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Introduction

* A Cryptographic hash function is an lagorithm that maps data of
arbitrarily size (messages) to fixed-size values (called hash values,
digests or hashes)

* It is a one-way function: function hard to invert in practice

* Properties:
* Deterministic: same message always results in the same hash
Quick to compute for any given message
Output looks random if we haven’t compute it yet
Infeasible to generate a message that yields a given hash values
Infeasible to find two different messages with the same hash values
A small change to a message should change the hash value (avalanche effect)



Applications

e Cryptographic hash functions have many applications
 Digital signatures
* Message authentication codes (MAC)
* Merkle Tree
* Password-based hash function competition

 Bitcoin : blockchain - write new transactions into the blockchain through the
mining process



Properties

* Properties: H:{0,1}* to {0,1}"
* Preimages resistance: Given y, find x s.t. H(x)=y

* Second Preimage resistance: Given y and x s.t. H(x)=y, find x’#x s.t. H(x")=y
* Collision: Find x’#x s.t. H(x’)=H(x)

e Attacks:

* Preimages: Exhaustive search 2"

* Compute the hash of random messages x: each hash has a probability 1/2" to match y. On average, the
algorithm needs to be executed 2" times

e Second Preimage: Exhaustive search 2": same analysis
* Collision: 2"/2:
. ComBute the hash of random messages and store them in a table. The birthday paradox tells that if the
number of messages N is larger than 2"/2 there will be a collision with probability >1/2.

* Problem: need to store all (message, hashes) in a table T also 2"/2 (in memory) and for each message
looks through T



Birthday paradox

* In probability theory, the birthday paradox
concerns the probability that in a set of n
randomly chosen people, some pair of them
will have the same birthday

* By the pigeonhole principle, the probability
reaches 100% when the number of people
reaches 367/.

* But, 99.9 % with 70, 50% with 23...
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The computed probability of at least two people =
sharing a birthday versus the number of people
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Function in a finite set S

* Function from a finite 700
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2 0 \
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Looking for collision without memory
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e If we are Ioo.klng for. coII_|S|on, collision &Q&;

will happen in cycle: x,,=x..,; where | 2 [ =0 %=

(the loop length).
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* The cycle detection problem is the .

task of finding | and m L jew g

X=2 | x;=0 | x,=6 | x3=3 | x4=1

* Greek letter rho: a path of length m 73 ]

from x, to a cycle of length | vertices 3 3

* Floyd’s Tortoise and Hare algorithm

Floyd's "tortoise and hare" cycle detection ==
algorithm, applied to the sequence 2, 0, 6, 3, 1, 6,
3,1, ...



def floyd(f, x0):
# Main phase of algorithm: finding a repetition x i = x 2i.
# The hare moves twice as quickly as the tortoise and .
# the distance between them increases by 1 at each step. F | Oyd a |gO rlth m
# Eventually they will both be inside the cycle and then,
# at some point, the distance between them will be
# divisible by the period A.
tortoise = £(x0) # f(x0) is the element/node next to x0.
hare = £(£(x0))
while tortoise != hare:
tortoise = f(tortoise)
hare = f(f(hare))

# At this point the tortoise position, v, which is also equal

# to the distance between hare and tortoise, is divisible by

# the period A. So hare moving in circle one step at a time,

# and tortoise (reset to x0) moving towards the circle, will

# intersect at the beginning of the circle. Because the

# distance between them is constant at 2v, a multiple of A,

# they will agree as soon as the tortoise reaches index u. # Find the length of the shortest cycle starting from x p

# The hare moves one step at a time while tortoise is sti

. e : St # lam is incremented until A is found.

# Find the position u of first repetition. SR

i = hare = f(tortoise)

tortoise = x0 while tortoise != hare:

while tortoise != hare: hare = f(hare)
tortoise = f(tortoise) lam += 1

hare = f(hare) # Hare and tortoise move at same speed
ma += 1 return lam, mu



Compression function

e £:{0,1}™ vers {0,1}" with m>n
e Same properties has hash function

e Other constructions:
* f(m,h) =E,(m)Dh ?
e f(m,h) =E(h)? f(m,h) =E,(m) ?

e Ex: f(m,h) = E,(h)&@h (Davies-Meyer)
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One MD4 operation : MD4 consists of 48 of these =
operations, grouped in three rounds of 16 operations.
Fis a nonlinear function; one function is used in each
round. M; denotes a 32-bit block of the message
input, and K; denotes a 32-bit constant, different for

each round.




Merkle-Damgard: From compression function

to hash function

* Domain Extension Technique:

* Thm: If the compression function
fis collision resistant, so is the
hash function built from f using
the MD construction

* Padding is important and
contains the size of the message
in bits
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Construction de Merkle-Damgard avec la fonction de compression f et le vecteur =

d'initialisation /V et un schéma de remplissage



Problems with Merkle-Damgard: multicollision

 Merkle-Damgard used during more than 15 years without problems

* [n 2004, Joux discovered multicollision when studying the resistance of the
hash function constructed in some RFC: H(m)=SHA1(m)| | MD5(m)

* |f the MD5 is broken, maybe SHA-1 will not be, or it is unexpected that the
same message will collide for both ...

* Resistance of H against collisions is : 2(160+128)/2=3144 gince the output size of
SHA-1 is 160 bits and MD5 is 128

* Multicollsion: generate many messages with same hash
* For random function it will be 2(k1/kn for k messages with n bit of outputs
e Surprisingly, k.2"2 for MD constructions ...
* Then, easy to break H with 28%+80.2°* hash computations



Wide-pipe and SHA-3

* Wide-pipe construction to avoid
multicollisions: double the internal
size of the function

* NIST proposes a new competiton
in 2005 and the winner is Keccak
with a new design

* Sponge Constructions

* SHAKE: Pseudo-Random
Generator with arbitrary size
output
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The Wide pipe hash construction. The intermediate chaining values -
have been doubled.
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The sponge construction for hash functions. P; are =

input, Z; are hashed output. The unused "capacity" ¢
should be twice the desired resistance to collision or

preimage attacks.



