Reductions

Pierre-Alain Fouque

Complexity class NTIME

NTIME(t(n)) = {L | L is a language decided by an O(t(n)) time nondeterministic Turing machine}.

NP = $\bigcup_k \text{NTIME}(n^k)$.

 The class NP is insensitive to the choice of reasonable nondeterministic computational model because all such models are polynomially equivalent

Examples of problems in NP

• A clique in a undirected graph is a subgraph, wherein every two nodes are connected by an edge. A k-clique is a clique that contains k nodes. E.g. A graph with a 5-clique

 The clique problem is to determine whether a graph contains a clique of a specified size: CLIQUE = {<G,k>| G is an undirected graph with a k-clique}

CLIQUE is in NP

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V ="On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

ALTERNATIVE PROOF If you prefer to think of NP in terms of nondeterministic polynomial time Turing machines, you may prove this theorem by giving one that decides *CLIQUE*. Observe the similarity between the two proofs.

N = "On input $\langle G, k \rangle$, where G is a graph:

- 1. Nondeterministically select a subset c of k nodes of G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If yes, accept; otherwise, reject."

SUBSET-SUM Problem

 $SUBSET-SUM = \{ \langle S, t \rangle | S = \{x_1, \dots, x_k\}, \text{ and for some} \\ \{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}, \text{ we have } \Sigma y_i = t \}.$

For example, $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$ because 4 + 21 = 25. Note that $\{x_1, \ldots, x_k\}$ and $\{y_1, \ldots, y_l\}$ are considered to be *multisets* and so allow repetition of elements.

THEOREM 7.25

SUBSET-SUM is in NP.

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
 - 2. Test whether c is a collection of numbers that sum to t.
 - 3. If the test passes, *accept*; otherwise, *reject*."

The complement of CLIQUE and SUBSET-SUM are not obvious members of NP. Verifying that something is not present seems more difficult than verifying it is present

PROOF IDEA The subset is the certificate.

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains all the numbers in c.
- 3. If both pass, *accept*; otherwise, *reject*."

 Given a set of number x₁, ..., x_k and a target number t, determine whether the collection contains a subset that adds up to t

The P versus NP question

- NP is the class of languages that are solvable in polynomial time on a Non-deterministic TM or whereby membership in the language can be checked in polynomial time
- P is the class of languages where membership can be tested in polynomial time.

P = the class of languages for which membership can be *decided* quickly. NP = the class of languages for which membership can be *verified* quickly.

Pvs. NP?

The best deterministic method currently known for deciding languages in NP uses exponential time. In other words, we can prove that

$$NP \subseteq EXPTIME = \bigcup_{k} TIME(2^{n^{k}}),$$

but we don't know whether NP is contained in a smaller deterministic time complexity class.

NP-completeness

- Important advance on the P vs. NP question came in the early 1970s with the wortk of Stephen Cook and Leonid Levin
- They discover that certain problems in NP whose individual complexity is related to that of the entire class
- If a polynomial time algorithm exists for any of these problems, all problems in NP would be polynomial time solvable
- These problems are called NP-complete
- Theory: if we have a polynomial time algorithm for an NP-complete problem, P=NP
- Practice: Prevent wasting time searching a nonexistent polynomial time algorithm to solve a particular problem

The satisfiability problem

- Boolean variables can take values: TRUE (1) and FALSE (0)
- Boolean operations AND (Λ), OR (V) and NOT (\neg)
- Boolean formula: $\mathbf{\Phi} = (\bar{a} \wedge y) \vee (a \wedge z)$
- A boolean formula is satisfiable if some assingment of 0s and 1s to the variables makes the formula evaluate to 1

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}.$

Now we state a theorem that links the complexity of the *SAT* problem to the complexities of all problems in NP.

SAT \in P iff P=NP

Polynomial time reducibility

DEFINITION 7.28

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *polynomial time computable function* if some polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any input w.

DEFINITION 7.29

Language A is *polynomial time mapping reducible*,¹ or simply *polynomial time reducible*, to language B, written $A \leq_{\mathrm{P}} B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B.$$

The function *f* is called the *polynomial time reduction* of *A* to *B*.

If $A \leq_{\mathrm{P}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.

PROOF Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We describe a polynomial time algorithm N deciding A as follows.

N = "On input w:

1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs."

We have $w \in A$ whenever $f(w) \in B$ because f is a reduction from A to B. Thus, M accepts f(w) whenever $w \in A$. Moreover, N runs in polynomial time because each of its two stages runs in polynomial time. Note that stage 2 runs in polynomial time because the composition of two polynomials is a polynomial. 3-CNF

form. A *literal* is a Boolean variable or a negated Boolean variable, as in x or \overline{x} . A *clause* is several literals connected with \forall s, as in $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4)$. A Boolean formula is in *conjunctive normal form*, called a *cnf-formula*, if it comprises several clauses connected with \land s, as in

 $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6}).$

It is a *3cnf-formula* if all the clauses have three literals, as in

 $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_4 \lor x_5 \lor x_6).$

Let $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$. If an assignment satisfies a cnf-formula, each clause must contain at least one literal that evaluates to 1.

The following theorem presents a polynomial time reduction from the *3SAT* problem to the *CLIQUE* problem.

THEOREM 7.32

3SAT is polynomial time reducible to CLIQUE.

