
THÈSE
présentée à

l’ÉCOLE POLYTECHNIQUE

pour l’obtention du titre de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
EN INFORMATIQUE

Jérôme FERET

25 février 2005

Analyse des systèmes mobiles
par interprétation abstraite

Analysis of mobile systems by abstract interpretation

Directeur de thèse: Patrick COUSOT

Professeur, École Normale Supérieure, Paris

Président: M. David SCHMIDT

Professeur, Kansas State University

Rapporteurs: M. Luca CARDELLI

Directeur assistant, Microsoft Research, Cambridge
M. David SCHMIDT

Professeur, Kansas State University

Examinateurs: M. Vincent DANOS

Directeur de recherches au CNRS, Paris VII
M. Roberto GIACOBAZZI

Professeur, Università degli Studi di Verona
M. Jean GOUBAULT-LARRECQ

Professeur associé, École Normale Supérieure de Cachan

c© Jérôme FERET, 2004–2005.

Cette recherche a été conduite à l’École Normale Supérieure (Paris) durant un
contrat d’allocation couplée (normalien) de l’Université Paris IX Dauphine. Cette
recherche a été financée en partie par le projet DAEDALUS (projet européen IST-
1999-20527 du programme FP5).

Les opinions présentées dans ce document sont celles propres de son auteur et ne
reflètent en aucun cas celles de l’École Polytechnique, de l’Université Paris IX
Dauphine ou de l’École Normale Supérieure (Paris).

Résumé iii

Résumé

Un système mobile est un ensemble de composants qui peuvent interagir entre
eux, tout en modifiant dynamiquement le système lui-même. Ces interactions
contrôlent ainsi la création et la destruction des liaisons entre les composants,
mais aussi la création dynamique de nouveaux composants au sein du système.
La taille d’un tel système varie au cours du temps, elle n’est pas bornée en géné-
ral. Un système mobile peut représenter des réseaux de télécommunication, des
systèmes reconfigurables, des applications client-serveur sur la toile, des proto-
coles cryptographiques, ou des systèmes biologiques. Plusieurs modèles sont dis-
ponibles selon le domaine d’application et la granularité du niveau d’observation.

Dans cette thèse, nous proposons un cadre de travail unifiant pour découvrir et
prouver statiquement (avant leur exécution) et automatiquement les propriétés des
systèmes mobiles. Nous proposons un méta-langage dans lequel nous encodons
les modèles les plus couramment utilisés dans la littérature (le π-calcul, le calcul
des ambients, le join-calcul, le spi-calcul, les BIO-ambients, etc). Pour chaque
modèle encodé, le méta-langage calcule une sémantique enrichie dans laquelle à
la fois les composants et les objets qu’ils manipulent (adresses mémoires, noms
de canaux, clefs secrètes ou partagées, etc) sont identifiés par l’historique de leur
création. Ainsi, nous n’utilisons pas de relation de congruence (ni de renommage),
ce qui rend l’analyse plus facile.

Le cadre général de l’Interprétation Abstraite nous permet ensuite de dériver
des sémantiques abstraites, qui sont décidables, correctes, et approchées. Dans
cette thèse, nous donnons trois analyses génériques que nous instancions selon le
compromis désiré entre le temps de calcul et la précision de l’analyse. La première
analyse se concentre sur les propriétés dynamiques du système. Elle infère des
relations entre les historiques des objets qui sont manipulés par les composants
du système. Cette analyse distingue les instances récursives d’un même objet, et
ce, même lorsque le nombre de ces instances n’est pas borné. à titre d’exemple,
cette analyse prouve dans le cas d’une application client-serveur à nombre illimité
de clients, que les données de chaque client ne sont pas communiquées aux autres
clients. La deuxième analyse se concentre sur des propriétés de concurrence. Cette
analyse compte le nombre de composants du système. Elle permet de détecter que
certains composants ne peuvent pas interagir, car ils ne coexistent jamais. Elle
peut aussi garantir à un système qu’il n’épuisera pas les ressources physiques
disponibles. Une troisième analyse mêle concurrence et dynamicité.

Abstract v

Abstract

A mobile system is a pool of agents that may interact with each other. These
interactions dynamically change the system, by controlling both creation and de-
struction of links between agents. These interactions also control the creation of
new agents. The size of a mobile system evolves during its computation. This size
may be unbounded. A mobile system may describe telecommunication networks,
reconfigurable systems, client-server applications, cryptographic protocols, or bi-
ological systems. Several models are available according to the application field
and the granularity of the observation level.

In this thesis, we propose a unifying framework to discover and prove auto-
matically and statically some properties of mobile systems. We propose a meta-
language to encode the most current models for mobility (the π-calculus, the am-
bients, the join-calculus, the spi-calculus, the BIO-ambients, and so on). The
meta-language provides an operational semantics for each encoded model. In
these semantics, each agent is identified with the history of its creation, so that
this semantics avoids the use of α-conversion.

Then, we use the Abstract Interpretation framework to derive abstract seman-
tics, which are sound, decidable, but approximate. In this thesis, we give three
generic semantics that we set according to the expected trade-off between accu-
racy and efficiency. The first analysis focuses on dynamic properties: it captures
relations about the creation histories of the agents of the system. This analysis is
precise enough to distinguish recursive instances of each agent, even when there
is an unbounded number of instances. Thus, we can prove in the case of a client-
sever application that the server always returns data to the right client. The second
analysis focuses on concurrency properties: it counts the number of occurrences of
agents inside the system. This analysis detects mutual exclusion and it bounds the
number of agents. The third analysis mixes concurrency and dynamic properties.
It gathers the agents of the system in several computation unit. Then, it abstract
the number of occurrence of agent in each computation unit. For instance, we can
prove the absence of race in the specification of a shared-memory with dynamic
allocation that is written in the π-calculus.

Remerciements vii

Remerciements

Je remercie Patrick COUSOT pour avoir encadré mon travail au cours de mes an-
nées de thèse. J’ai bénéficié de ses conseils avisés. Je remercie également Radhia
COUSOT et Arnaud VENET qui m’ont initié aux joies du π-calcul dans le cadre de
mes stages de maîtrise et de DEA. Arnaud VENET m’a fait partagé son enthou-
siasme et m’a insufflé les bases pour l’écriture d’articles scientifiques.

Je remercie également Antoine MINÉ et Xavier RIVAL, qui partagent mon
bureau. Ils m’ont toujours fait part de leurs fines remarques. Je remercie aussi
les autres membres de l’équipe : Julien BERTRANE, Bruno BLANCHET, Laurent
MAUBORGNE et David MONNIAUX, ainsi que ceux de la «sister team» de l’École
polytechnique : Guillaume CAPRON, Charles HYMANS, Francesco LOGOZZO,
Damien MASSÉ et Élodie-Jane SIMS. Ils ont tous su me faire profiter au mieux de
leur expérience, et se sont toujours proposés dans la tâche, au combien fastidieuse,
de la relecture de mes papiers. J’adresse une mention particulière pour Eben UP-
TON pour sa patiente relecture de mon article pour le numéro spécial de journal.
Pierre-Loïc GAROCHE a aussi participé à la relecture de cette thèse. Je remercie
aussi Yves VERHOEVEN qui sera toujours le bienvenu pour nous faire partager sa
bonne humeur.

Je tiens, par ailleurs, à remercier vivement le groupe de travail sur la concur-
rence de l’équipe PPS, et tout particulièrement Vincent DANOS et François MAU-
REL. Ce groupe de travail m’a permis d’élargir le cadre de ma recherche et de faire
partager mes travaux à une autre communauté.

Je remercie aussi tous les membres de mon jury de thèse : Ms Luca CAR-
DELLI, Patrick COUSOT, Vincent DANOS, David SCHMIDT, Roberto GIACO-
BIAZZI et Jean GOUBAULT-LARRECQ, pour l’attention qu’ils ont portée à mes
travaux, et les judicieuses remarques qu’ils m’ont faites dans leur rapport et lors
de la soutenance.

Le Laboratoire d’Informatique de l’École Normale Supérieure est un cadre
agréable pour mener des recherches. Je tiens à remercier Mmes ANGELY, IM-
BERT, ISNARD, et MONGIAT, et M DENISE pour leur traitement efficace des pro-
blèmes administratifs.

Je remercie également toute ma famille. Je remercie en particulier mon père
qui m’a initié très jeune aux joies de l’informatique. Enfin, je remercie Natacha
SIMIC. Elle a su me prodiguer des conseils capitaux tant pour mon anglais que
pour mon éloquence. Elle m’a aussi aidé à rendre mes transparents beaucoup plus
impactants. J’ai ainsi pu améliorer mes prestations orales. Elle m’a aussi apporté
son soutien quotidien durant cette thèse. Elle m’a aussi écouté, elle a su s’intéres-
ser et suivre de près mes travaux de recherche.

viii Remerciements

Table des matières

1 Introduction 1
1.1 Motivations . 1

1.1.1 Mobility models . 1
1.1.2 Non standard semantics 1
1.1.3 Analysis issues . 2

1.2 Overview . 3
1.2.1 Non standard semantics 3
1.2.2 Meta language . 4
1.2.3 Context free semantics 6
1.2.4 Abstraction interpretation 6
1.2.5 Environment approximation 7
1.2.6 Occurrence number approximation 8
1.2.7 Thread partitioning . 9

1.3 Related works . 10
1.3.1 Flow analysis . 10
1.3.2 Occurrence counting analysis 11
1.3.3 Thread partitioning . 12
1.3.4 Behavioral types . 12
1.3.5 Modular analysis . 13

1.4 Outline . 13

2 Non standard semantics for the π-calculus 15
2.1 Standard semantics . 15

2.1.1 Syntax . 15
2.1.2 Semantics . 16
2.1.3 Examples . 18

2.2 Refined semantics . 21
2.2.1 Fresh name allocation 21
2.2.2 Naive semantics . 23
2.2.3 Strongly bisimilar semantics 28
2.2.4 Efficient semantics . 30

ix

x TABLE DES MATIÈRES

3 Dealing with location 33
3.1 Standard semantics for mobile ambients 33

3.1.1 Syntax . 33
3.1.2 Semantics . 34

3.2 Non standard semantics . 41
3.3 Related works . 46

4 Meta language 47
4.1 Meta syntax . 47

4.1.1 Partial interactions . 48
4.1.2 Rules . 48
4.1.3 Well-formedness conditions 52

4.2 System syntax . 52
4.2.1 Labeling . 52
4.2.2 Interfaces . 52
4.2.3 Partial interactions . 52
4.2.4 Initial states . 54
4.2.5 System syntax . 54

4.3 System configurations . 55
4.4 Operational semantics . 56

4.4.1 Primitives . 56
4.4.2 Transition system . 61

4.5 Marker and value freshness . 61
4.5.1 Marker freshness sufficient conditions 63
4.5.2 Thread marker freshness 66
4.5.3 Fresh values . 68

4.6 Conclusion . 69

5 Encoding examples 71
5.1 Revisiting the π-calculus . 71

5.1.1 A polyadic π-calculus with external choice 72
5.1.2 Non standard semantics 74
5.1.3 Correspondence . 77

5.2 Encoding the join-calculus . 77
5.2.1 Syntax . 78
5.2.2 Semantics . 79
5.2.3 Non standard semantics 80
5.2.4 Correspondence . 82

5.3 Encoding the spi-calculus . 82
5.3.1 Syntax . 83
5.3.2 Semantics . 84

TABLE DES MATIÈRES xi

5.3.3 Non standard semantics 84
5.3.4 Correspondence . 99

5.4 Revisiting the ambient calculus 99
5.4.1 Non standard semantics 100
5.4.2 Correspondence . 106

5.5 Encoding BIO-ambients . 106
5.5.1 Syntax . 107
5.5.2 Semantics . 109
5.5.3 Non standard semantics 109
5.5.4 Correspondence . 121

5.6 Extending the framework . 121
5.6.1 Testing term equalities 121
5.6.2 Higher order model encoding 122
5.6.3 Encoding the projective brane calculus 122

6 Context approximation 123
6.1 Introduction . 123

6.1.1 Three approaches . 123
6.2 Context independent semantics for the π-calculus 125

6.2.1 Context approximation 125
6.2.2 Open transition system 126
6.2.3 Coherence . 128

6.3 Generalization for the meta language 132
6.3.1 Context approximation 133
6.3.2 Soundness . 137
6.3.3 Implementation at the meta language level 142
6.3.4 Incompleteness . 150

6.4 Implementing other context abstractions 156

7 Abstract Interpretation 157
7.1 Concrete semantics . 157
7.2 Generic abstraction . 158

7.2.1 Abstraction definition 158
7.2.2 Abstract counterpart . 159
7.2.3 Extrapolated iterates . 159

7.3 Abstraction algebra . 160
7.3.1 Cartesian product . 160
7.3.2 Reduced domain . 161

7.4 Comparing abstractions . 163
7.4.1 Monotonic abstraction 163
7.4.2 Local comparison between two abstractions 164

xii TABLE DES MATIÈRES

7.4.3 Least fixpoint comparison 165

8 Environment approximation 169
8.1 Generic analysis . 169

8.1.1 Generic domain . 169
8.1.2 Molecule abstraction . 171
8.1.3 Abstract operational semantics 173
8.1.4 Abstract operational semantics 181

8.2 Control flow analyses . 182
8.2.1 Generic marker abstraction 184
8.2.2 Atom abstraction . 187
8.2.3 Molecule abstraction . 188
8.2.4 Combining marker abstractions 196
8.2.5 Three control flow analyses 198
8.2.6 Prototypes and analysis examples 211
8.2.7 Comparing these analyses 214

8.3 More precise abstractions . 221
8.3.1 Dependencies among thread names 223
8.3.2 Marker analysis . 231
8.3.3 Approximated reduced product 242

9 Occurrence number approximation 247
9.1 Related works . 248
9.2 Generic analysis . 249
9.3 Abstract domains . 252

9.3.1 Interval domain . 255
9.3.2 Linear equalities domain 255
9.3.3 Approximated reduced product 256

9.4 Prototypes and analysis examples 259
9.4.1 Two prototypes . 259
9.4.2 Examples . 260
9.4.3 Implementation issue . 262

10 Thread partitioning 265
10.1 Motivating examples . 266

10.1.1 Shared-memory with dynamical allocation 266
10.1.2 Authentication in protocol 268

10.2 Analyzing the content of an ambient 270
10.2.1 Abstract domain . 271
10.2.2 Abstract transition system 275
10.2.3 Prototype and analysis example 282

TABLE DES MATIÈRES xiii

10.3 Generalization . 282
10.3.1 Concrete partitioning . 284
10.3.2 Abstract partitioning . 285
10.3.3 Environment and counting domains 285
10.3.4 Main domain . 285
10.3.5 Partitioning primitives 286
10.3.6 Abstract operational semantics 287

10.4 Applications . 301
10.4.1 Race-condition analysis for the π-calculus 301
10.4.2 Authentication analysis for the spi-calculus 302

11 Conclusion 305
11.1 Contribution . 305
11.2 Future works . 306

11.2.1 Implementation . 306
11.2.2 Proving high level properties 307
11.2.3 Extending model expressiveness 307
11.2.4 Approximating probabilistic behavior 307

A Correspondence proves 309
A.1 The standard and the naive semantics 309
A.2 The standard and the intermediate semantics 310
A.3 The standard and the efficient semantics 312

B Marker freshness 315
B.1 Thread marker freshness . 315

C Context approximation 321
C.1 In the π-calculus . 321

C.1.1 Trace projection . 321
C.1.2 Soundness . 322
C.1.3 Completeness . 328

C.2 Generalization . 336

D Abstraction proves 341
D.1 Environment abstraction . 341

D.1.1 Control flow analysis . 341
D.2 Occurrence counting abstraction 349

Bibliographie 353

Chapter 1

Introduction

1.1 Motivations

1.1.1 Mobility models

A mobile system is a pool of threads. These threads may establish some links
between each other, and use these links to interact. These interactions control the
dynamically creation of both new threads and new links between threads (inter-
actions may also control the updating or the destruction of threads and of these
links). This way the interaction topology of mobile systems dynamically changes
during computation, making their analysis a very difficult task.

