Hash functions

Pierre-Alain Fouque

Introduction

* A Cryptographic hash function is an lagorithm that maps data of
arbitrarily size (messages) to fixed-size values (called hash values,
digests or hashes)

* It is a one-way function: function hard to invert in practice

* Properties:
* Deterministic: same message always results in the same hash
Quick to compute for any given message
Output looks random if we haven’t compute it yet
Infeasible to generate a message that yields a given hash values
Infeasible to find two different messages with the same hash values
A small change to a message should change the hash value (avalanche effect)

Applications

e Cryptographic hash functions have many applications
 Digital signatures
* Message authentication codes (MAC)
* Merkle Tree
* Password-based hash function competition

 Bitcoin : blockchain - write new transactions into the blockchain through the
mining process

Properties

* Properties: H:{0,1}* to {0,1}"
* Preimages resistance: Given y, find x s.t. H(x)=y

* Second Preimage resistance: Given y and x s.t. H(x)=y, find x’#x s.t. H(x")=y
* Collision: Find x’#x s.t. H(x’)=H(x)

e Attacks:

* Preimages: Exhaustive search 2"

* Compute the hash of random messages x: each hash has a probability 1/2" to match y. On average, the
algorithm needs to be executed 2" times

e Second Preimage: Exhaustive search 2": same analysis
* Collision: 2"/2:
. ComBute the hash of random messages and store them in a table. The birthday paradox tells that if the
number of messages N is larger than 2"/2 there will be a collision with probability >1/2.

* Problem: need to store all (message, hashes) in a table T also 2"/2 (in memory) and for each message
looks through T

Birthday paradox

* In probability theory, the birthday paradox
concerns the probability that in a set of n
randomly chosen people, some pair of them
will have the same birthday

* By the pigeonhole principle, the probability
reaches 100% when the number of people
reaches 367/.

* But, 99.9 % with 70, 50% with 23...

p(n) =1x(1-— ! x [1— 2 X+ e X
P\ = 365 365

- 365 x 364 x ---x (365 —n+1)
N 365"

L 1
‘T 0.9 |
Q0.8
© 0.7
‘5 0.6
=05
= 0.4
20.3
20.2
~01°"L
ol 0 23

0O 10 20 30 40 50 60 70 80 90 100

Number of people

The computed probability of at least two people =
sharing a birthday versus the number of people

a
e—a/365 ~1— .
365
L e—n(n—l)/730' p(’n) ~1_ e—n2/730

Function in a finite set S

* Function from a finite 700
setStoS 0 | 6
1 6

2 0 \
* At some point, if we .
iterate the function and M
compute the sequence 6 | 3
x;=f(x; ;) from x, a S

random elementin S,
either the sequence will

the sfcatlonary or we WI” A function from and to the set {0,1,2,3,4,5,6,7,8} and the =
turnina CyC|e corresponding functional graph

Looking for collision without memory

0 6

e If we are Ioo.klng for. coII_|S|on, collision &Q&;

will happen in cycle: x,,=x..,; where | 2 [=0 %=

(the loop length).

6 1

* The cycle detection problem is the .

task of finding | and m L jew g

X=2 | x;=0 | x,=6 | x3=3 | x4=1

* Greek letter rho: a path of length m 73]

from x, to a cycle of length | vertices 3 3

* Floyd’s Tortoise and Hare algorithm

Floyd's "tortoise and hare" cycle detection ==
algorithm, applied to the sequence 2, 0, 6, 3, 1, 6,
3,1, ...

def floyd(f, x0):
Main phase of algorithm: finding a repetition x i = x 2i.
The hare moves twice as quickly as the tortoise and .
the distance between them increases by 1 at each step. F | Oyd a |gO rlth m
Eventually they will both be inside the cycle and then,
at some point, the distance between them will be
divisible by the period A.
tortoise = £(x0) # f(x0) is the element/node next to x0.
hare = £(£(x0))
while tortoise != hare:
tortoise = f(tortoise)
hare = f(f(hare))

At this point the tortoise position, v, which is also equal

to the distance between hare and tortoise, is divisible by

the period A. So hare moving in circle one step at a time,

and tortoise (reset to x0) moving towards the circle, will

intersect at the beginning of the circle. Because the

distance between them is constant at 2v, a multiple of A,

they will agree as soon as the tortoise reaches index u. # Find the length of the shortest cycle starting from x p

The hare moves one step at a time while tortoise is sti

. e : St # lam is incremented until A is found.

