

* To combat dictionary attack, common practice is to salt passwords before
hashing. For userid u;, on registration of each password p,, rather than storing
hi=H(p,), the system selects t>=64, a random t-bit value s; as salt and stores (u,,

s, H(p;,s:)) with p;, s; concatenated before hashing

* The password is altered by the salt in a deterministic way before hashing. For
trawling attacks, the work is harder by a factor 2t in computation and storage

* Complexity not increased for a targeted userid

Password-guessing strategies and defenses

* A bonus of salting is that two users with the same passwords will
almost certainly have different password hashes in the hash file

* Pepper (secret salt)

* Asecret salt (pepper) is like a regular salt but not stored: slow down by a
different than the iterated hashing. When user u; selects a new password p,,
the system chooses a random value 1<=r,<=R, stores the secret-salted hash
H(p;,r;) and then erases r.. To later verify a password for account u;, the system
sequentially tries all values r*=r, in a deterministic order. If R is 20 bits, on
average slow-down by a factor 21°. Pepper can be combined with salt ...

Password-guessing strategies and defenses

 Specialized password-hashing functions

* PBKDF2 (password-based KDF number 2), Argon?2i, bcrypt, scrypt against

efficient hash function with specialized hardware

-t}

p lanes

Password-guessing strategies and defenses

e System-assigned passwords and brute-force guessing

* The difficulty of guessing passwords is maximized by selecting each
password character randomly and independently. An n-character
password chosen from a b characters then results in b" possible pwd

* Brute-force guessing: sequential enumeration. The probability of
success is 100% after b" guesses, 50% after b"/2 guesses. If the
passwords need not be a full n characters, a common strategy first try
all one-character passwords, then all two-character passwords, ...

Probability of guessing success

* Maximum guessing probabilities of 1/21° (Low) and 1/22° (Higher)

* Parameters:
* G: the number of guesses the attacker can make per time unit
* T: the number of time units per guessing period
* R=b": the size of the password space (equiprobable passwords)

* Assume password guesses can be verified by online or offline attack

* The probability g that the password is guessed by the end of the
period is the proportion of the password space an attacker can cover:

* If GT>R, g=1.0
* g=GT/R otherwise GT <=R

Example: Offline guessing

e T=1 year (3.154x10’s)

* truly random passwords of length n=10 from an alphabet b=95
(printable characters): R=b"=9519=6x101°; and G=100 billion guesses
per second (modest number of modern GPUs)

* g=GT/R=(1011)(3.154x107)/6(101°)=0.05257
* Success probability over 5% greater than both 2-10 and 2-20
* Lower Bound on length: n=Ig(R) / Ig(b) where R=GT/q

* Alternatively to model an online attack, one can determine what
degree of rate-limiting suffices for a desired q, from G=qR/T

Password distributions

(a) What we want: randomly distributed passwords

full space frequency
. | (box) ()
- | passwords
chosen (dots) y=1
y=0

Password space distinct passwords (x)

(b) What we get: predictable clustering, highly skewed distribution

. @
K T frequency
[J

' , (v)
® o

Password space distinct passwords (x)

Figure 3.2: Password distributions (illustrative). Ideally, chosen passwords are unique
(y = 1) with most unchosen (y = 0). Diameter represents frequency a password is chosen.

Other remarks

* Heuristic password-cracking tools: JohnTheRipper and oclHashcat

* Login passwords vs. Passkeys : passwords may be used to derive
cryptographic keys for file encryption. Such password-derived
encryption keys (passkeys) are subject to offline guessing attacks and
require high guessing resistance

* Password management: NIST SP 800-63B
* Account recovery and secret questions

* Password managers

* Graphical passwords

One-Time password generators and hardware tokens

OTPSs FROM LAMPORT HASH CHAINS. Starting with a random secret (seed) w,
user A can authenticate to server B using a sequence of one-time passwords as follows
(Fig. 3.3). H is a one-way hash function (Chapter 2) and ¢ is an integer (e.g., t = 100). Let
a hash chain of order t be the sequence: w, H(w), H(H(w)), H*(w), ..., H'(w). H' means

session i user A server B
i =0 (setup) |secretw, h,=H100(w) Setup value: v¢ h,
: first 75 ; '
: sersssions h.s = H?>(w) .. last update: v¢ h .
A x=h Receive x; if H(x) =v allow
F = 124 ’ 76 ’
=76 Compute hyg=H*(w) > | (else deny). Update v x
A x=h Receive x; if H(x) = v allow
: — 1423 4 77 7
1=77 Compute h,,=H(w) > | (else deny). Update v« x

Figure 3.3: Lamport hash chain. Illustrated with # = 100 for session i =76 (t —i = 24).
Setup value hg must initially be transferred over a secure channel and associated with A.

Multiple factors

* Two-factor authentication (2FA) requires the methods be from two
different categories

1 .. 2
User authentication categories what i g i what
based on you know e you have
type of verification evidence multi- 6 7
factor
where you . what you
4 are are/do 3

Figure 3.5: User authentication categories 1-3 are best known. Here (3) includes physical
and behavioral biometrics; behavioral patterns could be considered a separate category,
e.g., observed user location patterns (8). Location-based methods (4) may use geolocation
of a user-associated device. A secret written on paper (because it is critical yet might be
forgotten, or rarely used) may be viewed as something you have (5). Devices may receive
one-time passwords (6). Device fingerprinting is shown as a sub-category of (7).