Mobile systems are widely used in several distinct areas: they can describe
communicating distributed systems; they are broadly used to model ideal cryp-
tographic protocols abstracting away algorithmic primitives; they are also used
now to model biological systems. Moreover, there exist several models accord-
ing to the granularity of the model abstraction. For instance, in the π-calculus,
two threads may establish links when they know the name of a common channel;
while in the ambient calculus, rooting is explicit and links may only be estab-
lished when spatial conditions are satisfied. As a consequence, there is a growing
number of models for mobility, and several separate scientific communities. In
this thesis, we propose a unifying approach for analyzing some properties of mo-
bile systems. Our framework can be applied to most frequently used models in
the current literature (such as the π-calculus, the spi-calculus, and the ambient
calculus).

1.1.2 Non standard semantics

Mobile models widely use names (channel names, ambient names, memory cell
names, etc. . .). When a thread opens a channel, builds an ambient, or allocates a

1

2 CHAPTER 1. INTRODUCTION

memory cell, the thread gives it a name. Then, this name may be communicated to
the other threads during computations. A name is atomic, which means that it can-
not be computed: the only way to get a name is to have received this name from
another thread. Dynamic creation of names is a key notion in mobile systems. It
allows for the description of unbounded systems using an unbounded number of
names. Mobility models usually define their semantics up to a congruence relation
that helps in dealing with this unboundedness. Each name is protected by scoping
rules. Nevertheless, when two threads interact, they must extrude the scope of
their names to each other. The use of α-conversion solves conflicts (when two
threads have associated the same name to two distinct things). Unfortunately, this
makes any analysis quite uneasy. On one hand, we must consider the semantics
up to equivalence classes, on the other hand there are no explicit relations between
the threads and what they declare. In order to tackle this problem, we introduce
a non standard semantics where name allocation is fully deterministic. Each allo-
cated name is computed from the local history of the thread that has opened the
channel, built the ambient, or allocated the memory cell. This allows for express-
ing explicitly that two names have been allocated by the same instance of a thread
since it is encoded inside the names themselves. The non standard semantics gets
rid of congruence relations: we always extrude the scope of names at the top level
and we use thread sets to encode parallel composition.

In this thesis, we propose a generic framework to build non standard seman-
tics. We have proposed a meta language and we have encoded the models most
frequently used in the literature. This meta language allows for the description of:
matching guards, internal and external choices, guarded replication and explicit
recursion, location, migration and dissolution, term construction and destruction,
safe migration, and channeled communication across boundaries.

1.1.3 Analysis issues

Having chosen the appropriate semantics, we use the Abstract Interpretation
framework to design decidable analyses. This framework is highly generic: it
can be applied to various analyses, provided some abstract primitives are given.
Moreover, it is extensible: it allows us to build the (approximated reduced) prod-
uct of several analyses expressed in this framework.

Then, we use our framework to address several orthogonal issues:

1. Environment analysis consists in detecting relationships among the thread
instances that have allocated some names and the thread instances that re-
ceive these names. This analysis is context independent: it detects which
names can be communicated outside the system. It is also non-uniform in
the sense that it distinguishes between recursive instances of threads. We

1.2. OVERVIEW 3

can prove, for instance, that a name can be communicated to at most one
other instance of a thread, and not to the other ones. In the case of an ftp-
server, it detects that the server may return a query only to the client which
has sent the corresponding request, even in the case of an unbounded num-
ber of clients.

2. Occurrence counting analysis consists in abstracting the occurrence number
of thread instances during computation sequences. It is especially useful to
detect mutual exclusion. It also helps in discovering a bound to the number
of agents during computation sequences, so that we can verify that some
part of the systems will not exceed physical limits imposed by the imple-
mentation of the system. In the case of an ftp-server, we can automatically
infer the maximum number of simultaneous client sessions. Our approach
relies on the use of a reduced product between a non-relational and a re-
lational domain. Complexity problems are solved by using approximated
algorithms for computing a reduction between these two domains.

3. Thread partitioning restores the notion of computation unit. A computation
unit gathers several thread instances. For instance, a computation unit can
be made of all threads directly inside a given ambient, or all threads of
a same server session. Then, we count the occurrence number of threads
inside each computation unit. This analysis is useful in proving high-level
properties:

• we capture a precise description of ambient contents;

• we prove the specification correctness of a shared-memory with dy-
namic allocation (written in the π-calculus), by detecting that no si-
multaneous emission over the channels that encode memory cells may
happen;

• it proves authentication property in the case of cryptographic proto-
cols, by detecting that for a given session identifier A, an end(A) signal
may never be launched before the corresponding begin(A) signal.

1.2 Overview

1.2.1 Non standard semantics

We introduce in Chap. 2 a non standard semantics for the π-calculus. The non
standard semantics is a refined semantics which aims at explicitly specifying the
links between the channels and the instances of threads which have opened them.

4 CHAPTER 1. INTRODUCTION

Any instance of thread is identified unambiguously by a marker in order to distin-
guish that instance from all other instances. Each time a channel is opened, the
name of this channel is tagged with the marker of the thread instance which has
opened this channel, so that the origin of channel names is easily traced. Venet,
in [74], has presented such a non standard semantics, but it applies only to a small
part of the π-calculus, called the friendly systems [54]. In particular, it requires
replication guards not to be nested, and the system to be closed. We propose here
a new non standard semantics in order to relax those restrictions.

In the non standard semantics, the state of the system is described by a set
of thread instances. Each thread instance is a triplet (t, id,E) where t denotes a
program point, id is the marker of the instance, and E is an environment mapping
variables to pairs (x, idx). Moreover, the pair (x, idx) denotes the name of the
channel opened by the instance of the restriction (ν x) that is tagged with the
marker idx. While threads are running, environments are calculated in order to
mimic the standard semantics.

In Chap. 3, we propose a non standard semantics for the ambient calculus.
To deal with locations, we distinguish two kinds of threads: some threads denote
some capabilities and some others denote ambients. Moreover, we associate each
thread to a fourth component. This fourth component encodes the location of
the thread: this is a pointer to an ambient thread. During interactions, locations
are used to check spatial preconditions. Migrations are modeled by updating the
location of the ambients. Opening an ambient consists in removing the ambient
thread and in replacing in the whole system any pointer to this ambient with a
pointer to its surrounding ambient.

1.2.2 Meta language

In Chap. 4, we propose a generic framework for describing the non standard se-
mantics of models for mobile systems. Each encoded model is defined by some
generic partial interactions and by some generic rules. Partial interactions are
computed by threads. Generic rules describe the behavior of threads when they
synchronize the computation of their partial interactions. Then, the syntax of a
system is given by a set of program points and a static description of the partial
interactions that can be performed at each program point. The state of a system is
a set of thread instances which are obtained by associating a program point with a
marker and an environment (thread locations — when they exist — are stored in
thread environments).

Then, the operational semantics is generically derived from the meta language.
Each partial interaction selects a locus. A locus is a part of an environment. An in-
teraction consists in computing some partial interactions between compatible loci.
In case of success, loci allow for the definition of both a local substitution and a

1.2. OVERVIEW 5

global substitution. The local substitution updates the environment of computed
threads. This essentially describes value passing between several threads: this
models name passing and ambient migration (whenever local substitution is ap-
plied to thread locations). The global substitution is applied to the whole system.
This substitution describes thread re-addressing: it models ambient opening (the
full content of an opened ambient is re-addressed onto the surrounding ambient).

Informally, in the π-calculus, the reception a?[x].P (a and x must be seen as
variables associated to some names at run-time) is associated with the partial in-
teraction (in, [a], [x], label(P)). This way we can perform an action of type in, with
a sequence [a] of parameters (i.e. the thread locus). This binds the sequence [x]
of variables when launching a continuation P. Then, a formal rule describes the
communication between two threads as follows:

(

[1→ in,2→ out] ,
{

X1
1 = X2

1

}

,
[

Y 1
1 ← X2

2

]

, []
)

,

which means that the communication is enabled whenever there are two available
distinct threads such that:

1. the first one — called the receiver — computes an action of type in;

2. the second one — called the sender — computes an action of type out;

3. the first arguments of the receiver and of the sender are associated to the
same name at run-time.

As a result, the first bound variable of the receiver is associated with the name
that is associated with the second parameter of the sender. To describe ambient
opening, we also need to define a global substitution. For instance, the formal
substitution [X1

1 7→ X2
1] means that any instance of the value of the first parameter

of the first thread is replaced with the value of the first parameter of the second
thread. During an interaction, compatibility conditions, local substitution, and
global substitution are computed only from the formal rule and the tuple of thread
loci.

We provide some sufficient assumptions over the syntax encoding of the sys-
tems to ensure that the marker allocation scheme is not ambiguous. In Chap. 5,
we use this meta language to encode the most frequently used models for mo-
bility in the current literature. These encoding satisfy marker unambiguity suf-
ficient assumptions. We provide an encoding of a version of the π-calculus, the
join-calculus, the spi-calculus, the ambients, and the BIO-ambients. This way,
our meta language allows for the description of: internal choices and external
choices, guarded replication and explicit recursion, location, migration, and dis-
solution, term construction and term destruction, safe migration, and channeled
communication across boundaries.

6 CHAPTER 1. INTRODUCTION

Our meta language may also mix these features easily. Nevertheless we cannot
model the bang operator, since spontaneous replication prevents us from tracking
the thread history. Moreover, we cannot deal with an equational theory such as
in the applied π-calculus [1], or with symmetric communications such as in the
solo-calculus [49,48] or in the fusion-calculus [65], since this feature may destroy
the origin of the values that are used in the system. We have also avoided term
unification (in the spi-calculus, we only match k-depth terms, where k is a param-
eter). We have left as future works higher order communications [70] although
our meta language can model them.

1.2.3 Context free semantics

Until now, we have only considered closed systems. However, a mobile system
is usually a small part of a bigger system. The rest of the bigger system is called
the context. The system part that we consider is called an open system. The open
system aims at interacting with its context. Nevertheless this context may not be
known: It can be made of some trusted threads or of an hostile intruder that may
either force the open system into violating its usual behaviors or exploit security
leaks in order to spy some sensitive information of the open system. We pro-
pose to abstract the context by the set of the values (names, locations, pointer,. . .)
shared with the system. The semantics for open systems is then derived from the
semantics for closed systems. Our context abstraction is sound for any encoded
model. Moreover, we prove that it is also complete in the case of the π-calculus.
However, it is complete neither in the case of the spi-calculus, nor in the case
of mobile ambients, because it gives too much control to the context. With our
abstraction:

1. in the case of the spi-calculus, the context may change dynamically the
terms it has already sent to the system;

2. in the case of mobile ambients, the context may access to an ambient only
by using its address (while ignoring the full rooting path).

We propose an encoding of this abstraction at the meta language level. This
way, the analysis of an open system boils down to the analysis of a closed system
(in an enriched language). We also provides generic libraries that implement sets
in the meta language, so that any set-based context abstraction can be encoded at
the meta language level.

1.2.4 Abstraction interpretation

Abstract interpretation is a theory of the approximation of semantics. It formalizes
the idea that the semantics can be more or less precise according to the considered

1.2. OVERVIEW 7

level of observation. In static analysis, abstract interpretation is used to derive a
decidable semantics from a concrete — non decidable — one. Because of the
upper-approximation, the result is not complete: this means that not all the prop-
erties of programs are discovered, nevertheless, the result is sound: this means
that all the captured properties are satisfied in the concrete semantics.

In Chap. 7, we introduce a generic abstraction to approximate the behavior of
a mobile system. It could indeed apply to any transition system. This abstraction
does not depend on the abstracted properties yet: they are left as a parameter of
our analysis. Hence, our framework is highly generic, and we can make a reduced
product between several analyses. Comparing abstract semantics is usually a very
difficult task. We provide local comparison criteria that allow for the comparison
of two abstract semantics.

1.2.5 Environment approximation

In Chap.8, we propose an analysis that abstracts the markers and the environments
of the threads. We use two granularity levels. We abstract system states by sep-
arating information about each program point — the abstraction of information
about threads at a given program point is called an abstract atom. Then, when
threads interact, we need to collect relational information about several threads.
For that purpose, we use more precise abstractions — called abstract molecules
— that describe relations among abstract atoms. Atom and molecule abstraction
is fully parametric.

We propose a first class of abstraction: for each thread and each value in this
thread, we abstract the relation among this value and the marker of the thread
(we abstract away relations among several values in the same thread). Abstract
atoms require parametric abstraction of marker pairs and abstract molecules re-
quire parametric abstraction of marker tuples. We propose ten instantiations for
these abstractions and establish a hierarchy among them. This hierarchy is not
only a local comparison among the abstractions, but it also ensures a comparison
among the abstract semantics (i.e the analysis results). Accurate analyses rely on
the use of a reduced product between a regular approximation and a relational
approximation. The regular approximation abstracts the shape of each marker
without any relation among them. The relational abstraction compares relations
among the occurrence number of each pattern inside markers. Relational infor-
mation allow for a non-uniform description of the links between threads in the
sense that we distinguish between recursive instances of threads. We can prove,
for instance, that a name can be communicated to at most one thread instance, and
not to the other ones. In the case of the ftp-server, we detect that the server may
return a query only to the client which has sent the corresponding request, even in
the case where an unbounded number of clients are created.

8 CHAPTER 1. INTRODUCTION

This first analysis can only capture comparisons between thread markers and
the values that are associated with their variables. In some cases, it turns out that
there are no such relations whereas some relations between the values that are
associated with several variables are useful. That is why we also propose a wider
class of abstract domains. These domains can especially express some relations
between values (names, locations, memory cells), even if there is no relation be-
tween their markers and the marker of their thread instance. Nevertheless, this
raises some complexity problems we solve these problems by designing several
domains: there is a trade-off between information partitioning, and the accuracy
of information propagation. We use two complex domains. A first domain glob-
ally abstract thread properties. Information propagation is very easy, but abstract
computation looses too much information. This first domain is refined by another
one which partitions properties about threads according to the value labels (i.e.
we abstract a set of threads by a function mapping each partition class to the set
of the threads in this class). This partitioning provides very accurate properties.
But constraint propagation would be too costly in such a domain. There is a bal-
ance between these domains. On the first hand, the first one partitions its own
properties to refine the second one. Then, the second one applies accurate trans-
fer functions (checks precondition satisfiability), and sends the result to the first
domain. On the second hand, to perform information closure, the second domain
merges all the partition cases, sends the result to the global abstraction, and par-
titions the result to refine its own constraints. This is a way to abstract constraint
propagations in a less costly domain.

1.2.6 Occurrence number approximation

In Chap. 9, we propose to count the occurrence number of threads during com-
putation sequences. It is especially useful to detect mutual exclusion. It also
helps in discovering sound bounds for the number of agents during computation
sequences, so that we can verify that some part of the system will not exceed
the physical limits imposed by the implementation of the system. In the case of
the ftp-server, we can automatically infer the maximum number of simultaneous
client sessions.

