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Introduction

• Even when a problem is decidable and thus computationally solvable 
in principle, it may not be solvable in practice if the solution requires
an inordinate amount of time or memory
• Time and Space complexity theory studies the time and memory or 

other resources required for solving computational problems
1. Measuring the time used to solve a problem
2. Show how to classify problems according to the amount of time 

required
3. Certain decidable problems require enormous amount of time 
4. How to determine when you are faced with such a problem ?



Measuring Complexity

• A={0k1k | k≥0} is a decidable language. 
• How much time does a single-tape Turing Machine need to decide A ?



Analysis the algorithm for TM M1 deciding A 
to determine how much time it uses
• Number of steps that an algorithm uses on a particular input may depend on 

several parameters
• E.g.: if the input is a graph, the number of steps may depend on the number

of nodes, the number of edges, and the maximum degree of the graph, or a 
combination of these
• For simplicity, we compute the running time of an algorithm purely as a 

function of the length of the string representing the input and don’t consider
any other parameters
• In worst-case analysis, we consider the longest running time of all inputs of a 

particular length
• In average-case analysis, the average of all the running times of inputs of a 

particular length



Definition



Big-O and small-O notation

• The exact running time is often a complex expression, we estimate it
• One convenient form of estimation: asymptotic analysis, we seek to 

understand the running time of the algorithm when it is run on large 
inputs
• We consider only the highest order term of the expression for the 

running time of the algorithm, disregarding both coefficient of that
term and any lower terms, because the highest order term dominates
the other terms on large inputs 
• E.g.: f(n)=6n3+2n2+20n+45 has 4 terms and the highest is 6n3. The 

asymptotic notation or big-O notation is f(n)=O(n3)



Asymptotic upper bound



Intuition

• f(n)=O(g(n)) means that f is less than or equal to g if we disregard
differences up to a constant factor. Think of O as representing a 
suppressed constant
• Most functions f have an obvious highest order term h, write

f(n)=O(g(n)), where g is h without its coefficient
• E.g.: f1(n)=5n3+2n2+22n+6. Select the highest term 5n3, remove

coefficient 5 gives f1(n)=O(n3). If c=6 and n0=10, 5n3+2n2+22n+6≤6n3 

for all n≥10. f1(n)=O(n4) since n4 is larger than n3 and is an asymptotic
upper bound on f1. However, f1(n) is not O(n2).



Examples

• The big-O interacts with logarithms. When we use log, we must specify the base, 
x=log2 n, meaning 2x=n. Changing the base b, changes logb n: logb n=log2 n/log2
b. When we write f(n)=O(log n) there is no necessary to specify the base 
because we suppress the constant
• E.g. f2(n)=2nlog2 n+ 5nlog2log2 n+2: f2(n)=O(nlog n) as log n dominates log log n.
• Arithmetic expressions: f(n)=O(n2)+O(n)=O(n2)
• When f(n)=2O(n) represents an upper bound of 2cn for some constant c
• f(n)=2O(log n): since n=2log2 n, nc=2clog2 n, 2O(log n) is an upper bound nc for some c. 

nO(1) represents the same bound. 
• nc polynomial bounds, 2(nd) exponentials



Small-o notation

• Big-O says that one function is asymptotically no more than another
• Small-o says that one function is asymptotically less than another



Examples

1. √n=o(n)
2. n=o(nloglog n)
3. nloglog n = o(nlog n)
4. nlog n=o(n2)
5. n2=o(n3)
However, f(n) is never o(f(n))



Analyzing algorithms

• Stages 1 and 4: O(n) 
• Stages 2 and 3, O(n) steps and each scan crosses off 2 symbols, at 

most n/2 steps apart: (n/2)O(n)=O(n2) steps
• Total time of M1: O(n)+O(n2)+O(n)=O(n2) 



Time complexity class

• A∈TIME(n2) because M1 decides A in time O(n2) and TIME(n2) 
contains all languages than can be decided in O(n2) times.
• Is there a machine that decides A asymptotically more quickly ? 
• Is A in TIME(t(n)) for t(n)=o(n2) ? Crossing 2s and 1s changes the 

running time by a factor 2, but not the asymptotic running time 



More efficient machine

• M2 is a more efficient machine and shows that A∈TIME(nlog n)
• This result cannot be further improved on single-tape machine. On single-

tape machine, any language that can be decided in o(n log n) is regular. 



A is in O(n): Linear Time complexity

• Note that the complexity of A depends on the model of computation selected !
• Important difference between complexity theory and computability theory. In computability, all 

reasonable models are equivalent (they decide the same language) 
• Language that are decided in linear time on one model aren’t necessarily decided in linear time 

on another. Fortunaltely, time requirements don’t differ greatly for typical deterministic models.



Complexity relationships among models

Initial stage: O(n), each active portion takes time at most t(n), S simulates at most t(n) steps requiring each O(t(n)) 
and so t(n)xO(t(n))=O(t2(n)) steps.  



