Reductions

Pierre-Alain Fouque

Complexity class NTIME

NTIME((n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP =J, NTIME(n*).

* The class NP is insensitive to the choice of reasonable non-
deterministic computational model because all such models are
polynomially equivalent

Examples of problems in NP

* A cligue in a undirected graph is a subgraph, wherein every two
nodes are connected by an edge. A k-clique is a cliqgue that contains k
nodes. E.g. A graph with a 5-clique

O

O @ O
* The cligue problem is to determine whether a graph contains a clique
of a specified size: CLIQUE = {<G,k>| G is an undirected graph with a
k-clique}

CLIQUE isin NP

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = “On input ((G, k), ¢):
1. 'Test whether c is a subgraph with k£ nodes in G.
2. ’'Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k nodes of G.
2. ’Test whether G contains all edges connecting nodes in c.
3. Ifyes, accept; otherwise, reject.”

SUBSET-SUM Problem

* Given a set of number x4,,
X, and a target number t,
{y1,...,u} C{z1,..., 21}, we have Xy, = t}.

determine whether the
For example, ({4,11,16,21,27}, 25) € SUBSET-SUM because 4 + 21 = 25. . .
Note that {z1,...,2x} and {y1, ...,y } are considered to be multisets and so collection contains a subset

allow repetition of elements. th at a d d S up tot

SUBSET-SUM = {(S,t)| S = {z1,...,zk}, and for some

THEOREM 7.25 ...
SUBSET-SUM is in NP. N = “On input (S, t):
1. Nondeterministically select a subset ¢ of the numbers in S.

2. Test whether c is a collection of numbers that sum to t.
3. If the test passes, accept; otherwise, reject.”

PROOF IDEA The subset is the certificate.

PROOF The following is a verifier V' for SUBSET-SUM.

V = “On input ((S, t), c):
1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains all the numbers in c. The complement of CLIQUE and SUBSET-SUM are not

3. Ifboth pass, accept; otherwise, reject.” obvious members of NP. Verifying that something is not
present seems more difficult than verifying it is present

The P versus NP question

* NP is the class of languages that are solvable in polynomial time on a

Non-deterministic TM or whereby membership in the language can be
checked in polynomial time

* Pis the class of languages where membership can be tested in
polynomial time.

P = the class of languages for which membership can be decided quickly.
NP = the class of languages for which membership can be verified quickly.

P vs. NP ?

NP

FIGURE 7.26
One of these two possibilities is correct

The best deterministic method currently known for deciding languages in NP
uses exponential time. In other words, we can prove that

k
NP C EXPTIME = | JTIME(2"),
k

but we don’t know whether NP is contained in a smaller deterministic time com-
plexity class.

NP-completeness

* Important advance on the P vs. NP question came in the early 1970s with
the wortk of Stephen Cook and Leonid Levin

* They discover that certain problems in NP whose individual complexity is
related to that of the entire class

* |f a polynomial time algorithm exists for any of these problems, all
problems in NP would be polynomial time solvable

* These problems are called NP-complete

* Theory: if we have a polynomial time algorithm for an NP-complete
problem, P=NP

* Practice: Prevent wasting time searching a nonexistent polynomial time
algorithm to solve a particular problem

The satistiability problem

* Boolean variables can take values: TRUE (1) and FALSE (0)
* Boolean operations AND (A\), OR (V) and NOT (-)
 Boolean formula: ¢p=(aAy) V (a/z)

* A boolean formula is satisfiable if some assingment of Os and 1s to
the variables makes the formula evaluate to 1

SAT = {{(¢)| ¢ is a satisfiable Boolean formula}.

Now we state a theorem that links the complexity of the SAT problem to the
complexities of all problems in NP.

SAT € P iff P=NP

Polynomial time reducibility

DEFINITION 7.28

A function f: ¥*— ¥* is a polynomial time computable function
if some polynomial time Turing machine M exists that halts with
just f(w) on its tape, when started on any input w.

DEFINITION 7.29

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥* — ¥* exists, where for every
w,

w € A< f(w) € B.
The function f is called the polynomial time reduction of A to B.

Thm

If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the

polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On mput w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w € A whenever f(w) € B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w € A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

3-CNF

form. A literal is a Boolean variable or a negated Boolean variable, as in z or z.
A clause is several literals connected with Vs, asin (z1 VZ2 VZ3V z4). A Boolean
formula is in conjunctive normal form, called a cnf-formula, if it comprises
several clauses connected with As, as in

(1 VZ3 VI3V xy) N (3 VT5Vag) A (z3V Tp).
It is a 3cnf-formula if all the clauses have three literals, as in
(1 VT2 VZT3) A (x3VT5Vag) A (x3VT6Vag) N (z4V x5V x6).

Let 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}. If an assignment satisfies a
cnf-formula, each clause must contain at least one literal that evaluates to 1.

The following theorem presents a polynomial time reduction from the 3SAT
problem to the CLIQUE problem.

THEOREM 732 e sa s s s s s s sa s s s s
3SAT is polynomial time reducible to CLIQUE.