We first abstract away any information about markers and environments. This
way, a configuration is just seen as a vector that associates each program point
to the number of threads at this program point. Abstract interaction is computed
in two steps. First we take into account that interacting threads occur simultane-
ously: in the abstract, we check that some interval constraints are satisfiable and
enforce them in such a case. Then, we count both the threads that are consumed
and the threads that are created during the interaction: in the abstract, we apply
a translation over abstract vectors. Thus, we need an abstract domain such that

1.2. OVERVIEW 9

we can check and enforce interval constraints and such that we meet abstract el-
ements that are closed by some translations: we use a reduced product between
the domain of positive intervals and the domain of linear equalities. In such a
domain, mutual exclusion and semaphores are captured by linear equalities. A
mutual exclusion among some threads at program points p1,. . . ,pn will be cap-
tured by the constraint ∑i xi = 1 where xi denotes the number of occurrence of
threads at program point pi. A semaphore is captured by a constraint of the form
∑i xi = k where k is the maximum number of threads that can simultaneously
computed. A thread at program point pi denotes either an available token, or a
concurrent agent that is using a token. We use these affine constraints to refine
interval constraints about occurrence number of threads. For instance, we may
have the constraints x1 + x4 = 7∧ 0 ≤ x1 ≤ 7∧ 0 ≤ x4 ≤ 7. We suppose that we
perform an abstract transition that requires that x1≥ 1 and that computes the trans-
lation [x1 ← x1− 1;x4 ← x4 + 1]. The affine invariant holds. Moreover, we can
deduce the constraint x2 ≤ 6 from the constraints x1 + x4 = 7 and x1 ≥ 1. We
conclude that the constraint x2 ≤ 7 is still valid after the abstract interaction. The
affine constraint x1 +x4 = 7 is usually not explicit. It may be the result of a linear
combination of several explicit affine constraints.

The affine equality domain uses Gaussian elimination to normalize equality
systems. For instance, the normalized form of the system x1 + x4 = 7∧ x1− x3 =
2∧ x2− x4 = 4 (in which the constraint x1 + x4 = 7 is explicit) is given by the
system x1−x3 = 2∧x2−x4 = 4∧x3−x4 = 5 (in which the constraint x1 +x4 = 7
is implicit). Unfortunately, the computation of all implicit linear combinations (up
to the multiplication by a constant) may lead to time blow up. Complexity issues
are solved by using approximate algorithms for computing a reduction between
these domains. Approximation choices mainly boil down to select which implicit
constraints are to be rebuilt. Our strategy consists in solving undefined forms
(i.e. a subtraction between two unbounded intervals) as much as possible.

1.2.7 Thread partitioning

Environment analysis focuses on the potential links between threads. This analy-
sis captures dynamic aspects of systems, since it distinguishes among the distinct
instances of syntactic objects. Unfortunately, environment analysis abstracts away
concurrency, since it abstracts each thread separately. It forgets away that some
threads may not occur simultaneously. On the other side, occurrence counting
analysis focuses on the concurrency properties. this analysis captures the threads
that can occur simultaneously. But it abstracts away the potential links between
threads. A Cartesian product between these two analyses gives accurate results. It
implicitly uses the coalescent product: a global interaction is enabled in the prod-
uct analysis, only if it is enabled in each analysis. Unfortunately, that is the only

10 CHAPTER 1. INTRODUCTION

reduction that is performed.
In Chap. 10, we propose an analysis that mixes both dynamic (it distinguishes

among several instances of each computation unit) and concurrency properties.
The main idea comes from the analysis of the content of mobile ambients. In
mobile ambients, each ambient denotes a computation unit, so it is relevant to
abstract the content of each ambient separately. We generalize this approach to
models where the notion of computation unit is not explicit. Thus, we specify
as a parameter what a computation unit is. We propose to partition the set of
threads according to dynamical information (such as the value of a given variable).
Each class is called a computation unit. Then, we count the number of thread
instances in each computation unit. We succeed in proving the absence of race-
conditions in a shared memory with dynamic allocation. We also prove the non-
injective agreement property in a version of the Woo and Lam one-way public-key
authentication protocol.

1.3 Related works

1.3.1 Flow analysis

Control flow analyses focus on the explicit flow of information. Nielson et al.use
abstract interpretation in [11, 9, 10] to infer a uniform description of the interac-
tions in a mobile system written in the π-calculus and apply Seidl’s solver to get
a cubic implementation of their analysis in [62]. Several versions of the frame-
work have been proposed according to the chosen mobility model: an analysis
is proposed in [59] for the ambient calculus ; an analysis for the spi-calculus is
proposed in [61]; an analysis for the BIO-ambients is proposed in [60]. Hennessy
and Riely have designed a type-based analysis of the π-calculus with the same
expressive power in [44]. These analyses use explicit information flow to detect
whether some security constraints specified using a security level cannot be vio-
lated. Nevertheless, these analyses are uniform (or mono-variant). They cannot
distinguish between distinct instances of the same agent. For example, it is im-
possible to give distinct security levels to distinct instances of the same agent.
System specification could be rewritten so that several instances of a given agent
are syntacticly distinguished from the others. Therefore, this requires a human
intervention to guess which replication have to be syntactically unfolded and how
many instances have to be distinguished. Our analysis requires no human anal-
ysis, and can find interesting properties even if an arbitrary number of instances
have to be distinguished. Moreover, it is not obvious in many cases that there ex-
ists a syntactic rewriting of the system so that several different recursive instances
can be distinguished on purely syntactic ground and where the security policy is

1.3. RELATED WORKS 11

checkable using purely uniform analyses.
Cardelli et al. in [16, 15] use the notion of group for describing confinement

properties in the π-calculus and in mobile ambients. Groups gather some values
that have been declared by the same recursive instance of a thread. Then, the
type system ensures that the values of one group cannot be communicated to the
variables of the other groups. This ensures information confinement even inside
recursive instances. However, the type system cannot validate a system where a
given value first exits the scope of the thread instance which has declared it and
then enters again the recursive instance which has declared it. We achieve this
goal by abstracting algebraic comparisons between our history markers.

Aziz uses k-limiting to capture non-uniform properties in [5, 6] in the case of
the π-calculus and in [5, 4] in the case of the spi-calculus. This approach consists
in tagging each instance of a name with an integer. The analysis uses a finite name
abstraction, by collapsing any name instance the index of which is greater than a
fixed constant k. Nevertheless, this k-limiting abstraction has several drawbacks.
If the number of simultaneously instances of a given names is not bounded (or
more precisely if the analysis fails in bounding this number), the analysis may
capture only uniform properties. Moreover, The choice of the parameter k cannot
be done without knowing the required number of name instances. Last, our mark-
ers contain much more information such as the fact that two names have been
declared at the same instance of a thread, which cannot be expressed when using
the k-limiting approach.

Venet has already proposed a non-uniform analysis in [73, 74]. This analysis
infers a sound non-uniform description of the topology of communications be-
tween the agents of friendly systems [54], in which replication guards cannot be
nested and systems are closed. The main contributions with respect to Venet’s
work are:

1. the extension of the non-uniform analysis to systems written in the most
frequently used models (with nested replication guards);

2. the extension to open systems acting in a possibly unknown context;

3. the occurrence counting analysis;

4. the thread partitioning.

1.3.2 Occurrence counting analysis

Very few analyses for counting occurrences of agents have been published. Nev-
ertheless, this problem is very close to the problem of approximating the behavior
of a Petri net, and of occurrence counting in mobile ambients. In [43], Nielson

12 CHAPTER 1. INTRODUCTION

et al. propose an exponential analysis for counting occurrences of agents inside
ambients. In [63], they use context-dependent counts for inferring a more accurate
description of the internal structure of agents, at the expense of a higher time com-
plexity (an exponential number of agents are distinguished). These analyses rely
on the use of a non-relational domain to abstract the content of an ambient. Then,
they use disjunctive completion, and abstract any potential content of a syntactic
ambient in the power set of this abstract domain. These two analyses encounter
the same problem: in case several instances of the same agent may coexist, when
one instance of this agent performs a computation step, these analyses cannot de-
cide whether only one or several instances remain after this computation step, so
they have to consider both cases, which leads to both a loss of precision and an
exponential explosion in complexity. The use of an approximated reduced product
between a relational domain and a non-relational domain to globally abstract sets
of multi-sets of agents allows us to solve this problem efficiently. Thus, we obtain
a very accurate analysis which is polynomial in the number of program points (i.e.
polynomial in the size of the initial system configuration).

1.3.3 Thread partitioning

Our thread partitioning has been inspired by the work of Nielson for abstracting
the content of an ambient [63]. More appropriate domains allow for designing
very accurate analyses, that take benefit for the structure of the model. In mo-
bile ambients, the content of an ambient denotes a computation unit, so it is very
natural to abstract each ambient content separately.

Our contribution is to define a parametric notion of computation unit, so that
we can extend the ambient content analysis to other mobility models. Our goal is
to analyze separately each session of a server, or of a protocol. This way we can
detect mutual exclusion inside a given session, whereas our previous occurrence
counting analysis only infer mutual exclusion among program points (abstracting
away both markers and environments).

1.3.4 Behavioral types

In [46], Kobayashi and Igarashi use CCS processes as types for mobile systems
written in the π-calculus and check some behavioral invariants expressed in modal
logic. Nevertheless, describing causality between actions leads to an explosion of
the size of the types. Another problem is that their type system cannot express
properties that deal with the dynamic creation of channel names. Rajamani and
Rehof have extended this type system in [67,18], so that it handles dynamic name
creation. But type checking is undecidable in general. So, they will have to pro-
pose an approximation in future work.

1.4. OUTLINE 13

1.3.5 Modular analysis

context independent semantics is an important issue in static analysis. It allows for
analyzing only a single part of a system, without much knowledge of its context. It
can be used to abstract the behavior of an instance of an agent, and to detect which
names may escape the scope of this part. This can be used to detect dead code,
for instance. Rajamani and Rehof propose a modular analysis in [67, 18]. Having
abstracted the behavior of two modules, they can calculate an approximation of
the parallel composition of them. But this analysis is very restrictive because
module types must satisfy some assume-guarantee properties.

1.4 Outline

We introduce in Chap. 2 a non standard semantics for the π-calculus. In Chap. 3,
we give a non standard semantics for the ambient calculus : this way we can
deal with locations. In Chap. 4, we introduce our meta language. In Chap. 5,
we encode the most frequently used models of the current literature. In Chap. 6,
we explain how we can deal with open systems embedded within an unknown
contexts. A generic abstract analysis is designed in Chap. 7. It is instantiated in
both Chap. 8 and Chap. 9 to get, respectively, an analysis of the linkage of agents
and an occurrence counting analysis. In Chap. 10, we introduce the notion of
thread partitioning and provide some other analyses.

Chapter 2

Non standard semantics for the
π-calculus

We introduce in this chapter the π-calculus and two semantics for it. The π-
calculus is a formalism used to describe mobile systems. It describes a system as
a set of threads which exchange information over channels. These communica-
tions enable thread synchronization, but also dynamic modification of the system
topology: threads can open new channels, they can also pass control over some
channels to other threads, and they can even dynamically create other threads.

We first recall a standard semantics for the π-calculus in the Sect. 2.1. We
will notice that this semantics does not allow the specification of some interesting
properties, because the link between the instance of threads and the names of the
channels that they have opened (see also Remark 2.1.3) is not encoded explicitly.
Thus we introduce in the Sect. 2.2 a refined semantics, called the non standard
semantics [32, 36], where this relationship is explicitly described.

2.1 Standard semantics

2.1.1 Syntax

Here, we consider a lazy version of the synchronous polyadic π-calculus [54] with
internal choice operator. In the polyadic π-calculus, threads can communicate
tuples of channel names. We use the lazy version of replication introduced in
[72, Chap. 7]: thread creations are performed only when they are required by a
communication. This is not a limitation as full replication can be encoded with
lazy replication (Cf. [72, page:102]).

Let N be a countable set of channel names and L a countable set of la-
bels. The syntax of threads is described in Fig. 2.1(a). Syntactic components are

15

16 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

identified by distinct labels in L . Input guard, replication guard and name restric-
tion act as name binders, i.e in the threads c? j[x1, . . . ,xn]P, ∗d? j[y1, . . . ,yp]Q and
(ν x)R, the occurrences of x1, . . . , xn in P, y1, . . . , yp in Q and x in R are bound.
We also assume that no name occurs twice in a whole system, as an argument of
an input guard, a replication guard or a name restriction. Usual rules about scope,
substitution and α-conversion apply. We denote by fn(P) the set of free names
in P, i.e names that are not under the scope of a binder, and by bn(P) the set of
bound names in P.

2.1.2 Semantics

We now informally introduce the semantics of the π-calculus. The thread aP first
computes the action a before launching the continuation P. The thread (ν x)P
opens a new channel, named x, the thread P can use this channel for communicat-
ing, it can also send the name x to the other threads. In (P | Q), P and Q are two
concurrent threads which may behave independently, or interact by communicat-
ing. The formula (P⊕Q) denotes an internal choice between two threads. Either
P or Q is run, while the other fades away; the choice between P and Q does not de-
pend on the other threads. The thread 0 does nothing. The thread c!i[x1, . . . ,xn]P
sends a message via the channel named c, this message is the tuple of channel
names (x1, . . . ,xn). The thread c?i[y1, . . . ,yn]P waits for a message on the channel
named c, and binds the channel names y1,. . . ,yn to the received channel names.
The thread ∗c?i[y1, . . . ,yn]P is a resource: it replicates itself just before receiving
a message: a new instance of P is launched with y1,. . . ,yn bound to the received
channel names while ∗c?i[y1, . . . ,yn]P waits for the next message.

The operational semantics is given by both a congruence relation in Fig. 2.1(b)
and a reduction relation in Fig. 2.1(c). The congruence relation allows threads to
interact, while the reduction relation describes thread computations. Some rules in
the congruence relation let threads move inside the syntactic tree: they assert the
associativity and commutativity of the parallel composition. Some others extend
the scope of names to the threads they are communicated to: α-conversion solves
conflicts between names, swapping selects the name the scope of which we wish
to extend, and extrusion extends its scope to another thread. The reduction relation
describes threads’ communications. A communication is allowed when there are
two concurrent threads, such that the first one sends a message on a channel, while
the second one waits for a message on the same channel (we also request that both
messages have the same arity). The results of such a communication are obtained
by applying the substitution of the λ -calculus in the continuation of the message
receiver. When the receiver is a resource, it is just syntactically replicated before
performing the communication; this way the resource is still available after the
communication. We have labeled each choice reduction step with the symbol ⊕

2.1. STANDARD SEMANTICS 17

P ::= aP (action)
| (ν x)P (name restriction)
| (P | P) (parallel composition)
| (P⊕P) (internal choice)
| 0 (nil)

a ::= c! j[x1, . . . ,xn] (output guard)
| c?i[x1, . . . ,xn] (input guard)
| ∗c?i[x1, . . . ,xn] (replication guard)

where c,x1, . . . ,xn,x ∈N , i, j ∈L and n> 0.
(a) Syntax.