Proof

Let f be a formula with k clauses We can generate a string <G,k> where G is an undirected graph and k an integer The nodes are labeled by the literals in the clauses There is an edge between each nodes in the clauses if there is no incompatility

Th: There is an assignement for f if and only if there is a k-clique in G

(=>) If we have a valid assignment then we pick each valid variable in each clause and they form a valid clique

(<=) If we have a valid k-clique, then we can put these variables to true and the formula is valid

FIGURE **7.33**

The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Definition of NP-Completeness

DEFINITION 7.34

A language B is NP-complete if it satisfies two conditions:
1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7.35

If B is NP-complete and $B \in P$, then P = NP.

PROOF This theorem follows directly from the definition of polynomial time reducibility.

THEOREM 7.36

If B is NP-complete and $B \leq_{P} C$ for C in NP, then C is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in NP is polynomial time reducible to C. Because B is NP-complete, every language in NP is polynomial time reducible to B, and B in turn is polynomial time reducible to C. Polynomial time reductions compose; that is, if A is polynomial time reducible to B and B is polynomial time reducible to C, then A is polynomial time reducible to C. Hence every language in NP is polynomial time reducible to C.

SAT is NP-complete

SAT is in NP: a ND polynomial TM guesses the assignation and we can easily cheched it

Take any language A in NP and show that A is P-time reducible to SAT Let N be a NDTM deciding A in n^k (k constant) A tableau is accepting if any row is accepting conf. $(n^k)^2$ cells in the tableau Variables $x_{i,j,s}$ is 1 if cell[i,j]==s Formula: f_{cell} AND f_{start} AND f_{move} AND f_{accept}

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right].$$

$$egin{aligned} \phi_{ ext{start}} &= x_{1,1, \#} \wedge x_{1,2,q_0} \wedge \ && x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \ && x_{1,n+3, \sqcup} \wedge \ldots \wedge x_{1,n^k-1, \sqcup} \wedge x_{1,n^k, \#} \,. \end{aligned}$$

Legal Moves

 $\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} (\text{the } (i, j) \text{-window is legal}).$

It is possible to encode each legal moves based on the transition table using a small number of variables

We can verify that the size of the formula is polynomial in n (2k is a constant in the exponent)

(d)	#	b	a	(e)	a	b	a	(f)	b	b	b
	#	b	a		a	b	q_2		с	b	b

FIGURE 7.39 Examples of legal windows

FIGURE 7.40 Examples of illegal windows

$$\bigvee_{\substack{a_1,...,a_6 \\ \text{is a legal window}}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$$

From SAT to 3SAT: 3SAT is NP-complete

- We can replace each clause with at most 3 variables
- If a clause contains more than 3 variables (a₁ OR a₂ OR a₃ OR a₄) is can be rewritten as (a₁ OR a₂ OR z) AND (NOT(z) OR a₃ OR a₄)
- More generally

$$(a_1 \vee a_2 \vee \cdots \vee a_l),$$

we can replace it with the l-2 clauses

 $(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_4 \lor z_3) \land \cdots \land (\overline{z_{l-3}} \lor a_{l-1} \lor a_l).$

- CLIQUE is NP-complete
- 2-SAT is not NP-complete

Other reductions: Vertex cover

 $VERTEX-COVER = \{ \langle G, k \rangle | G \text{ is an undirected graph that} \\ \text{has a } k \text{-node vertex cover} \}.$

THEOREM 7.44

VERTEX-COVER is NP-complete.

- 1. Show that VERTEX-COVER is in NP
- 2. Show that VERTEX-COVER is complete

Reduction between 3SAT and Vertex cover

 $VERTEX-COVER = \{ \langle G, k \rangle | G \text{ is an undirected graph that} \\ \text{has a } k \text{-node vertex cover} \}.$

THEOREM 7.44

VERTEX-COVER is NP-complete.

FIGURE 7.45 The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

THEOREM 7.5	6	
-------------	---	--

SUBSET-SUM is NP-complete.

	1	2	3	4	•••	l	c_1	c_2	•••	c_k
y_1	1	0	0	0	•••	0	1	0	•••	0
z_1	1	0	0	0	•••	0	0	0	•••	0
y_2		1	0	0	•••	0	0	1	•••	0
z_2		1	0	0	•••	0	1	0	•••	0
y_3			1	0	•••	0	1	1	•••	0
z_3			1	0	•••	0	0	0	•••	1
:					٠.	:	:		:	:
y_l						1	0	0	•••	0
z_l						1	0	0	•••	0
g_1							1	0	•••	0
h_1							1	0	•••	0
g_2								1	•••	0
h_2								1	•••	0
:									•••	÷
										-
g_k										1
h_k										1
t	1	1	1	1	• • •	1	3	3	• • •	3

GURE 7.57 ducing *3SAT* to *SUBSET-SUM*

SUBSET-SUM is NP-complete.

- 1. Show that SUBSET-SUM is in NP
- 2. Show that SUBSET-SUM is complete

Lectures

- <u>http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf</u>
- <u>https://en.wikipedia.org/wiki/Karp%27s 21 NP-complete problems</u>
- Richard Karp gave the first 21 NP-complete problems
- It is useful to read such results to know which problems are very hard and it is useless to find a polynomial-time algorithm