Find the position u of first repetition. SR

i = hare = f(tortoise)

tortoise = x0 while tortoise != hare:

while tortoise != hare: hare = f(hare)
tortoise = f(tortoise) lam += 1

hare = f(hare) # Hare and tortoise move at same speed
ma += 1 return lam, mu

Compression function

e £:{0,1}™ vers {0,1}" with m>n
e Same properties has hash function

e Other constructions:
* f(m,h) =E,(m)Dh ?
e f(m,h) =E(h)? f(m,h) =E,(m) ?

e Ex: f(m,h) = E,(h)&@h (Davies-Meyer)

Input A

128 bits
S

Input B
128 bits

f

Output C
128 bits

A one-way compression

function

l

A B C D
A4 M\ M
«— ::fr\—
Pa—

v
Mi—>

A\
Ki—>

v

<<§

B

C

D

One MD4 operation : MD4 consists of 48 of these =
operations, grouped in three rounds of 16 operations.
Fis a nonlinear function; one function is used in each
round. M; denotes a 32-bit block of the message
input, and K; denotes a 32-bit constant, different for

each round.

Merkle-Damgard: From compression function

to hash function

* Domain Extension Technique:

* Thm: If the compression function
fis collision resistant, so is the
hash function built from f using
the MD construction

* Padding is important and
contains the size of the message
in bits

message bloc 1 bloc 2

bloc n

Remplissage \

bloc1 | bloc 2 bloc n | bourrage
@— e I A [=l 1 F——{Hache
Construction de Merkle-Damgard avec la fonction de compression f et le vecteur =

d'initialisation /V et un schéma de remplissage

Problems with Merkle-Damgard: multicollision

 Merkle-Damgard used during more than 15 years without problems

* [n 2004, Joux discovered multicollision when studying the resistance of the
hash function constructed in some RFC: H(m)=SHA1(m)| | MD5(m)

* |f the MD5 is broken, maybe SHA-1 will not be, or it is unexpected that the
same message will collide for both ...

* Resistance of H against collisions is : 2(160+128)/2=3144 gince the output size of
SHA-1 is 160 bits and MD5 is 128

* Multicollsion: generate many messages with same hash
* For random function it will be 2(k1/kn for k messages with n bit of outputs
e Surprisingly, k.2"2 for MD constructions ...
* Then, easy to break H with 28%+80.2°* hash computations

Wide-pipe and SHA-3

* Wide-pipe construction to avoid
multicollisions: double the internal
size of the function

* NIST proposes a new competiton
in 2005 and the winner is Keccak
with a new design

* Sponge Constructions

* SHAKE: Pseudo-Random
Generator with arbitrary size
output

MESSAGE

)

‘ Padding(MESSAGE)

Block1

Block2

Block3

Block4

Block5

Block6

6

'y

O

O

O

13

f >
—>

L

final

final hash

—

The Wide pipe hash construction. The intermediate chaining values -
have been doubled.

o

f

O+

o/

e

f

absorbing | squeezing

Lo

—

-/

Pn—l

1%

f

—

/

|
|
|
|
J
|
|
|
|
|
t
|
|
|
|

Zy

f

-/

Lanbn.

Z;

f

—/

The sponge construction for hash functions. P; are =

input, Z; are hashed output. The unused "capacity" ¢
should be twice the desired resistance to collision or

preimage attacks.