(ν x)P ≡ (ν y)P[x← y] if y 6∈ fn(P) (α-conversion)
P | Q ≡ Q | P (commutativity)

P | (Q | R) ≡ (P | Q) | R (associativity)
P | 0 ≡ P (end of a thread)

(ν x)0 ≡ 0 (garbage collecting)
(ν x)(ν y)P ≡ (ν y)(ν x)P (swapping)
((ν x)P) | Q ≡ (ν x)(P |Q) if x 6∈ fn(Q) (extrusion)

where x, y ∈N .
(b) Congruence relation.

c! j[x1, . . . ,xn]P | c?i[y1, . . . ,yn]Q
(i, j)
−→ P |

∼
Q (comm.)

c! j[x1, . . . ,xn]P | ∗c?i[y1, . . . ,yn]Q
(i, j)
−→ P |

∼
Q | ∗c?i[y1, . . . ,yn]Q (replication)

P⊕Q
⊕
−→ P (left choice)

P⊕Q
⊕
−→Q (right choice)

P
λ
−→ Q

(ν x)P
λ
−→ (ν x)Q

P′ ≡ P P
λ
−→ Q Q≡ Q′

P′
λ
−→ Q′

P
λ
−→ P′

P | Q
λ
−→ P′ |Q

where c, x, x1, . . . , xn, y1, . . . , yn ∈N , i, j ∈L , λ ∈ {⊕}∪ (L ×L),

and
∼
Q = Q[y1← x1, . . . ,yn← xn].

(c) Reduction relation.

Figure 2.1: Standard operational semantics.

18 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

and each communication reduction step with the labels of both threads involved in
the communication: this will allow us to relate the state of a system to the history
of the computation steps that have led to this state.

2.1.3 Examples

We now propose some examples to illustrate both this semantics and the kind of
properties we are interested in. We will find that the semantics we have considered
is not precise enough to handle the properties we are interested in.

Example 2.1.1. An ftp-server can be described by the system given in Fig. 2.2.
The first resource repeatedly creates a new client which sends a query to a

server. This query is composed of a request request, and an address address. The
client sends its query again in the case that it receives a failure report denoted
by the thread address![]. The second resource describes the server. When this
one receives a query, it replicates itself. Then, either it uses an available port
and computes the query or it reports a failure to the client by spawning the thread
address![]. Available ports are denoted by threads port![]. Data processing just
consists in a communication between two threads of the server, through the chan-
nel the name of which is deal: most computational features are abstracted away.
After this communication, the port is released, while the answer is sent back to
the client. An instance of the thread email![rep] is left as a trace of the session.

Our analysis will prove both the integrity and the non-exhaustion of this sys-
tem: it will discover that each time a thread email ![rep] is spawned, the names
email and rep are respectively bound to the names of two channels opened by the
restrictions (ν address) and (ν request) of the same instance of a resource (see
Chap. 8), and thus the server returns its computed answer to the correct client;
it also captures the fact that no more than three instances of the syntactic thread
deal ![data] can occur simultaneously (see Chap. 9), which means that no more
than three simultaneous sessions can be active in the same time.

Example 2.1.2. We propose in Fig. 2.3 a mobile system which creates a ring of
processes, with a token passed around this ring. The names of the channels opened
by name restrictions (ν left0) and (ν right) denote the processes of the ring. The
first part of the system describes the ring creation. The first process is created
by the restriction (ν left0). A thread mon![v1;v2] denotes a connection between
two processes. Then, each time the first resource is replicated, a new process is
created and linked to the previous process, which was passed as an argument of
the replication. The second resource replication closes the ring by linking the last
created process to the first created process. The second part of the system de-
scribes the execution of the processes: an additional resource spawns a resource
for each process of the ring. Then a token is put into the ring of processes: the

2.1. STANDARD SEMANTICS 19

((ν make)(ν server)(ν port)
((∗make?1[](ν address)(ν request)

(
(∗address?2[]server!3[address,request])
|
address !4[]
|
make!5[]

))
|
(∗server?6[email,data](ν deal)

(
port?7[](deal!8[data] | deal?9[rep](email !10[rep] | port!11[]))
⊕
email !12[]

))
| port!13[]
| port!14[]
| port!15[]
|make!16[])
)

Figure 2.2: An ftp-server.

((ν make)(ν mon)(ν left0)
(
((∗make?1[left](ν right)(mon!2[left,right] |make!3[right]))
| (∗make?4[left](mon!5[left, left0]))
|make!6[left0])
|
((∗mon?7[prev,next]

(∗prev?8[](ν crit)(crit?[]9next !10[]
| crit !11[])))

| left0!12[]))
)

Figure 2.3: A ring of processes.

20 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

token is denoted by syntactic copies of the threads next![] and left0![]. The name
of this thread describes the token location. When the token is available, the cor-
responding process can replicate its resource, and as a result the process enters
its critical section. The critical section is exited when the two threads crit![] and
crit?[] have interacted; the token is then passed to the next process.

Our analysis can prove both the integrity and the non-exhaustion of this sys-
tem: it discovers that each time a thread mon![left;right] is spawned, either the
name left is linked to the channel opened by the restriction (ν left0), or both
names left and right are linked to two channels opened by instances of the re-
striction (ν right), but the channel linked to the name left has been opened by the
previous instance of it, which means that a process of the ring can only be con-
nected to either the first one or to the next one (see Chap. 8); it captures the fact
that only one simultaneous instance of the syntactic thread crit![] can exist (see
Chap. 9). That is to say, that only one process of the ring can enter its critical
section at a given time.

Remark 2.1.3. The standard semantics is not well suited to express and capture
integrity properties, because the link between thread instances and the names of
the channels they have opened is not encoded explicitly. For instance, if we think
about the example of the ftp-server and if we cleverly choose the names of opened
channels by indexing them with the instance number of the client resource, we
obtain after two sessions of the server a system of the following form1:

(ν c)(ν address1)(ν request1)(ν address2)(ν request2)

(S ′ | address1!10[request1] | address2!10[request2]).

It appears explicitly that request answers are returned at good addresses. How-
ever, we could have chosen the names differently and obtained the following α-
equivalent configuration:

(ν c)(ν address2)(ν request1)(ν address1)(ν request2)

(S ′ | address2!10[request1] | address1!10[request2])

in which this property is lost.
The link between the recursive instances of a thread and the names of the

channels they have opened could be easily hard-coded: it would be enough to
open a new channel named p for each recursive instance of a thread, and then
encoding the relation that this instance has opened a given channel name n by

1This term only shows explicitly the information we are interested in. The variable S ′ denotes
the rest of the system and the notation (ν c) denotes a sequence of restrictions for all implicit
names.

2.2. REFINED SEMANTICS 21

spawning a thread has_opened!i[p;n], where has_opened is the name of a chan-
nel opened at the beginning of the system computation. Nevertheless, it would be
very difficult to abstract this relation. All the more so since we are also interested
in more complex properties, such as whether two channels have to be opened by
two successive instances of a thread. Moreover, we do not know statically which
complex properties are required to prove easier ones.

The purpose of the next section is to design a semantics in which channel name
origin is carefully traced and can easily be abstracted.

2.2 Refined semantics

The non standard semantics is a refined semantics which aims at explicitly spec-
ifying the links between the channels and the instances of threads which have
opened them. Any instance of a thread is identified unambiguously by a marker in
order to distinguish that instance from all others. Each time a channel is opened,
the name of this channel is tagged with the marker of the thread instance which has
opened this channel, so that the origin of channel names is easily traced. Venet,
in [74], has presented such a non standard semantics, but it applies only to a small
part of the π-calculus, called the friendly systems [54]. In particular, it requires
replication guards not to be nested, and the system to be closed. We propose here
a new non standard semantics in order to relax those restrictions.

This section will be organized as follows: we first describe our marker alloca-
tion scheme, then we propose a naive fully operational semantics for describing
the behavior of closed mobile systems, and we finally improve this semantics in
order to reduce the number of computation steps.

2.2.1 Fresh name allocation

As explained before, α-conversion prevents us from expressing the link between
recursive instances and the names of the channels they have opened. To avoid
the use of α-conversion, we propose a name allocation scheme which ensures
the freshness of allocated names. Such a scheme has already been proposed by
De Bruijn in [29]. Nevertheless, our requirement is quite different. De Bruijn’s
naming scheme allows α-conversion to be avoided, in order to simplify some
manual proofs. We also expect our scheme to allow us to express some integrity
properties. For instance, we would like to express in our semantics the fact that
two names are denoting channels which have been opened by the same instance
of a given thread. Furthermore, as we want to make static analyses, we want to
capture invariants on allocated markers. For that purpose, we want the scheme

22 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

not to depend on the interleaving order. To solve that problem, we propose to tag
each instance of thread by a marker which encodes the history of the replications
which have led to its creation. Each name will then be tagged with the marker of
the thread which has opened the channel that is denoted by this name.

We denote by M the set of all binary trees the leaves of which are all labeled
with ε and the nodes of which are labeled with pairs (i, j) where both i and j are
in L . The tree having a node labeled with a, a left sibling t1 and a right one t2
is denoted by N(a, t1, t2). Markers are binary trees in M . Initial thread instances
are tagged with the marker ε , while the marker of each new thread instance is
calculated recursively from the marker of the thread instances the computation of
which has lead to its creation:

• when a computation step does not involve replicating a resource, the marker
of the computed thread is just passed to its continuation;

• when a resource is replicated, a new marker is deterministically allocated
to the spawned instance: it is given by N((i, j), idi, id j) where i is the label
of the resource, idi is the marker of the resource, j is the label of the thread
instance which replicates the resource and id j is the marker of this thread
instance.

Marker allocation consistency is expressed by the following proposition:

Proposition 2.2.1. During each computation sequence, two distinct instances of
the same thread are always tagged with distinct markers.

Proof. The proof of Prop. 2.2.1 can be made by induction on the length of the
computation sequence. It relies on the fact that each tagged thread instance con-
tains explicitly both the label and the markers of a thread instance which has
necessarily been consumed to spawn this instance.

Moreover, according to the following proposition, we can simplify the shape2

of the markers without losing marker allocation consistency:

Proposition 2.2.2. Let φ1 and φ2 be the two following functions:

φ1 :











M → (L 2)∗

N(a,b,c) 7→ φ1(c).a

ε 7→ ε
φ2 :











M → L ∗

N((i, j),b,c) 7→ φ2(c). j

ε 7→ ε.

Marker allocation remains consistent when replacing each marker by its image
by φ1 or φ2.

2We have reversed markers in order to restore chronological order (so that the past is on the
left and the future in on the right)

2.2. REFINED SEMANTICS 23

Such simplifications allow us to reduce the cost of our analysis, but also lead
to a loss of accuracy, since they merge information related to distinct computation
sequences of the system.

Example 2.2.3. Coming back to the example of the ftp-server, with this allocation
scheme, the first instance of the client resource will be tagged with the marker
id1 = N((1,16),ε,ε), while the second instance will be tagged with the marker
id2 = N((1,5),ε,N((1,16),ε,ε)). So that the configuration reached after two ses-
sions of the server will be of the following form:

(ν c)(ν addressid1)(ν requestid1
)(ν addressid2)(ν requestid2

)

(S ′ | addressid1!10[requestid1
] | addressid2!10[requestid2

]),

where the names are indexed by the marker of the threads which have opened the
channels they denote. We did not indicate the marker of thread instances which
depends on the number of attempts required to establish the connection with the
server. It appears explicitly that the names addressidi and requestidi

communi-
cated to an instance of the thread labeled 10 denote two channels opened by the
same recursive instance of a thread.

2.2.2 Naive semantics

We now propose a fully operational semantics of the π-calculus, in which the
channel names are allocated according to the previously proposed fresh name al-
location scheme. Furthermore, we get rid of the congruence relation by orienting
it, and simulating it by additional operational rules.

2.2.2.1 Definition

Let us consider the case of a closed mobile system S in the π-calculus. The subset
of L used in labeling S is denoted by Lused. A non standard configuration is a
set of thread instances, where a thread instance is a triplet composed of a syntactic
component, a marker and an environment. The syntactic component is a copy
of a sub-term of S , the marker is calculated at the creation of the thread and
the environment specifies the semantic value of each free name of the syntactic
component: it maps each free name of the syntactic component to a pair (x, id),
where x is a bound name of S and id is a marker. Intuitively, (x, id) refers to the
name of the channel opened by the instance of the restriction (ν x) tagged with
the marker id. While threads are running, environments are calculated in order to
mimic the standard semantics. The translation of a labeled system S into a set of
initial threads and non standard computation rules are given in Fig. 2.4.

24 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

C
n
0 (S) = (S ,ε, /0)

(a) Initial configuration

C∪{(P |Q, id,E)}
ε
−→ n C∪{(P, id,E|fn(P));(Q, id,E|fn(Q))}

C∪{((ν x)P, id,E)}
ε
−→ n C∪{(P, id,E[x→ (x, id)]|fn(P))}

C∪{(0, id,E)}
ε
−→ n C

(b) Structural rules

C∪{P⊕Q, id,E}
⊕
−→ n C∪{(P, id,E|fn(P))}

C∪{P⊕Q, id,E}
⊕
−→ n C∪{(Q, id,E|fn(Q))}

(c) Choice rules

E?(y) = E!(x)

C∪

{

(y?i[y]P, id?,E?);
(x! j[x]Q, id!,E!)

}

(i, j)
−→ n C∪

{

(P, id?,E?[y→ E!(x)]|fn(P));
(Q, id!,E!|fn(Q))

}

E?(y) = E!(x), id∗ = N((i, j), id?, id!)

C∪

{

(∗y?i[y]P, id?,E?);
(x! j[x]Q, id!,E!)

}

(i, j)
−→ n C∪







(∗y?i[y]P, id?,E?);
(P, id∗,E?[y→ E!(x)]|fn(P));
(Q, id!,E!|fn(Q))







(d) Communication rules

Figure 2.4: Naive semantics.

2.2. REFINED SEMANTICS 25

Roughly speaking, the initial configuration contains only one thread: the sys-
tem itself, tagged with the marker of the initial thread, ε . Since the system is
closed, the environment is empty. Structural rules mimic and orient the congru-
ence relation. A thread the syntactic component of which is composed of two
concurrent threads can be replaced by the two corresponding threads. Name re-
striction consists in opening a channel denoted by a fresh name, and binding the
corresponding variable to this name in the environment of the continuation. The
fresh name is obtained by tagging the name used in the restriction by the marker
of the thread which has opened the corresponding channel. A thread the syn-
tactic component of which is the empty thread can be removed. Choice rules
mimic choice reduction rules. A thread the syntactic component of which is a
choice between two threads can be replaced by a thread corresponding to one of
these threads. Communication rules mimic communication reduction rules. The
synchronization condition is checked in the environment of the communicating
threads. Name passing is described by explicit substitution in environments. In
the case that a resource is replicated, a fresh marker is inferred according to our
marker allocation scheme.