Running time of non-deterministic Turing machines

The definition of the running time of a 
non-deterministic TM is not intended to 
correspond to any real-world computing
device

It is a useful mathematical definition that
asserts in characterizing the complexity of 
an important class of computational
problems



The class P

• The two previous theorems illustrate an important distinction 

• We showed that at most a square or polynomial difference between
the time complexity of problems measured on deterministic single-
tape and multi-tape TM 

• We showed that at most an exponential difference between the time 
complexity of problems on deterministic and non-deterministic TM



Polynomial Time
• Polynomial differences in the running time are considered to be small, whereas

exponential differences are considered to be large 
• Dramatic difference between polynomials as n3 and exponential 2n: for example if 

n=1000, 1 billion is large but manageable number whereas 2n is much larger than
the number of atoms in the universe
• Polynomial time algorithms are fast enough for any purposes, bnut exponential

time algorithms rarely are useful
• Exponential time algorithms arise when we solve problems by exhaustively

searching through a space of solutions: brute-force search
• All reasonsable deterministic computational models are polynomially equivalent
• Disregarding polynomial differences in running time can be seen as absurd since

programmers care about such difference and even constant factor…
• But, disregarding polynomial differnces doesn’t imply that we consider them as 

unimportant. Questions such as the polynomiality or non-polynomiality of the 
factoring problem do not depend on the polynomial differences



Definition P

• The class P plays a central role in our theory and is important because
1. P is invariant for all models of computation that are polynomially

equivalent to the deterministic single-tape Turing machine, and 
2. P roughly corresponds to the class of problems that are realistically

solvable on a computer. (Of course, a running time of n100 is unlikely to 
be practical, but in general we can decrease the degree.)



Examples of problems in P 

• One important point is the encoding method: any reasonable method
except the unary notation, in any other base 

Thm: PATH ∈ P
Brute-force algorithm: 
With m nodes, number
of paths of length at 
most m is mm

Exponential in m



RELPRIME ∈P

• Eucliean algorithm: at every
execution of stage 2 in E 
(except maybe the first), the 
value x is cut by at least 2:
• After Stage 2, x<y (because mod)
• After Stage 3, x>y, Stage 2 is run: 

if x/2≥y, x mod y<y≤x/2 and x 
drops by at least half. If x/2<y, x 
mod y = x-y<x/2 and x drops by 
at least half. 



The class NP

• Sometimes, attempts to avoid brute-force in certain problems, including
many interesting and useful ones, haven’t been successful, and polynomial 
time algorithms that solve them aren’t known to exist
• Why have we been unsuccessful in finding polynomial time algorithms for 

these problems ? We don’t know the answer to this important question. 
Perhaps these problems have as yet undiscovered polynomial time 
algoreithms that rest on unknown principles. Or possibly some of these
problems simply cannot be solved in polynomial time. They are intrinsically
difficult. 
• Remarkable discovery concerning this question shows that the 

complexities of many problems are linked: a polynomial time algorithm for 
one such problem can be used to solve an entire class of problems



Hamiltonian path
• A Hamiltonian path in a directed graph G is a directed path that goes

through each node exactly once. We consider the problem of testing
whether a directed graph contains a Hamiltonian path connecting two
specified nodes



HAMPATH Problem
• We can obtain an exponential time algorithm for the HAMPATH problem by 

modifying the brute-force algorithm for PATH. We only need to add a check to 
verify that the potential path is Hamiltonian
• No one knows whether HAMPATH is solvable in polynomial time 
• The HAMPATH problem has a feature called polynomial verifiability that is

important for understanding its complexity: we don’t know of a fast way to 
determine whether a graph contains a Hamiltonian path, but if such a path is
discovered, we can easily convince someone by presenting it
• Another polynomially verifiable problem is compositeness: find two factors and 

multiply them
• Some problems may not be polynomially verifiable: The complement of 

HAMPATH. How can we convince someone that there is no Hamiltonian path ?



Polynomial Verifiable

• A verifier uses additional information represented by the symbol c (called a 
certificate or a proof) to verify that a string w is a member of A
• For polynomial verifiers, the certificate has polynomial length (in the lenght

of w) because that is all the verifier can access in its time bound
• E.f.: HAMPATH and COMPOSITES problems have polynomial time verifiers



NP definition

• The class NP is important because it
contains many problems of practical
interest as HAMPATH and 
COMPOSITES. COMPOSITES is a 
member of P but proving this stronger
result is difficult
• NP term comes from nondeterministic

polynomial time (alternative 
characterization): Problems in NP are 
called NP-problems



NP definition

(=>) Let A∈NP and show that A is decided by a polynomial 
time NTM N. Let V be the polynomial time verifier for A that
exists by the definition of NP. Assume that V is a TM that
runs in time nk and construct N as follows:

(<=) Assume that A is decided by a polynomial time NTM N 
and construct a polynomial verifier V as follows:



Complexity class NTIME

• The class NP is insensitive to the choice of reasonable non-
deterministic computational model because all such models are 
polynomially equivalent



Examples of problems in NP

• A clique in a undirected graph is a subgraph, wherein every two
nodes are connected by an edge. A k-clique is a clique that contains k 
nodes. E.g. A graph with a 5-clique

• The clique problem is to determine whether a graph contains a clique 
of a specified size: CLIQUE = {<G,k>| G is an undirected graph with a 
k-clique}



CLIQUE is in NP



SUBSET-SUM Problem
• Given a set of number x1, …., 

xk and a target number t, 
determine whether the 
collection contains a subset
that adds up to t

The complement of CLIQUE and SUBSET-SUM are not 
obvious members of NP. Verifying that something is not 
present seems more difficult than verifying it is present



The P versus NP question

• NP is the class of languages that are solvable in polynomial time on a 
Non-deterministic TM or whereby membership in the language can be
checked in polynomial time 
• P is the class of languages where membership can be tested in 

polynomial time. 



P vs. NP ?


