# Hash functions

**Pierre-Alain Fouque** 

#### Introduction

- A Cryptographic hash function is an lagorithm that maps data of arbitrarily size (messages) to fixed-size values (called hash values, digests or hashes)
- It is a one-way function: function hard to invert in practice
- Properties:
  - Deterministic: same message always results in the same hash
  - Quick to compute for any given message
  - Output looks random if we haven't compute it yet
  - Infeasible to generate a message that yields a given hash values
  - Infeasible to find two different messages with the same hash values
  - A small change to a message should change the hash value (avalanche effect)

### Applications

- Cryptographic hash functions have many applications
  - Digital signatures
  - Message authentication codes (MAC)
  - Merkle Tree
  - Password-based hash function competition
  - Bitcoin : blockchain write new transactions into the blockchain through the mining process

#### Properties

- Properties: H:{0,1}\* to {0,1}<sup>n</sup>
  - Preimages resistance: Given y, find x s.t. H(x)=y
  - Second Preimage resistance: Given y and x s.t. H(x)=y, find x'≠x s.t. H(x')=y
  - Collision: Find  $x' \neq x$  s.t. H(x')=H(x)
- Attacks:
  - Preimages: Exhaustive search 2<sup>n</sup>
    - Compute the hash of random messages x: each hash has a probability 1/2<sup>n</sup> to match y. On average, the
      algorithm needs to be executed 2<sup>n</sup> times
  - Second Preimage: Exhaustive search 2<sup>n</sup>: same analysis
  - Collision: 2<sup>n/2</sup>:
    - Compute the hash of random messages and store them in a table. The birthday paradox tells that if the
      number of messages N is larger than 2<sup>n/2</sup> there will be a collision with probability >1/2.
    - Problem: need to store all (message, hashes) in a table T also 2<sup>n/2</sup> (in memory) and for each message looks through T

## Birthday paradox

- In probability theory, the birthday paradox concerns the probability that in a set of n randomly chosen people, some pair of them will have the same birthday
- By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367.
- But, 99.9 % with 70, 50% with 23...



The computed probability of at least two people sharing a birthday versus the number of people

$$ar{p}(n) = 1 imes \left(1 - rac{1}{365}
ight) imes \left(1 - rac{2}{365}
ight) imes \cdots imes \left(1 - rac{n-1}{365}
ight) \qquad e^{-a/365} pprox 1 - rac{a}{365} \ = rac{365 imes 364 imes \cdots imes (365 - n + 1)}{365^n} \qquad p(n) = 1 - ar{p}(n) pprox 1 - e^{-n(n-1)/730} \ p(n) pprox 1 - e^{-n^2/730} \ p(n) pprox 1 - e^{-n^2/730} \ p(n) pprox 1 - e^{-n^2/730} \ p(n) \$$

#### Function in a finite set S

- Function from a finite set S to S
- At some point, if we iterate the function and compute the sequence x<sub>i</sub>=f(x<sub>i-1</sub>) from x<sub>0</sub> a random element in S, either the sequence will the stationary or we will turn in a cycle



A function from and to the set  $\{0,1,2,3,4,5,6,7,8\}$  and the  $\Box$  corresponding functional graph

#### Looking for collision without memory

- If we are looking for collision, collision will happen in cycle:  $x_m = x_{m+1}$  where I (the loop length).
- The cycle detection problem is the task of finding I and m
- Greek letter rho: a path of length m from  $x_0$  to a cycle of length l vertices
- Floyd's Tortoise and Hare algorithm



```
def floyd(f, x0):
    # Main phase of algorithm: finding a repetition x_i = x_2i.
    # The hare moves twice as quickly as the tortoise and
    # the distance between them increases by 1 at each step.
    # Eventually they will both be inside the cycle and then,
    # at some point, the distance between them will be
    # divisible by the period λ.
    tortoise = f(x0) # f(x0) is the element/node next to x0.
    hare = f(f(x0))
    while tortoise != hare:
        tortoise = f(tortoise)
        hare = f(f(hare))
```

# At this point the tortoise position,  $\nu$ , which is also equal # to the distance between hare and tortoise, is divisible by # the period  $\lambda$ . So hare moving in circle one step at a time, # and tortoise (reset to x0) moving towards the circle, will # intersect at the beginning of the circle. Because the # distance between them is constant at  $2\nu$ , a multiple of  $\lambda$ , # they will agree as soon as the tortoise reaches index  $\mu$ .

```
# Find the position µ of first repetition.
mu = 0
tortoise = x0
while tortoise != hare:
   tortoise = f(tortoise)
   hare = f(hare) # Hare and tortoise move at same speed
   mu += 1
   return lam, mu
```

#### Floyd algorithm

```
# Find the length of the shortest cycle starting from x_µ
# The hare moves one step at a time while tortoise is sti
# lam is incremented until \(\lambda\) is found.
lam = 1
hare = f(tortoise)
while tortoise != hare:
    hare = f(hare)
    lam += 1
```

# Compression function

- f:{0,1}<sup>m</sup> vers {0,1}<sup>n</sup> with m>n
- Same properties has hash function
- Other constructions:
  - $f(m,h) = E_h(m) \bigoplus h$ ?
  - $f(m,h) = E_m(h) ? f(m,h) = E_h(m) ?$
- Ex:  $f(m,h) = E_m(h) \oplus h$  (Davies-Meyer)



One MD4 operation : MD4 consists of 48 of these  $\Box$  operations, grouped in three rounds of 16 operations. *F* is a nonlinear function; one function is used in each round. *M<sub>i</sub>* denotes a 32-bit block of the message input, and *K<sub>i</sub>* denotes a 32-bit constant, different for each round.

# Merkle-Damgard: From compression function to hash function

- Domain Extension Technique:
- Thm: If the compression function f is collision resistant, so is the hash function built from f using the MD construction
- Padding is important and contains the size of the message in bits



d'initialisation /V et un schéma de remplissage

#### Problems with Merkle-Damgard: multicollision

- Merkle-Damgard used during more than 15 years without problems
- In 2004, Joux discovered multicollision when studying the resistance of the hash function constructed in some RFC: H(m)=SHA1(m)||MD5(m)
- If the MD5 is broken, maybe SHA-1 will not be, or it is unexpected that the same message will collide for both ...
- Resistance of H against collisions is : 2<sup>(160+128)/2</sup>=2<sup>144</sup> since the output size of SHA-1 is 160 bits and MD5 is 128
- Multicollsion: generate many messages with same hash
  - For random function it will be 2<sup>(k-1)/kn</sup> for k messages with n bit of outputs
  - Surprisingly, k.2<sup>n/2</sup> for MD constructions ...
  - Then, easy to break H with 2<sup>80</sup>+80.2<sup>64</sup> hash computations

#### Wide-pipe and SHA-3

- Wide-pipe construction to avoid multicollisions: double the internal size of the function
- NIST proposes a new competiton in 2005 and the winner is Keccak with a new design
- Sponge Constructions
- SHAKE: Pseudo-Random Generator with arbitrary size output





The sponge construction for hash functions.  $P_i$  are  $\Box$  input,  $Z_i$  are hashed output. The unused "capacity" c should be twice the desired resistance to collision or preimage attacks.