Example 2.2.4. We consider the following system:

(ν a)(∗a?1[]((ν b)(b!2[b]0 | a!3[]0)) | a!4[]0),

and propose a computation sequence for it in the naive non standard semantics
in Fig. 2.5. The initial state C0 is just a single thread the syntactic component
of which is the system, the marker of which is ε and the environment of which is
empty. The first computation step C0

ε
−→ n C1 consists in opening a new chan-

nel, named (a,ε), since it is opened using the restriction (ν a) of a thread the

marker of which is ε . The second computation step C1
ε
−→ n C2 consists in de-

composing the thread into two concurrent threads; thus the marker of the single

thread is just passed to both threads. The third computation step C2
(1,4)
−→ n C3 is

a communication between the two threads. Since the first one is a resource, it is
still available after the communication. The thread which has sent the message
is consumed and new threads, corresponding to the continuation of the commu-
nicating threads are spawned. The continuation of the resource is tagged with a
new marker N((1,4),ε,ε) obtained from both the labels and the markers of both
communicating threads, while the marker of the thread which has sent the mes-
sage is just passed to its continuation. The next computation step, C3

ε
−→ n C4,

is a garbage collection: it consists in removing the thread corresponding to the
empty thread. The fifth computation step C4

ε
−→ n C5 opens a channel. Its name is

given by (b,N((1,4),ε,ε)) since it is opened by the restriction (ν b) of a thread

the marker of which is N((1,4),ε,ε). Then in the computation step C5
ε
−→ n C6 a

26 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

C0
ε
−→ n C1

ε
−→ n C2

(1,4)
−→ n C3

ε
−→ n C4

ε
−→ n C5

ε
−→ n C6

(1,3)
−→ n C7−→ n

∗ C8

where

C0 =
{(

(ν a)((∗a?1[](ν b)(b!2[b]0 | a!3[]0)) | a!4[]0),ε, /0
)}

C1 =
{(

(∗a?1[](ν b)(b!2[b]0 | a!3[]0)) | a!4[]0,ε, [a 7→ (a,ε)]
)}

C2 =

{ (

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

a!4[]0,ε, [a 7→ (a,ε)]
)

}

C3 =







(

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

(ν b)(b!2[b]0 | a!3[]0),N((1,4),ε,ε), [a 7→ (a,ε)]
)

;
(0,ε, /0)







C4 =

{ (

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

(ν b)(b!2[b]0 | a!3[]0),N((1,4),ε,ε), [a 7→ (a,ε)]
)

}

C5 =

{ (

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

(b!2[b]0 | a!3[]0),N((1,4),ε,ε), [a 7→ (a,ε),b 7→ (b,N((1,4),ε,ε))]
)

}

C6 =







(

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

b!2[b]0,N((1,4),ε,ε), [b 7→ (b,N((1,4),ε,ε))]
)

;
(

a!3[]0,N((1,4),ε,ε), [a 7→ (a,ε)]
)







C7 =















(

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

b!2[b]0,N((1,4),ε,ε), [b 7→ (b,N((1,4),ε,ε))]
)

;
(

(ν b)(b!2[b]0 | a!3[]0),N((1,3),ε,N((1,4),ε,ε)), [a 7→ (a,ε)]
)

;
(0,ε, /0)















C8 =















(

∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]
)

;
(

b!2[b]0,N((1,4),ε,ε), [b 7→ (b,N((1,4),ε,ε))]
)

;
(

b!2[b]0,N((1,3),ε,N((1,4),εε)), [b 7→(b,N((1,3),ε,N((1,4),ε,ε)))]
)

;
(

a!3[]0,N((1,3),ε,N((1,4),ε,ε)), [a 7→ (a,ε)]
)















Figure 2.5: A computation sequence in the naive semantics.

2.2. REFINED SEMANTICS 27

single thread is cut into two concurrent threads, which allows us to go on with the

recursion: the computation step C6
(1,3)
−→ n C7 allows the system to spawn another

instance of the resource with the fresh marker N((1,3),ε,N((1,4),ε,ε)). There
is no confusion between recursive instances and the names of the channels they
have opened: we can notice that in each thread corresponding to the thread la-
beled b!2[b], the marker of the thread and the marker of the name communicated
to the variable b are the same. 2

2.2.2.2 Correspondence

The correspondence between the standard and the naive non standard semantics is
established by a translation function Π. We define the translation Π(C) of a non
standard configuration C as follows:

Π(C) = (ν c1) . . .(ν ck)(E(t1)| . . . |E(tl))

where {ci | i ∈ J1;kK}= {E(x) | (P, id,E) ∈C, x ∈ fn(P)} is the set of the names
used by the system and C = {ti | i ∈ J1; lK} is the set of threads and E is a function
which maps each thread (P, id,E) into the thread obtained by substituting each
free name x by its image E(x) in the environment of the syntactic components
P. The system Π(C) is well defined thanks to associativity, commutativity, and
swapping rules. We have also assumed3 that N ×M was a subset of N .

The standard and the non standard semantics are in weak bisimulation, as ex-
pressed by the following theorem:

Theorem 2.2.5. We have S = Π(C n
0 (S)), and for any non standard configu-

rations C and for any word u ∈ (L 2 ∪{ε;⊕})∗ such that C n
0 (S)

u
−→ n

∗ C, we
have:

1. C
ε
−→ n C′ =⇒ Π(C)≡Π(C′);

2. ∀λ ∈L 2∪{⊕}, C
λ
−→ n C′ =⇒ Π(C)

λ
−→ Π(C′);

3. ∀λ ∈L 2∪{⊕}, Π(C)
λ
−→ P =⇒ ∃D, ∃E,

{

C
ε
−→ n

∗ D
λ
−→ n E

Π(E)≡ P.

The proof of Thm. 2.2.5 is shown in appendix A.1.
We now propose to reduce the number of reduction steps in order to make

analysis design easier, and also to obtain a more efficient analysis. We will first
consider in Sect. 2.2.3 a semantics in which all structural steps are automatically
performed. Then we will introduce in Sect. 2.2.4 another semantics in where
choice steps are also dealt in the same way.

3We consider in fact that a tagged name is a name, since there exists a bijection between the
set of the tagged names and the set of the names.

28 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

2.2.3 Strongly bisimilar semantics

We propose a semantics in which all structural steps are automatically performed:

2.2.3.1 Definition

The binary relation
ε
−→ n is nœtherian and locally confluent. So, it is confluent

[30], and we can define its limit ⇓ as follows:

a ⇓ b if and only if a
ε
−→ n

∗ b and @c,b
ε
−→ n c.

We now express explicitly this limit by designing an extraction function β i

which performs all structural rules in parallel. The definition of β i is given in
Fig. 2.6.

β i((ν n)P, id,E) = β i (P, id,(E[n 7→ (n, id)]))

β i(0, id,E) = /0

β i(P | Q, id,E) = β i(P, id,E)∪β i(Q, id,E)

β i(P ⊕ Q, id,E) = {(P ⊕ Q, id,E|fn(P⊕Q))}

β i(aP, id,E) = {(aP, id,E|fn(aP))}

Figure 2.6: Extraction function.

Proposition 2.2.6. For any non standard configuration C, we have C ⇓
⋃

t∈C
β i(t).

The proof of Prop. 2.2.6 is shown in the appendix A.2.
Then, we can define the intermediate semantics as the transition system

({C i
0(S)},−→ i), where the set of the initial states {C i

0(S)} and the compu-
tation rule −→ i are given as follows:

• C i
0(S) = β i(C n

0 (S)),

• ∀λ ∈ (L 2∪{⊕}),a
λ
−→ i b if and only if ∃c, a

λ
−→ n c and c ⇓ b.

Example 2.2.7. We come back to the previously given system:

(ν a)(∗a?1[]((ν b)(b!2[b]0 | a!3[]0)) | a!4[]0),

2.2. REFINED SEMANTICS 29

D0
(1,4)
−→ i D1

(1,3)
−→ i D2

where

D0 =

{

(∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]);
(a!4[]0,ε, [a 7→ (a,ε)])

}

D1 =







(∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]);
(b!2[b]0,N((1,4),ε,ε), [b 7→ (b,N((1,4),ε,ε))]);
(a!3[]0,N((1,4),ε,ε), [a 7→ (a,ε)])







D2 =















(∗a?1[](ν b)(b!2[b]0 | a!3[]0),ε, [a 7→ (a,ε)]);
(b!2[b]0,N((1,4),ε,ε), [b 7→ (b,N((1,4),ε,ε))]);
(b!2[b]0,N((1,3),ε,N((1,4),ε,ε)), [b 7→ (b,N((1,3),ε,N((1,4),ε,ε)))]);
(a!3[]0,N((1,3),ε,N((1,4),ε,ε)), [a 7→ (a,ε)])















Figure 2.7: A computation sequence in the intermediate semantics.

and give a computation sequence for it in Fig. 2.7. It appears explicitly that struc-
tural computation steps are not described anymore. They are all performed im-
plicitly at the beginning of the system, and after each communication or choice
computation step: this way, the initial state D0 is equal to the state C2 while
the whole computation sequence C0

ε
−→ n C1

ε
−→ n C2 becomes implicit, then

the single computation step D1
(1,4)
−→ i D2 encodes the computation sequence

C2
(1,4)
−→n C3

ε
−→n C4

ε
−→n C5

ε
−→n C6, and the single computation step D2

(1,3)
−→i D3

encodes the computation sequence C6
(1,3)
−→ n C7 −→ n

∗ C8.

2.2.3.2 Correspondence

The standard and the intermediate semantics are in strong bisimilation (up to ≡),
as expressed by the following theorem:

Theorem 2.2.8. We have S ≡ Π(C i
0(S)), and for all non standard configura-

tions C and for all word u ∈ (L 2∪{ε;⊕})∗ such that C i
0(S)

u
−→ i

∗ C, we have:

1. ∀λ ∈L 2∪{⊕}, C
λ
−→ i C′ =⇒ Π(C)

λ
−→ Π(C′);

2. ∀λ ∈L 2∪{⊕}, Π(C)
λ
−→ P =⇒ ∃D,

{

C
λ
−→ i D

Π(D)≡ P.

30 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

The proof of Thm. 2.2.8 is shown in appendix A.2.

2.2.4 Efficient semantics

We propose to focus on communication rules and also to factor choice rules. To
do this, we have to restrict the set of the traces: to make things easier, we propose
to consider only the traces in which communications are delayed until no choices
can be made.4

2.2.4.1 Definition

We denote by 99K the binary relation
ε
−→ n ∪

⊕
−→ n . The reduction relation 99K

is nœtherian, but not necessarily locally confluent. We define the relation =⇒ as
follows:

a =⇒ b if and only if a 99K∗ b and @c, b 99K c.

Since 99K is not necessarily confluent, =⇒ may be not deterministic. We now
express explicitly its action by designing an extraction function β which computes
the set of all the successors of a given configuration. The definition of β is given
in Fig. 2.8(a).

Proposition 2.2.9. For any non standard configuration C, we have:

{b |C =⇒ b}=
{

⋃

Contt | ∀t ∈C, Contt ∈ β (t)
}

.

The proof of Prop. 2.2.9 is shown in appendix A.3.
Intuitively, β gives the set of all the choices available when spawning a con-

tinuation. To spawn a continuation for a thread the syntactic component of which
is a choice (P⊕Q), we either spawn a continuation choice for P or a continuation
choice for Q. Spawning a continuation for a thread the syntactic component of
which is a parallel composition (P | Q), consists in choosing a continuation for
P, choosing a continuation for Q, and spawning concurrently these two continua-
tions.

Then, we can define the efficient semantics as the following transition system
(C e

0 (S),−→ e):

• C e
0 (S) = β (S ,ε, /0)

• ∀λ ∈L 2,a
λ
−→ e b if and only if ∃c, a

λ
−→ n c and c =⇒ b.

An explicit definition of (C e
0 (S),−→ e) is given in Fig. 2.8.

4We have also considered in [35, Sect. 3.3] restricting the set of the traces to those for which
choices are made only when necessary, which comes down considering external choices instead
of internal ones.

2.2. REFINED SEMANTICS 31

β ((ν x)P, id,E) = β (P, id,(E[x 7→ (x, id)]))

β (0, id,E) = { /0}

β (P ⊕ Q, id,E) = β (P, id,E)∪β (Q, id,E)

β (P | Q, id,E) = {A∪B | A ∈ β (P, id,E), B ∈ β (Q, id,E)}

β (aP, id,E) = {{(aP, id,E|fn(aP))}}

(a) Extraction function

C
e
0 (S) = β (S ,ε, /0)

(b) Initial configurations











E?(y) = E!(x),

CtP∈β (P, id?,E?[yi 7→ E!(xi)]),

CtQ∈β (Q, id!,E!)

C∪

{

(y?i[y]P, id?,E?),
(x! j[x]Q, id!,E!)

}

(i, j)
−→ e (C∪CtP∪CtQ)











E∗(y) = E!(x),

CtP∈β (P,N((i, j), id∗, id!),E∗[yi 7→ E!(xi)]),

CtQ∈β (Q, id!,E!)

C∪

{

(∗y?i[y]P, id∗,E∗),
(x! j[x]Q, id!,E!)

}

(i, j)
−→ e

(

C∪{(∗y?i[y]P, id∗,E∗)}∪CtP∪CtQ
)

(c) Communication rules

Figure 2.8: Efficient semantics.

32 CHAPTER 2. NON STANDARD SEMANTICS FOR THE π-CALCULUS

2.2.4.2 Correspondence

The following theorem establishes the correspondence between the standard and
the efficient semantics:

Theorem 2.2.10. For any initial non standard configuration C0 ∈ C e
0 (S), there

exists k ∈ N such that S
⊕k

−→∗ Π(C0) and for all non standard configurations C
and for all word u ∈ (L 2)∗ such that C0

u
−→ e

∗ C, we have:

1. ∀λ ∈L 2, C
λ
−→ e C′ =⇒ ∃k ∈ N, ∃P, Π(C)

λ
−→ P

⊕k

−→∗ Π(C′);

2. ∀λ ∈L 2, Π(C)
λ
−→ P =⇒ ∃D,















C
λ
−→ e D

and

{

∃k > 0, P
⊕k

−→+ Π(D)

or P≡Π(D).

The proof of Thm. 2.2.10 is shown in appendix A.3.

Remark 2.2.11. There is no bisimulation between the standard and the efficient
semantics. We have restricted both the set of traces to those where choices are
always performed before communications, and the set of states to those where no
choice appears at the top level. Therefore, these restrictions do not change the
properties we want to observe on mobile systems.

Chapter 3

Dealing with location

Mobile ambients [17] are a model of mobile computation. It describes a set of
threads which are distributed throughout hierarchically organized domains called
ambients. Threads interact inside ambients which makes the ambients move, tak-
ing their content with them.

We first recall a standard semantics for mobile ambients in the Sect. 3.1. As in
the case of the π-calculus (see also Chap. 2), we will notice that some interesting
properties may not be specified, because there is link neither between the thread
instances and the names of the ambients that they have declared, nor between the
thread instances and the ambients that they have created. Thus we introduce in
the Sect. 3.2 a refined semantics which is called the non standard semantics [37]
in where this relationship is explicitly described.

3.1 Standard semantics for mobile ambients

We consider a lazy version of the mobile ambients in which replications are per-
formed only when necessary. For the sake of simplicity, we restrict ourselves to
name communications: only names and not capability paths may be communi-
cated.

3.1.1 Syntax

Let N be a countable set of ambient names and L be a countable set of labels.
We define the syntax of the mobile ambients in Fig. 3.1. Input action and restric-
tion are the only name binders: in (n)l.P, !(n)l.P and (ν n)P, the occurrences of
n in P are bound. Usual rules about scopes, substitution and α-conversion apply.
We denote by fn(P) (resp. bn(P)) the set of the names that are free (resp. bound)

33

34 CHAPTER 3. DEALING WITH LOCATION

in P. We locate each syntactic component of the system by placing distinct labels
of L .

n ∈N (ambient name)
l ∈L (label)

P,Q ::= (ν n)P (restriction)
| 0 (inactivity)
| P | Q (composition)
| nl[P] (ambient)
| M (capability action)
| io (input/output action)

M ::= inl n.P (may enter n)
| outl n.P (may exit n)
| openl n.P (may open n)
| !openl n.P (may duplicate itself before opening n)

io ::= (n)l.P (input action)
| !(n)l.P (input action with replication)
| 〈n〉l (asynchronous output action)

Figure 3.1: Syntax of mobile ambients.

