
Reductions
Pierre-Alain Fouque



Complexity class NTIME

• The class NP is insensitive to the choice of reasonable non-
deterministic computational model because all such models are 
polynomially equivalent



Examples of problems in NP

• A clique in a undirected graph is a subgraph, wherein every two
nodes are connected by an edge. A k-clique is a clique that contains k 
nodes. E.g. A graph with a 5-clique

• The clique problem is to determine whether a graph contains a clique 
of a specified size: CLIQUE = {<G,k>| G is an undirected graph with a 
k-clique}



CLIQUE is in NP



SUBSET-SUM Problem
• Given a set of number x1, …., 

xk and a target number t, 
determine whether the 
collection contains a subset
that adds up to t

The complement of CLIQUE and SUBSET-SUM are not 
obvious members of NP. Verifying that something is not 
present seems more difficult than verifying it is present



The P versus NP question

• NP is the class of languages that are solvable in polynomial time on a 
Non-deterministic TM or whereby membership in the language can be
checked in polynomial time 
• P is the class of languages where membership can be tested in 

polynomial time. 



P vs. NP ?



NP-completeness

• Important advance on the P vs. NP question came in the early 1970s with
the wortk of Stephen Cook and Leonid Levin 
• They discover that certain problems in NP whose individual complexity is

related to that of the entire class 
• If a polynomial time algorithm exists for any of these problems, all 

problems in NP would be polynomial time solvable 
• These problems are called NP-complete
• Theory: if we have a polynomial time algorithm for an NP-complete

problem, P=NP 
• Practice: Prevent wasting time searching a nonexistent polynomial time 

algorithm to solve a particular problem



The satisfiability problem

• Boolean variables can take values: TRUE (1) and FALSE (0)
• Boolean operations AND (⋀), OR (⋁) and NOT (¬)
• Boolean formula: 𝛟=(ā⋀y) ⋁ (a⋀z) 
• A boolean formula is satisfiable if some assingment of 0s and 1s to 

the variables makes the formula evaluate to 1

SAT ∈ P iff P=NP



Polynomial time reducibility



Thm



3-CNF



Proof

Let f be a formula with k clauses 
We can generate a string <G,k> where G is
an undirected graph and k an integer
The nodes are labeled by the literals in the clauses
There is an edge between each nodes in the clauses 
if there is no incompatility

Th: There is an assignement for f if and only if there is
a k-clique in G
(=>) If we have a valid assignment then we pick
each valid variable in each clause and they form
a valid clique
(<=) If we have a valid k-clique, then we can put
these variables to true and the formula is valid



Definition of 
NP-Completeness



SAT is NP-complete

SAT is in NP: a ND polynomial TM guesses
the assignation and we can easily cheched it

Take any language A in NP and show that A 
is P-time reducible to SAT
Let N be a NDTM deciding A in nk (k constant)
A tableau is accepting if any row is accepting conf.
(nk)2 cells in the tableau 
Variables xi,j,s is 1 if cell[i,j]==s 
Formula: fcell AND fstart AND fmove AND faccept



Legal Moves

It is possible to encode each legal
moves based on the transition table 
using a small number of variables 

We can verify that the size of the
formula is polynomial in n (2k is a 
constant in the exponent)



From SAT to 3SAT: 3SAT is NP-complete

• We can replace each clause with at most 3 variables
• If a clause contains more than 3 variables (a1 OR a2 OR a3 OR a4) is can be

rewritten as (a1 OR a2 OR z) AND (NOT(z) OR a3 OR a4)
• More generally

• CLIQUE is NP-complete
• 2-SAT is not NP-complete



Other reductions: Vertex cover

1. Show that VERTEX-COVER is in NP 
2. Show that VERTEX-COVER is complete



Reduction between 3SAT and Vertex cover





1. Show that SUBSET-SUM is in NP 
2. Show that SUBSET-SUM is complete



Lectures

• http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf

• https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

• Richard Karp gave the first 21 NP-complete problems

• It is useful to read such results to know which problems are very hard 
and it is useless to find a polynomial-time algorithm

http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