Proof

Let f be a formula with k clauses

We can generate a string <G,k> where G is

an undirected graph and k an integer

The nodes are labeled by the literals in the clauses
There is an edge between each nodes in the clauses
if there is no incompatility

Th: There is an assignement for f if and only if there is

a k-clique in G

(=>) If we have a valid assignment then we pick

each valid variable in each clause and they form FIGURE 7.33
a valid clique The graph that the reduction produces from

(<=) If we have a valid k-clique, thenwe canput @ = (1 VZ1VxI2) A (TTVT2VT2) A (TTV 22V T2)
these variables to true and the formula is valid

Definition of
NP-Completeness

[DEFINITION 7.34

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35 ...
If B is NP-complete and B € P, then P = NP.

PROOF This theorem follows directly from the definition of polynomial time
reducibility.

THEOREM 7.36 ...
If B is NP-complete and B <p C for C in NP, then C is NP-complete.

PROOF We already know that C' is in NP, so we must show that every A in
NP is polynomial time reducible to C. Because B is NP-complete, every lan-
guage in NP is polynomial time reducible to B, and B in turn is polynomial
time reducible to C. Polynomial time reductions compose; that is, if A is poly-
nomial time reducible to B and B is polynomial time reducible to C, then A
is polynomial time reducible to C. Hence every language in NP is polynomial
time reducible to C.

SAT is NP-complete

SAT is in NP: a ND polynomial TM guesses
the assignation and we can easily cheched it ,

\ # |go|wqwg| ... Wyl u| ... | u|# | start configuration
| second configuration
Take any language A in NP and show that A M
is P-time reducible to SAT
Let N be a NDTM deciding A in nk (k constant) window
A tableau is accepting if any row is accepting conf. [
(nk)2 cells in the tableau nk /
Variables x;; s is 1 if cell[i,j]==s
Formula: fee AND fgeart AND frove AND foccept
br= N [(V o) & (A @mvas)),
1<i,j<nk b seC s,teC
s#t
v # # | nkth configuration
¢start = T1,1,# A 3;1,2,q0/\ - nk .
T1,3w; N T1,4,05 N oo NT1 042w, N\
.’Bl,n_}_"g,u AN... A xl’nk_l,u A\ .'L'l,nk,# . ¢accept = V xiajaQaccept'

1<i,j<n*

I_e ga ‘ I\/I oves ¢move = /\ (the (i, 5)-window is legal).

1<i<nk, 1<j<nk

It is possible to encode each legal @ P b e © e
moves based on the transition table 2|a|c il Bl ajalb
using a small number of variables

@ #|b|a © a|b|a 0 b
We can verify that the size of the #|b|a a|b|e c
formula is polynomial in n (2k is a
constant in the exponent) FIGURE 7.39

Examples of legal windows

a|b|a a 1| b b 1| b
(a) b) 1 © —

alala g2 | a| a Q2 | b|g

FIGURE 7.40
Examples of illegal windows

\/ (Zij—1,a1 ATijan A Tijj+1,as A Tit1,j—1,aa A Titd jas A Tit1,j+1,a6)
ai,...,ae
is a legal window

From SAT to 3SAT: 3SAT is NP-complete

* We can replace each clause with at most 3 variables

* If a clause contains more than 3 variables (a; OR a, OR a; OR a,) is can be
rewritten as (a; OR a, OR z) AND (NOT(z) OR a; OR a,)

* More generally

(a1 VasV---Vay),
we can replace it with the | — 2 clauses
(a1 VazVzi)AFIVasVz)A(ZZVasVaz)A---AZ3 Va1 Va).
* CLIQUE is NP-complete
e 2-SAT is not NP-complete

Other reductions: Vertex cover

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}.

THEOREM T 84 --rrveeeeeeeeeeeeeeeeeesessesssssssssessessssesssssessssesssssssss oo oo
VERTEX-COVER is NP-complete.

1. Show that VERTEX-COVER is in NP
2. Show that VERTEX-COVER is complete

Reduction between 3SAT and Vertex cover

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}.

THEOREM 7.44 ...
VERTEX-COVER is NP-complete.

FIGURE 7.45
The graph that the reduction produces from
p=(x1VaiVa) A (ZTIVZZVT) A (ZTLV z2 V)

THEOREM Z.56 s

SUBSET-SUM is NP-complete.

............................. U1

z1
Y2

Y3
z3

o
[

Q
\V)

)
&

_ =

== O Ol N
__ 0 O O O W
OO O O O Ok

O OO OO O~

Ok = OO -

SR O =R OO

_ o O o o 0o

=IO O

= —_ O OO O

O O O OO o

SURE 7.57

1 1 1 1

ducing 3SAT to SUBSET-SUM

1

THEOREM Z.856 s
SUBSET-SUM is NP-complete.

1. Show that SUBSET-SUM is in NP
2. Show that SUBSET-SUM is complete

Lectures

* http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf

* https://en.wikipedia.org/wiki/Karp%27s 21 NP-complete problems

* Richard Karp gave the first 21 NP-complete problems

* It is useful to read such results to know which problems are very hard
and it is useless to find a polynomial-time algorithm

http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