3.1.2 Semantics

We now informally introduce the semantics of the ambient calculus. The thread
(ν n)P creates a new ambient name n, the thread P may use it to name new ambi-
ents and to operate on ambients named n. At first only the thread P may interact
and create ambient names n, but the thread P may communicate the name n to
others threads, which then get the same rights over the name n. The thread 0 does
nothing. In (P | Q), P and Q are two concurrent threads which are located in the
same ambient. They behave independently or interact. The thread nl[P] creates
a new ambient named n and launches the thread P inside this new ambient. It
is worth noting that several ambients may be named n (also see [17][p:12]) and
that two threads contained in distinct ambients may not interact even if their am-

3.1. STANDARD SEMANTICS FOR MOBILE AMBIENTS 35

P ≡ Q if P∼α Q (α-conversion)
P | Q ≡ Q | P (Commutativity)

(P | Q) | R ≡ P | (Q | R) (Associativity)

P | 0 ≡ P (Zero par)
(ν n)0 ≡ 0 (Zero Res)

(ν n)(ν m)P ≡ (ν m)(ν n)P (Swapping)
(ν n)(P |Q) ≡ P | ((ν n)Q) if n 6∈ fn(P) (Extrusion Par)
(ν n)(ml[P]) ≡ ml[(ν n)P] if n 6= m (Extrusion Amb)

Figure 3.2: Congruence relation for mobile ambients.

ni[ink m.P | Q] | m j[R]
in(i, j,k)
−→ m j[ni[P | Q] | R]

mi[n j[outk m.P | Q] | R]
out(i, j,k)
−→ n j[P |Q] | mi[R]

openi n.P | n j[Q]
open(i, j)
−→ P | Q

!openi n.P | n j[Q]
open(i, j)
−→ P | Q | !openi n.P

(n)i.P | 〈m〉 j com(i, j)
−→ P[n←m]

!(n)i.P | 〈m〉 j com(i, j)
−→ P[n←m] | !(n)i.P

P
λ
−→Q

ni[P]
λ
−→ ni[Q]

P
λ
−→ Q

(ν n)P
λ
−→ (ν n)Q

P
λ
−→ Q

P | R
λ
−→ Q | R

P′ ≡ P, P
λ
−→ Q, Q≡ Q′

P′
λ
−→ Q′

Figure 3.3: Reduction relation for mobile ambients.

36 CHAPTER 3. DEALING WITH LOCATION

bients have the same name. A thread may also perform a capability action. The
thread inl n.P may take its surrounding ambient into an sibling ambient named n
before launching the continuation P. The thread outl n.P may take its surround-
ing ambient out of its parent ambient before launching the continuation P. The
thread openl n.P may dissolve an ambient named n, before launching the con-
tinuation P. An ambient which is dissolved passes all its content to its parent
ambient. The thread !openl n.P is like a resource: it may dissolve many ambients
named n, it launches an instance of P each time it dissolves an ambient. A thread
may also perform a local communication: the thread (n)l.P waits for an ambient
name. When it receives such a name, it binds the variable n to the received name
and launches the continuation P. The thread !(n)l.P is a resource, it may launch
a continuation P each time it receives an ambient name. The thread 〈n〉l sends
the ambient name n, This sending is asynchronous, which means that there is no
continuation.

The operational semantics is given by both a congruence in Fig. 3.2 and a re-
duction relation in Fig. 3.3. As for the π-calculus (Cf. Chap.2), the congruence
relation allows threads to interact, while the reduction relation describes thread
computations. Reduction rules are also graphically described in Figs. 3.4, 3.5,
3.6, 3.7, 3.8, and 3.9. Some rules in the congruence relation make threads move
inside the syntactic tree: they assert the associativity and commutativity of the
parallel composition. Some others extend the scope of names to the threads they
are communicated to or restrict the scope of the names that are used by an am-
bient that exits its parent ambient: α-conversion solves conflicts between names,
swapping selects the name the scope of which we wish to extend, and extrusion
extends its scope to another thread or to a parent ambient. The reduction rela-
tion describes threads’ interactions. An ambient A may enter its sibling ambient
B named n if it has a capability inl n.P to enter an ambient named n, the result is
obtained by taking the migrating ambient A inside its sibling ambient B and by
launching the continuation P inside the ambient A. Conversely, an ambient A may
exit its parent ambient B named n if it has a capability outl n.P to exit an ambient
named n, the result is given by taking the ambient A inside the parent ambient of
B and by launching the continuation P inside the ambient A. Until now, all the
reductions that we have described allows the migration of ambients but not how
ambients may communicate some control over the other ambients. Two distinct
mechanisms allow these communications: dissolution and name passing. An am-
bient A may dissolve an ambient B named n that is enclosed inside A if it has a
capability openl n.P to open an ambient named n, the result is obtained by passing
all the content (ambients and threads) of B inside A and by launching the contin-
uation P inside A. When the dissolving thread is a resource, it is just syntactically
replicated before performing the reduction; this way the resource is still available
after the dissolution. Name passing is allowed when there are two concurrent

3.1. STANDARD SEMANTICS FOR MOBILE AMBIENTS 37

n

S

o

R

m

in m.P | Q
−→

n

P | Q

o

SR

m

Figure 3.4: In migration.

o

S

n

R

m

out m.P | Q
−→

n
o

P | Q SR

m

Figure 3.5: Out migration.

o

SR

m

open m.P | Q
−→

o

P | Q | R | S

Figure 3.6: Dissolution.

o

SR

m

!open m.P | Q
−→

o

!open m.P | P | Q | R | S

Figure 3.7: Dissolution with resource fetching.

threads in the same ambient. The results of such a communication are obtained
by applying the substitution of the λ -calculus in the continuation of the message
receiver. When the receiver is a resource, it is just syntactically replicated before
performing the communication.

We have labeled each reduction step with a reduction name (in, out, open or
com) and the labels of the threads and of the ambients that are involved in the
interaction: this will allow us to relate the state of a system to the history of the
computation steps that have led to this state.

38 CHAPTER 3. DEALING WITH LOCATION

o

〈m〉 | (n).P | Q −→

o

P[n←m] | Q

Figure 3.8: Communication.

o

〈m〉 | !(n).P | Q −→

o

P[n←m] | !(n).P | Q

Figure 3.9: Communication with resource fetching.

Example 3.1.1. We give in given in in Fig. 3.10 the definition of a system S . This
system S describes an ftp server. To make things clearer, public (or global) names
are written in roman, all the other names are written in italic and we abstract
away many computational aspects. A resource creates recursively an unbounded
number of clients. Each client is described by a packet p[] which contains an
ambient named request. This ambient contains the client’s query 〈q〉. When they
are created, packets are located inside an ambient named client. At first, each
packet exits the client ambient before entering the server ambient ; then this packet
activates a pilot ambient fwd which communicates the packet name to the server.
This communication creates a recursive instance of an ambient named instance
which will process the packet. The instance ambient enters the packet, reads the
request and sends it back inside an ambient named answer. At last, the packet
exits the server ambient.

The definition of the system S in given in in Fig. 3.10. We give in Figs. 3.11

νPub := (ν request)(ν rec)(ν client)(ν server)(ν fwd)(ν instance)(ν answer),
C1 := request15[〈q〉16], C2 := open17instance,
C3 := out18client.in19server.fwd20[out21 p.〈p〉22],
C := (ν q)(ν p)p14[C1 | C2 | C3] | 〈rec〉23,
I1 := answer8[〈rep〉9], I2 := out10server.in11client,
I := in5k.open6request.(rep)7(I1 | I2),

S1 :=!open2fwd, S2 :=!(k)3.instance4[I], S := server1[S1 | S2],

S := (νPub)
(

S | client12 [!(x)13.C | 〈rec〉24
])

.

Figure 3.10: An ftp-server written in the mobile ambients.

and 3.12 a computation sequence that describes the behavior of the system S .

3.1. STANDARD SEMANTICS FOR MOBILE AMBIENTS 39

(ν Pub)
(

S | client12
[

(x)13.C | 〈rec〉24
])

com(13,24)
−→

(ν Pub)














S |

client12











!(x)13.C | 〈rec〉23 |
(ν q1)(ν p1)

p1
14

[

request15
[

〈q1〉
16
]

| C2 |

out18client.in19server.fwd20
[

out21 p1.〈p1〉
22
]

]

























out(12,14,18)
−→

(ν Pub)




server1[S1 | S2] | client12
[

!(x)13.C | 〈rec〉23
]

|

(ν q1)(ν p1)p1
14
[

request15
[

〈q1〉
16
]

| C2 |

in19server.fwd20[out21 p1.〈p1〉
22
]

]





in(14,1,19)
−→

(νPub)(ν q1)(ν p1)










client12[!(x)13.C | 〈rec〉23
]

|

server1







S1 | S2 |

p
1

14

[

request15
[

〈q1〉
16
]

| C2 |

fwd20
[

out21 p
1
.〈p1〉

22
]

]

















out(14,20,21)
−→

(νPub)(ν q1)(ν p1)




client12[!(x)13.C | 〈rec〉23
]

|

server1

[

!open2fwd | S2 | fwd20
[

〈p1〉
22
]

|
p1

14
[

request15
[

〈q1〉
16
]

|C2
]

]





open(2,20)
−→

(νPub)(ν q1)(ν p1)




client12
[

!(x)13.C | 〈rec〉23
]

|

server1
[

S1 | !(k)3.instance4[I] | 〈p
1
〉22|

p1
14
[

request15
[

〈q1〉
16
]

|C2
]

]





com(3,22)
−→

(νPub)(ν q1)(ν p1)




client12[!(x)13.C | 〈rec〉23
]

|

server1

[

S1 | S2 | p1
14
[

request15
[

〈q1〉
16
]

| C2
]

|

instance4[in5 p1.open6request.(rep)7(I1|I2)
]

]





Figure 3.11: Computation sequence.

40 CHAPTER 3. DEALING WITH LOCATION

(ν Pub)(ν q1)(ν p1)






client12
[

!(x)13.C | 〈rec〉23
]

|

server1

[

S1 | S2 | p
1

14
[

request15
[

〈q1〉
16
]

| C2
]

|

instance4
[

in5 p
1
.open6request.(rep)7(I1|I2)

]

]







in(4,14,5)
−→

(νPub)(ν q1)(ν p1)








client12[!(x)13.C | 〈rec〉23
]

|

server1





S1 | S2 |

p1
14
[

request15
[

〈q1〉
16
]

| open17instance |
instance4[open6request.(rep)7(I1|I2)]

]













open(17,4)
−→

(νPub)(ν q1)(ν p1)










client12[!(x)13.C | 〈rec〉23
]

|

server1







S1 | S2 |

p1
14

[

request15
[

〈q
1
〉16
]

|

open6request.(rep)7(I1 | I2)

]

















−→∗

(νPub)(ν q1)(ν p1)




client12
[

!(x)13.C | 〈rec〉23
]

|

server1
[

S1 | S2 |
p1

14
[

answer8
[

〈q1〉
9
]

| out10server.in11client
]

]





out(1,14,10)
−→

(νPub)(ν q1)(ν p1)




client12[!(x)13.C | 〈rec〉23
]

|
server1 [S1 | S2] |
p1

14
[

answer8
[

〈q1〉
9
]

| in11client
]



]

in(14,12,11)
−→

(νPub)(ν q1)(ν p1)




client12
[

!(x)13.C | 〈rec〉23 |
p1

14
[

answer8
[

〈q1〉
9
]]

]

|

server1 [S1 | S2]





−→∗

(νPub)(ν q1)(ν p1)








client12





!(x)13.C | 〈rec〉23 |
p1

14
[

answer8
[

〈q1〉
9
]]

p2
14
[

answer8
[

〈q2〉
9
]]



 |

server1 [S1 | S2]









Figure 3.12: Computation sequence(continued).

3.2. NON STANDARD SEMANTICS 41

3.2 Non standard semantics

The non standard semantics is a refined one with explicit substitution. It restores
the link between the recursive instances of threads and the objects they have cre-
ated (i.e. the names they have declared and the ambients they have activated). Fol-
lowing Dπ [45] style, we describe a mobile system with a set of threads tagged
with a location marker. Furthermore, the embedding structure of the ambients
imposes a description of the hierarchical tree of the administrative domains (or
ambients). This is given by a set of activated ambients1 (seen as locations) tagged
with location markers specifying their surrounding ambient. We assume that a
system is run inside a top level ambient which has no location. The link between
threads and the ambient names they have declared is made explicit by tagging
each thread by an unambiguous history marker allocated at its creation. Then,
each new ambient name is tagged with the history marker of the thread which has
declared it. Thus, we restore the link between threads and the ambients they have
activated by tagging each activated ambient with the history marker of the thread
which has activated it.

Let S be a closed mobile system in the ambient calculus. We assume without
any loss of generality that two name binders (ν n or (n)) are never used to bind
the same ambient name. History markers are binary trees the node of which are
labeled with elements of L 2 and the leaves of which are not labeled. The tree hav-
ing a node labeled λ , a left sibling t1 and a right one t2 is denoted by N(λ , t1, t2).
Moreover, leaves are denotes by ε . We denote by Id the set of the history markers.
Ambient names are described by a pair (n, id) where n specifies which restriction
(ν n) has created it while id is the history marker of the thread which has declared
this name. Activated ambients are identified by a pair (i, id) where i is the label
of the ambient constructor which has activated the ambient while id is the history
marker of its activator2. The top level ambient is denoted by the pair (top,ε) (we
assume that top ∈ L has not been used for labeling S yet). Location markers
are pairs (i, id), too. A location marker refers to the ambient where a process is
spawned.

A non standard configuration [74, 36] is a set of thread instances, where a
thread instance is a tuple composed of a syntactic component, a history marker, a
location marker and an environment. The syntactic component is either a syntactic
copy of a thread of S or an activated ambient denoted by ni[•]. The history marker
is unambiguously allocated at the thread creation. The location marker indicates
where the thread is run. The environment specifies the origin of the free syntactic

1Also called privileged ambients in [17].
2An ambient may not be identified by its ambient name because two distinct activated ambients

may have the same name [17, p:12].

42 CHAPTER 3. DEALING WITH LOCATION

ambient names of the syntactic component.

Example 3.2.1. We give here the non standard configuration reached after com-
pleting two sessions of our server3:























































































(server1[•],ε,(top,ε), /0)

(answer8[•], id′0,(14, id0), /0)

(answer8[•], id′1,(14, id1), /0)

(p14[•], id0,(top,ε), [p 7→ (p, id0)])

(p14[•], id1,(top,ε), [p 7→ (p, id1)])

(!(x)13.C,ε,(top,ε), /0)

(〈rec〉23, id1,(top,ε), /0)

(S1,ε,(1,ε), /0)

(S2,ε,(1,ε), /0)

(〈rep〉10, id′0,(8, id′0), [rep 7→ (q, id0)])

(〈rep〉10, id′1,(8, id′1), [rep 7→ (q, id1)])

where:



















id0 = N((13,24),ε,ε)

id1 = N((13,23),ε, id0)

id′0 = N((3,22),ε, id0)

id′1 = N((3,22),ε, id1)

The top five instances describe the hierarchic structure of nested ambients, the
others describe the thread distribution. Location markers allow in reconstructing
the following ambient:

(ν n)

(top,ε)




!(x)(13,ε).C | 〈rec〉(23,id1) | server(1,ε)[S1 | S2] |

(p, id0)
(14,id0)[answer(8,id′0)[〈(q, id0)〉

(10,id′0)]] |

(p, id1)
(14,id1)[answer(8,id′1)[〈(q, id1)〉

(10,id′1)]]





in which ambients, ambient names and threads are stamped with their own mark-
ers. Thanks to name markers, we avoid conflict between ambient names. So we
may extrude their declaration inside the top level ambient. In this way, the short-
cut (νn) denotes the declaration of all the ambient names of the configuration.
It appears explicitly that, in each packet, both the name of the packet and that
contained in the “answer” ambient embedded in the packet have been declared
by the same recursive instance of the resource !(x).C. This means that the answer
of a query is sent to the good client.