Biometric authentication

e Biometric authentication: physical biometrics (what you are);
behavioral biometrics (what you do)

* Biometrics are non-secrets

Modality Type | Notes

fingerprints P common on laptops and smartphones

facial recognition P used by some smartphones

iris recognition P the part of the eye that a contact lens covers

hand geometry P hand length and size, also shape of fingers and palm
retinal scan P based on patterns of retinal blood vessels

voice authentication | M | physical-behavioral mix

gait B characteristics related to walking

typing rhythm B keystroke patterns and timing

mouse patterns B also scrolling, swipe patterns on touchscreen devices

Table 3.2: Biometric modalities: examples. P (physical), B (behavioral), M (mixed).
Fingerprint (four digits) and iris biometrics are used at U.S.-Canadian airport borders.

Biometric process: enrollment and verification

* Features are extracted from the Reference template
* Matching score s=0 (no similarity) s=100 (100% agreement)
* Threshold t If s>=t, the system declares the sample to be from the same individual

 False rejects: a legitimate user’s new sample is declared to not match their own
template. False Reject Rate (FRR): FRR=Prob[System declares X, does not matches
X, | Xy is sampled from L]

 False accept: an imposter’s sample is (wrongly) declared to match the legitimate
user’s template. False Accept Rate (FAR)

* Fixing a threshold t and legitimate user L with reference template X, let X,, denote the
biometric samples to be matched.

* FAR=Prob[X, matches X | X, is different from L]

* EER: Equal Error Rate: is the point at which FAR = FRR simplified single-point
comparisons — the system with lower EER is preferred

Biometric system tradeoff

y ——
(prob. p
of score

xX=s)

match threshold t (s > ¢ is a match)

. <
intruder ~ adjust

distribution D, /°

{ ' \

(of L) \

~/ false rejects A r \

>
t

legitimate user
\ distribution D; |

- false accepts .

x=t

M, = mean (average)

matching score of intruder 1
Figure 3.6: Biometric system tradeoffs. Curves model probability distributions for an
intruder and legitimate user’s matching scores; higher scores match the user’s biometric
template better. The y axis reflects how many biometric samples get matching score x = s.

matching score s —

M, = mean (average)
matching score of legitimate user L

DET (Detection Error Tradeoff) and ROC
Relative/Receiver operating curves

A

| DET Graph 1.0-
False EER (equal True
Reiect ““error rate) _

J Reject ROC curves
Rate 3 Rate (model)
(FRR) 2 (TRR)

False Accept Rate (FAR) False Reject Rate (FRR)I

Figure 3.7: DET graph and ROC curve. These depict a system’s characteristics for
different values of a decision threshold ¢, and allow comparisons between systems. If EER
1s used as a single comparison point, System 2 is preferred. System 3’s FRR decreases
slowly as parameters are adjusted to admit a higher FAR; in contrast, System 1’s FRR
decreases more rapidly in return for an increased FAR. An upper-left ROC curve is better
(A). In binary classification of events in the intrusion detection scenario (Chapter 11), the
analogous terminology used is True/False Positive Rate, and True/False Negative Rate.

Entropy, passwords, and partial-guessing metrics

e Data, information representation, and entropy: a 16-bit word might
be used to convey four values. The same information can be conveyed
in 2 bits. For the given probabilities, in information theory we say that
there are 2 bits of entropy

Information | Probability | Hex representation | Binary alternative
red 0.25 0000 00
green 0.25 00FF 01
blue 0.25 FFOO 10
black 0.25 FFFF 11

Table 3.3: Alternative representations for conveying four known values. The same infor-
mation 1s conveyed, whether two bytes of data are used to represent it, or two bits.

Shannon entropy

* 0:>0: the probability of event x; from a space X of n possible events
(1<i<n, >; qi=1). x;=P; will be a password chosen from a space of n
allowable passwords, with the set of passwords chosen by a system

* A random variable X takes values x;=P; with probability g, according to
a probability distribution Dy: Dy models the probability of users
choosing specific passwords

* Shannon entropy: H(X)=H(qy,...q,)= 3; ailg(1/a;)=-3; ailg(a;) lg=base-2
logarithm. H(X) measures the average uncertainty of X=minimum
number of bits needed on average

Interpretation of entropy

* For each x;:lI(x;)=-1g(q;) as the information conveyed by event {X.=x:}

* The less probable an outcome, the more information its observation
conveys; observing a rare event conveys more than a common event
and observing an event of probability 1 conveys no information

* The average (expected value) of the r.v. | is H(X)=E,(l\)=E\(-1g(q:))

* Entropy properties:
1. H(X)=0. minimum 0 occurs only when there is no uncertainty at all g;=1
2. H(X)<lg(n) all g=1/n (uniform distribution = flat)
3. If g;<q,, if we increase g, and decrease q, so that q,=q,, H(X) increases

Guessing
function:
which
single
nassword
nas highest

orobability
?

GUESSWORK (GUESSING FUNCTION). With notation as above, let g; > g;+1, mod-
eling an optimal guessing-attack order. The guessing index g(X) over a finite domain X
assigns a unique index i > 1, called a guess number, to each event X = x; under this op-

timal ordering. Then for X Ex (X drawn randomly from the event universe according
to distribution Dy above), the average (expected) number of guesses needed to find X by
sequentially asking, in optimal order, “Is X = x;?” is given by the guessing function

G1(X)=E[g(X Z g; (units = number of guesses) 3.7)
i=1

Like H(X), G gives an expectation averaged over all events in X. Thus its measure is
relevant for an attack executing a full search to find all user passwords in a dataset—but
not one, e.g., quitting after finding a few easily guessed passwords. If g; = 1/n for all i,

G1(n equally probable events) Zz 1/n=(1/n)Y i=(n+1)/2 (3.8)
i=1

since) ;i =n(n+1)/2. Thus in the special case that events are equiprobable, success
is expected after guessing about halfway through the event space; note this is not the case
for user-chosen passwords since their distributions are known to be heavily skewed.