We shall remark that, since S has no nested resources, markers are all se-
quences instead of trees. 2

The non standard semantics is given by both an initial non standard configu-
ration in Fig. 3.14 and a reduction relation (migration rules are given in Figs. 3.15
and 3.16, dissolution rules in Figs. 3.17 and 3.18 and communication rules in

3We do not figure the origin of public names.

3.2. NON STANDARD SEMANTICS 43

β (ni[P], id, loc,E) = β (P, id,(i, id),E) ∪ {
(

ni[•], id, loc, [n 7→ E(n)]
)

}
β (P |Q, id, loc,E) = β (P, id, loc,E) ∪ β (Q, id, loc,E)

β ((ν n)P, id, loc,E) = β (P, id, loc,(E[n 7→ (n, id)]))
β (M, id, loc,E) = {(M, id, loc,E|fn(M))}

β (io, id, loc,E) = {(io, id, loc,E|fn(io))}

β (0, id, loc,E) = /0

Figure 3.13: Extraction function.

Figs. 3.19 and 3.20). Their definitions use the extraction function β defined in
Fig. 3.13. Given a continuation P, a history marker id, a location marker loc and
an environment E, β (P, id, loc,E) gives the set of all the thread instances that must
be spawned to simulate the computation of the process E(P) identified with the
marker id, in the ambient denoted by loc. It especially deals with new ambient
name declaration and new ambient activation.

We informally describe the non standard semantics. For the sake of the brevity,
we only detail the non standard in migration rule. in migration rule involves two
distinct ambients λ , µ and a thread ψ . They are respectively denoted by three
threads

(

ni[•], id1, loc1,E1
)

,
(

m j[•], id2, loc2,E2
)

and
(

inko.P, id3, loc3,E3
)

. The
in migration rule is enabled if and only if the two ambients are located in the same
ambient (this yields the constrain loc1 = loc2), the thread is located in the first
ambient (this yields loc3 = (i, id1)) and the thread capability may interact with
the name of the second ambient (this is encoded by the constrain E2(m) = E3(o)).
The result of such a migration is that the first ambient moves inside the second one
(its location is just replaced by (j, id2)). All it content is taken with it (this does
change neither their location markers, nor their environments), but the thread ψ
is executed and its continuation is spawned inside the first ambient (ψ is replaced
by β (P, id3, loc3,E3|fn(P))). The out migration is simulated in the same way. The
ambient dissolution is a bit much complex since all the locations of the dissolved
ambient content are changed. We shall notice that each time a resource is fetched,
a new history marker is deterministically allocated: it is given by N((i, j), idi, id j)
where i is the label of the resource, idi is the history marker of the resource, j is
the label of the thread which enforces the resource fetching and id j is the history
marker of this thread. We do not need a congruence relation because our set-based
representation of configurations makes structural congruence rules useless and the
use of history markers avoids conflicts between ambient names.

Standard and non standard semantics are strongly bisimilar. The proof relies
on that non standard computations may not yield conflicts between history mark-
ers. Moreover, according to the following proposition, we can simplify4 the shape

4We have reversed markers in order to restore chronological order (so that the past is on the

44 CHAPTER 3. DEALING WITH LOCATION

C0(S) = β (S ,ε,(top,ε), /0).

Figure 3.14: Initial configuration.

If C is a non standard configuration,
if λ , µ and ψ (with λ 6= µ) are three threads

with











λ =
(

ni[•], id1, loc1,E1
)

,

µ =
(

m j[•], id2, loc2,E2
)

,

ψ =
(

inko.P, id3, loc3,E3
)

,

such that











loc1 = loc2,

loc3 = (i, id1),

E2(m) = E3(o),
then:

C∪{λ ,µ,ψ}
in(i, j,k)
−→ nsC∪

{

µ,
(

ni[•], id1,(j, id2),E1
)}

∪β
(

P, id3, loc3,E3|fn(P)

)

.

Figure 3.15: Non standard in migration.

If C is a non standard configuration,
if λ , µ and ψ are three threads

with











λ =
(

mi[•], id1, loc1,E1
)

,

µ =
(

n j[•], id2, loc2,E2
)

,

ψ =
(

outko.P, id3, loc3,E3
)

,

such that











loc2 = (i, id1),

loc3 = (j, id2),

E1(m) = E3(o),
then:

C∪{λ ,µ,ψ}
out(i, j,k)
−→ ns C∪

{

λ ;
(

n j[•], id2, loc1,E2
)}

∪β
(

P, id3, loc3,E3|fn(P)

)

.

Figure 3.16: Non standard out migration.

3.2. NON STANDARD SEMANTICS 45

If C is a non standard configuration,
if λ and µ are two threads,

with

{

λ =
(

openim.P, id1, loc1,E1
)

,

µ =
(

n j[•], id2, loc2,E2
)

,

such that

{

loc1 = loc2,

E1(m) = E2(n),
then:

C∪{λ ,µ}
open(i, j)
−→ ns (C \A)∪β

(

P, id1, loc1,E1|fn(P)

)

∪A′,

where

{

A = {(a, id, loc,E) ∈C | loc = (j, id2)}

A′ = {(a, id, loc2,E) | (a, id,(j, id2),E) ∈C} .

Figure 3.17: Non standard dissolution.

If C is a non standard configuration,
if λ and µ are two threads,

with

{

λ =
(

!openim.P, id1, loc1,E1
)

,

µ =
(

n j[•], id2, loc2,E2
)

,

such that

{

loc1 = loc2

E1(m) = E2(n),
then:

C∪{λ ; µ}
ropen(i, j)
−→ ns ((C∪{λ})\A)∪β

(

P,N((i, j), id1, id2), loc1,E1|fn(P)

)

∪A′,

where

{

A = {(a, id, loc,E) ∈C | loc = (j, id2)}

A′ = {(a, id, loc2,E) | (a, id,(j, id2)),E) ∈C} .

Figure 3.18: Non standard replicated dissolution.

If C is a non standard configuration,
if λ and µ are two threads,

with

{

λ = ((n)i.P, id1, loc1,E1),

µ = (〈m〉 j, id2, loc2.E2),
such that loc1 = loc2,
then:

C∪{λ ,µ}
com(i, j)
−→ ns C∪β

(

P, id1, loc1,E1 [n 7→ E2(m)]|fn(P)

)

.

Figure 3.19: Non standard communication.

46 CHAPTER 3. DEALING WITH LOCATION

If C is a non standard configuration,
if λ and µ are two threads,

with

{

λ = (!(n)i.P, id1, loc1,E1),

µ = (〈m〉 j, id2, loc2.E2),
such that loc1 = loc2,
then:

C∪{λ ,µ}
fetch(i, j)
−→ ns C∪{λ}∪β

(

P,N((i, j), id1, id2), loc1,E1 [n 7→ E2(m)]|fn(P)

)

.

Figure 3.20: Non standard resource fetching.

of the history markers without losing the consistency of our semantics.

φ1 :











Id → (L 2)?

N(a,b,c) 7→ φ1(c).a

ε 7→ ε
φ2 :











Id → L ?

N((i, j),b,c) 7→ φ2(c). j

ε 7→ ε

Proposition 3.2.2. Let φ be φ1 or φ2 and C0 −→ ns ...−→ ns Cn be a non standard
computation sequence, where C0 =C0(S). For all i, j∈ [|0,n|], (p, id, loc,E)∈Ci

and (p′, id′, loc′,E ′) ∈C j, such that φ(id) = φ(id′) then id = id’.

Such simplifications allow us to reduce the cost of our analysis, but also lead
to a loss of accuracy, since they merge information related to distinct computation
sequences of the system.

3.3 Related works

Several semantics that describe an ambient configuration by a set of threads have
been proposed simultaneously to ours. A first application is the design of abstract
machine for implementing ambient-like calculus: Sangiorgi and Valente have pro-
posed such a semantics in [71]. Their purpose is to describe a distributed abstract
machine for implementing the safe ambients [71] which are a variation of the mo-
bile ambient. In [66], Phillips, Yoshida, and Eisenbach have later exploited similar
ideas to derive a distributed abstract machine for the boxed ambients [13, 12]. A
second application is in static analysis. Maffeis and Levi have proposed in [50,51]
a normal semantics. However there is a difference between our semantics and
these others: Only our semantics relates precisely threads and both the names that
they declare and the ambients that they create.

left and the future in on the right)

Chapter 4

Meta language

In this chapter, we propose a generic framework for describing the non standard
semantics of models for mobile systems. Each encoded model is defined by some
generic partial interactions that are computed by threads and by some generic rules
which describe the behavior of threads when they synchronize the computation of
their partial interactions. Then, the syntax of a system is given by a set of program
points and a static description of the partial interactions that may be performed at
each program point. The state of a system is a set of thread instances which are
obtained by associating a program point with a marker and an environment. The
operational semantics can then be generically derived from the language. We
stress the point that our purpose is not to propose an abstract machine for imple-
menting concrete interpreters. Our meta language helps in expressing semantics
which can be easily analyzed.

We first give the meta syntax of languages in Sect. 4.1. Then we define the
syntax of the mobile systems which are expressed in these languages in Sect. 4.2.
System states are described in Sect. 4.3. The generic operational semantics is
described in Sect. 4.4. In Sect. 4.5, we give sufficient conditions over the system
syntax to ensure the freshness of allocated markers. We encode some models in
our meta language in Chap. 5.

4.1 Meta syntax

In this section, we define the meta syntax of a language. This meta syntax is
defined by a set of partial interactions that may be computed by threads, and by
a set of rules that describe the generic interactions between some threads that
synchronize the computation of their partial interactions.

47

48 CHAPTER 4. META LANGUAGE

4.1.1 Partial interactions

We first introduce a set A of generic partial interaction names. A map arity ∈
A → N2 maps each partial interaction name into two numbers of parameters.
The first one is the number of the parameters that must be taken into account when
enabling a global interaction. The second one denotes the number of the variables
that will be bound to some value communicated by some other threads during
the global interaction. For instance, in the case of the π-calculus, the reception
of a channel name pair will be associated with the couple (1,2), the first number
1 refers to the name of the channel on which the reception is performed, while
the second number 2 indicates that two variables will be bound to some passed
channel names. Another map type ∈A → {computation;migration;replication}
associates a type with each partial interaction name. This type constrains the
behavior of the threads when they compute such a partial interaction. Computing
a partial interaction may consist in launching a continuation (i.e computation);
it may also consist in changing the environment of a thread (i.e. migration); a
thread may also replicate itself before launching a continuation (i.e. replication).
These types have two purposes. First, they describe whether a computing thread
is still available after the computation step. More precisely, a partial interaction of
type replication does not consume its thread, whereas the others do. Second, they
restrict the kind of partial interaction that may be involved in a computation step
in order to prove the freshness of allocated markers: We will make the assumption
that when in a global interaction, one partial interaction is a replication, then at
least one partial interaction is a computation. This way, a thread may only be
replicated when another one is consumed. This allows an unambiguous encoding
of thread histories.

4.1.2 Rules

A global interaction involves several threads which enable the correct partial in-
teractions and which share compatible interfaces. In such a case, the interaction
may be performed. As a result, threads may pass some values to each other and
launch new threads.

4.1.2.1 Threads and capabilities

Global interactions are symbolically described by generic reduction rules. Each
rule involves a given number n of threads. These threads are indexed over the
integers that range between 1 and n. Each index i is associated with a partial
interaction name via a map components. To perform a global interaction, a mobile
system must satisfy a first condition: it must contain n threads and each of these

4.1. META SYNTAX 49

threads must exhibit the capability to process the corresponding partial interaction.
Then, a mobile system must check some constraints about the values that are
bound to the variables of the interacting threads.

4.1.2.2 Formal variables

For that purpose, we introduce a set of formal variables. Each thread involved in
the interaction is associated with two sequences of parameter variables. The first
sequence is the sequence of the variables the value of which is involved in the
interaction (i.e. the variables, including thread identities, that are associated with
passed values or the variables that are associated with some values that allow for
the thread synchronization). The second sequence is the sequence of the variables
that are bound during the computation step to some values passed by the other
threads.

We introduce the three sets of formal variables that denote these parameter
variables and the threads’ identities as follows:

1. The set V I
f of the variables of the form Ik, where Ik denotes the identity of

the k-th interacting thread;

2. The set V X
f of the variables of the form X k

l , where X k
l denotes the value

that is associated with the l-th parameter variable of the k-th thread of the
interaction;

3. The set V Y
f of the variables of the form Y k

l , where Y k
l denotes the variable

that is associated with the l-th variable of the k-th thread of the interaction
which is bound during the interaction.

Example 4.1.1. In the case of the π-calculus, Let t1 = (p1, id1,E1) and t2 =
(p2, id2,E2) be two threads such that t1 is a thread at program point a?[x].P and
t2 is a thread at program point b![y].Q. The thread t1 is associated with the se-
quence [a] of variable parameters and with the sequence [x] of bound variables.
The thread t2 is associated with the sequence [b;y] of parameters and with the
empty sequence of bound variables. Thus, the communication between t1 and t2 is
associated with the following variables:

• The variable I1 denotes the value (p1, id1) and the variable I2 denotes the
value (p2, id2), which are respectively the identity of the threads t1 and t2;

• The variable X1
1 denotes the value E1(a);

• The variable X2
1 denotes the value E2(b) and the variable X 2

2 denotes the
value E2(y);

50 CHAPTER 4. META LANGUAGE

• The variable Y 1
1 denotes the variable x that will be bound to the value E2(y)

during the communication computation.

4.1.2.3 Synchronization

Before interacting, threads must check some properties about their interface.
These properties are given by an equivalence class between the formal variables in
the set (V X

f ∪V I
f). This equivalence class is described by a subset of (V X

f ∪V I
f)2,

where each constraint (A,B) means that the interaction may be performed only if
the formal variables A and B are associated with the same value at run-time.

Example 4.1.2. In the case of the π-calculus, let t1 and t2 be the same threads as
in Ex. 4.1.1. The compatibility between the threads t1 and t2 can be described by
the equivalence class that is generated by the constraint (X 1

1 ,X2
1). This constraint

means that the communication is enabled only if E1(a) = E2(a).

4.1.2.4 Local communication

When an interaction is performed, some threads pass some of their values to the
other threads. These communications are described by a partial map from V Y

f into

the set (V X
f ∪V I

f). The fact that a variable Y k
l is associated with the variable A

means that, the l-th bound variable of the k-th thread will be associated at run-time
with the value that is associated with the formal variable A.

Example 4.1.3. In the case of the π-calculus, let t1 and t2 be the same threads as
in Example 4.1.1. The result of the communication is that a variable x is declared
in the thread P and associated with the value E2(b). This value passing is encoded
by the partial map [Y 1

1 7→ X2
2].

4.1.2.5 Global substitutions

A computation step may destroy a thread and redirect any reference to this thread
in the whole system to another value. For instance, in the case of mobile ambients,
any component of a dissolved ambient is relocated to the parent of the dissolved
ambient. This mechanism goes against the intuition of system distribution and
must be handled very carefully, since it allows broadcast-like communications,
where a message is simultaneously received by any thread that is waiting for a
message on a given channel. Nevertheless, in the case of the ambient calculus,
the mechanism is distributive-safe, because it only allows updating the location of
some threads that are located in the same ambient. These global substitutions are
encoded by a partial map from the set V I

f into the set (V X
f ∪V I

f).

4.1. META SYNTAX 51

Example 4.1.4. In the case of the ambient calculus, let t1 be a thread that denotes
an ambient, and let t2 be a thread that has the capability to dissolve this ambi-
ent. The variable I1 denotes the identity of the ambient, while the variable X 1

1
denotes the location of the ambient. When the ambient is dissolved, any thread
located inside the ambient is taken to the parent ambient, which is described by
the following mapping [I1 7→ X1

1].

4.1.2.6 Formal rule

This yields the following definition:

Definition 4.1.5. A rule is given by a tuple:

R = (n,components,compatibility,v-passing,broadcast),

where:

• the integer n is the arity of the rule: it is the number of threads involved in
the interaction;

• the function components ∈ J1;nK→ A maps each integer to the name of
a partial interaction, each thread involved in the interaction must have the
capability to process the corresponding partial interaction;

For any k such that 1≤ k ≤ n, we denote (pk,bk) = arity(components(k)).
We also introduce three sets of formal variables:

1. the set V I
R
⊆ V I

f of the variables Ik where 1≤ k ≤ n;

2. the set V X
R
⊆ V X

f of the variables X k
l where 1≤ k ≤ n and 1≤ l ≤ pk;

3. the set V Y
R
⊆ V Y

f of the variables Y k
l where 1≤ k ≤ n and 1≤ l ≤ bk;

• the relation compatibility ∈
(

V I
R
∪V X

R

)2
describes synchronization condi-

tions among the interfaces of the interacting threads;

• the map v-passing ∈ V Y
R
→
(

V I
R
∪V X

R

)

describes local values passing;

• the partial map broadcast from V I
R

into
(

V I
R
∪V X

R

)

describes substitutions
that apply within the whole system.

52 CHAPTER 4. META LANGUAGE

4.1.3 Well-formedness conditions

In order to ensure the freshness of allocated markers, we require some extra as-
sumptions about formal rules. A new marker is computed each time a resource is
fetched. We require that any rule may involve at most one replication. Moreover
we require that any rule that involves a replication also involves a regular com-
putation. This way, a new marker can only be allocated by consuming a thread
instance the identity of which is explicitly described in this new marker. So a
marker can only be computed once in a computation sequence.

Without any loss of expressibility, we require that, at each replication, the
replicated thread is always the first thread and that the second thread performs a
regular computation:

Definition 4.1.6 (well-formed rule).
Let R = (n,components,compatibility,v-passing,broadcast) be a formal rule.
The rule R is well-formed if and only if: if there exists an integer i ∈ J1;nK such
that type(components(i)) = replication, then i = 1 and type(components(2)) =
computation.

4.2 System syntax

We now describe the syntax of mobile systems.

4.2.1 Labeling

Let L be a finite set of labels. These labels are used in tagging program points
and values. Thus, let Lp be a subset of L such that labels in Lp are used in
tagging program points. Labels in L \Lp are used in tagging values.

4.2.2 Interfaces

Each program point p ∈Lp is endowed with a subset of variables I(p)⊆ V . The
set I(p) is called the interface of the syntactic component p. The interface I(p) is
the set of the variables that are used by each thread at program point p.

4.2.3 Partial interactions

The behavior of a thread instance not only depends on its interface (which is
dynamic), but also on a syntactic piece of code which describes how the thread
instance uses its interface. This information is static because it is the same for
each instance of a same thread. Each program point is endowed with a set of

4.2. SYSTEM SYNTAX 53

partial interactions. A partial interaction is given by a tuple. The first component
is a partial interaction name s. The second and the third components are two
sequences of variables. They allow for relating the formal variables of the rule to
the syntactic variables of the threads. The first variable sequence (i.e. the second
component) denotes the sequence of the variables that are associated with the
values that are useful to check synchronization constraints and to compute values
that are passed to other threads (in the case of the π-calculus, it is the variable
that is bound to the name of the channel on which is sent a message and the
variables that are bound to the channel names which compose this message). The
second sequence (i.e. the third component) encodes the sequence of the variables
that will be bound by some value passed by other threads during the interaction.
The next component is a set of local constraints. It allows for some positive and
negative matching among the values that are bound to the variables. The last
component describes a set of potential continuations. We use a set of continuations
to allow non-deterministic choices among several potential continuations. Each
continuation is a set of threads. Each of these threads is defined by a program
point, a marker, and an environment. This marker and this environment can only
be known at run-time. Moreover, they are different for each instance of the same
thread. Nevertheless, some information remains static: for instance, in the case of
the π-calculus, the labels of the restrictions which declare fresh channel names are
the same for every instances of the same thread instance. This static information
is summarized inside a partial static environment Es that maps a subpart of the
launched thread interface into static labels in L .

Example 4.2.1. In the case of the π-calculus, let Q be a program point tagged
with the label q ∈ Lp. A thread at program point [t = u]a?[x;y](ν z)Q will be
associated with the partial interaction defined by:

• the partial interaction name in2, which means that this thread waits for the
emission of two names over a channel;

• the parameter sequence [a] which means that the thread has to exhibit the
name that is associated with the variable a to check whether the thread
which it interacts with sends a message on the right channel;

• the sequence [x,y] of bound variables means that the two variables x and y
are bound to some values that are passed by some other threads during the
interaction;

• the local constraint set {t = u} means that the thread may actually exhibit
the capability to compute the reception only if the values that are bound to
the variables t and u are the same;

54 CHAPTER 4. META LANGUAGE

• the continuation set:
{{(q, [z→ z])}},

which means that there is only one continuation which consists in launching
an instance of the syntactic component Q. Moreover, the variable z is bound
to the name (z, id) (where id is the marker of the computing thread). The
values that are linked to the other variables (i.e. especially those obtained
by name passing) will be computed by using the global interaction rule.

This yields the following definition:

Definition 4.2.2 (partial interaction). A partial interaction pi is given by a tuple
(s,(parameteri),(boundi),constraints,continuation), where

• s is a partial interaction name in A .

We denote by arity(s) = (m,n) its arities.

• (parameteri) ∈ V m is a finite sequence of variables,

• (boundi) ∈ V n is a finite sequences of distinct variables,

• the set constraints⊆ {v�v′ | (v,v′) ∈ V 2, � ∈ {=; 6=}} describes some syn-
chronization constraints,

• the set continuation ∈℘(℘(Lp× (V ⇀ L))) is a set of potential continu-
ations. We use a set to allow non-determinism. Each potential continuation
is a set of continuation threads. A continuation thread is described by a pair
(q,Es) where q is a program point label and Es is a partial function from V

into L .

4.2.4 Initial states

The set of the initial states1 is described by a set of potential continuations in
℘(℘(Lp× (V ⇀ L))).

4.2.5 System syntax

The syntax of a system is given by the interface of each program point, the set
of partial interactions of each program point, and the description of the initial
states. We also require some compatibility properties. When the computation of
a thread at program point p launches a computation thread at program point q,
all variables in the interface of the launched thread must be defined. There are

1We have several initial states, because we start by a non-deterministic choice

4.3. SYSTEM CONFIGURATIONS 55

three cases: they may be already defined at program point p; they may be bound
during the interaction; or they may be in the domain of the static environment of
the continuation thread. Moreover, initial threads must define all variables in their
interfaces (as being in the domain of their static environment). On the other hand,
the partial interaction parameters and the variables that are used in matching must
be in the interface of the threads that compute them. This yields the following
definition for the syntax of a mobile system.

Definition 4.2.3 (system syntax). The syntax syntax(S) of a mobile system S

is a triple (I, inits, interaction) where:

• I ∈Lp→℘(V) maps each program point p into the interface of the threads
at the program point p;

• inits ∈℘(℘(Lp× (V ⇀ L))) is the description of the initial states;

• interaction maps each program point p to the set of partial interactions that
may be computed at program point p.

such that the three following conditions are satisfied:

1. For each program point label p in Lp, for each partial interaction
(s,(parameteri),(boundi),constraints,continuation) in interaction(p), and
for each continuation thread (q,Es) in

⋃

continuation, the set I(q) is in-
cluded in the set I(p)∪{boundi}∪Dom(Es);

2. For each (q,Es) ∈
⋃

inits, the interface I(q) is included in the domain
Dom(Es);

3. For each program point p in Lp and for each partial interaction
(s,(parameteri),(boundi),constraints,continuation) in interaction(p), we
have {parameteri} ⊆ I(p) and {x;y} ⊆ I(p) for any (x� y) ∈ constraints.

4.3 System configurations

Each instance of threads and of values is stamped with a marker which encodes
the history of the replication which have led to the creation of the thread instance,
or to the value declaration. These markers are trees: we introduce M as the set
of all trees, where each node is labeled with a sequence of program point labels
in Lp and where leaves are labeled with the symbol ε and where the length of the
label of a node is always equal to the number of children of this node. A value is
given by a couple (l, id) where l is a label in L and id is a marker in M . When
we have l ∈Lp, the value is a pointer to a thread, otherwise the value refers to a

56 CHAPTER 4. META LANGUAGE

name. Let V ⊆ V be a set of variables, an environment over V maps each variable
x ∈V to a dynamic value. This yields the following definition:

Definition 4.3.1 (environment). An environment is a partial function E from V

to (L ×M). If V ⊂ V is a subset of variables, then an environment E is called
an environment over V if and only if Dom(E) = V .

During system computation, a thread can be described by a program point
p, an instance marker id, and an environment E over the interface I(p) which
associates the variables in I(p) with some dynamic values. It is worth noting that
variables should be classified between the variables that are associated with some
pointer values (such as thread locations in the case of the mobile ambients) and
the variables that are associated with some name values. We omit these kind of
details for the sake of clarity.

Then, we can give the definition of a thread instance:

Definition 4.3.2 (thread). A thread is given by a triple (p, id,Ep), where p ∈Lp

is a program point label, id ∈M is an instance marker, and Ep is an environment
over the interface I(p).

During system computation, the system configuration is given by a set of
threads:

Definition 4.3.3 (configuration). A system configuration is a set of threads.

4.4 Operational semantics

We describe in this section the operational semantics of the languages that are
described in our meta language.

4.4.1 Primitives

4.4.1.1 Exhibited action

We say that a thread t exhibits a partial interaction pi if it is able to compute this
partial interaction provided that the context (i.e. the other threads in the config-
uration) may compute the some complementary partial interactions of the partial
interaction pi. More precisely, the thread t exhibits the partial interaction pi if and
only if the partial interaction is available in t and if the local synchronization con-
straints are satisfied by the environment values. This yields the following formal
definition:

4.4. OPERATIONAL SEMANTICS 57

Definition 4.4.1 (exhibited action). Let t = (p, id,E) be a thread and pi =
(s,(parameteri),(boundi),constraints,continuation) be a partial interaction. We
say that the thread t exhibits the partial interaction pi and we write exhibit(t,pi) if
and only if the both following properties are satisfied:

1. pi ∈ interaction(p),

2. ∀(a�b) ∈ constraints, we have E(a)�E(b) (� ∈ {=, 6=}).

4.4.1.2 Global synchronizations

Global synchronizations relate the interface of the interacting threads. We now de-
fine a predicate sync to compute whether some tuples of threads may synchronize
their computation according to a formal rule. This predicate is a relation among
a tuple of threads, the sequence of their respective parameter sequences, and the
generic synchronization conditions that are described in the rule.

Definition 4.4.2 (global synchronization). Let n ∈ N be an integer. Let
(tk)1≤k≤n = (pk, idk,Ek)1≤k≤n be an n-tuple of threads, and (paramk

l)k,l be an n-
tuple of parameter sequences (paramk

l is associated with the l-th parameter of the
k-th thread) and compatibility be a set of synchronization constraints. The relation
sync is defined as follows:

sync((tk),(paramk
l)k,l,compatibility)

∆
= ∀a,b ∈ compatibility, σ(a) = σ(b),

where σ :

{

X k
l 7→ Ek(paramk

l)

Ik 7→ (pk, idk).

It is worth noting that the assignment σ associates each formal variable with
the run-time value of the syntactic variable that it is encoded by this formal vari-
able.

4.4.1.3 Marker computation

When a thread computes a partial interaction, a marker is computed and passed to
the continuation. If the partial interaction is not a replication, the marker is the one
of the computed thread, otherwise it is made of both the labels and the markers of
the computed threads. The primitive marker takes the type of a partial interaction
name t, a tuple of threads and a thread index k and computes the marker that
is associated with the continuation of the k-th thread when it computes a partial
interaction the name of which is of type t. This yields the following definition for
the allocated marker.

58 CHAPTER 4. META LANGUAGE

Definition 4.4.3 (computed marker). Let n ∈ N be an integer. Let t be a par-
tial interaction type in {replication;computation;migration}. Let (pi, idi,E i)1≤i≤n

be an n-tuple of threads. Let k be an integer such that 1 ≤ k ≤ n. The marker
marker(t,

(

pi, idi,E i
)

1≤i≤n ,k) is defined as follows:

marker(t,
(

pi, idi,E i)

1≤i≤n ,k)
∆
=

{

N((p1, . . . , pn), id1, . . . , idn) if t = replication

idk otherwise.

4.4.1.4 Removing threads

When computing an interaction, the computing threads that do not replicate them-
selves are removed. The primitive remove, which is defined in the following, gives
the set of threads that must be removed when computing an interaction. Its argu-
ment is a set of pairs made of a thread and the type of the partial interaction that
is computed by this thread.

Definition 4.4.4. Let n ∈ N be an integer. Let (tk)1≤k≤n be an n-tuple of threads.
Let (typek)1≤k≤n be an n-tuple of partial interaction types. The primitive remove
is defined as follows:

remove

(

(

tk, typek
)

1≤k≤n

)

∆
= {tk | 1≤ k ≤ n, typek 6= replication}.

4.4.1.5 Shared environment

We now introduce a primitive vpassing to compute value passing. This primi-
tive takes a thread index i, a tuple of threads, the sequence of the variables that
are bound in the i-th thread during the interaction, the tuple of the parameter se-
quences of each thread, and the formal description of value passing. It returns the
environment of the i-th thread after value passing.

Definition 4.4.5 (value passing). Let n ∈ N be an integer. Let (tk)1≤k≤n =
(pk, idk,Ek)1≤k≤n be an n-tuple of threads. Let (bdl)l be a sequence of vari-
ables (bdl is associated with the l-th variable that is bound by the inter-
action in the i-th thread). Let (paramk

l)k,l be an n-tuple of parameter se-
quences (paramk

l is associated with the l-th parameter of the k-th thread). Let
communications be a partial map from V Y

f into V X
f ∪V I

f . We define the environ-

ment vpassing(i,(tk),(bdl),(paramk
l),communications) by:

E i[bd j 7→ σ(communications(Y i
j))],

where σ =

{

X k
l 7→ Ek(paramk

l)

Ik 7→ (pk, idk).

4.4. OPERATIONAL SEMANTICS 59

4.4.1.6 Launching a continuation

When a thread computes a partial interaction, it is removed and replaced with
some other threads. This set of new threads is called a continuation. The marker
of each thread in the continuation is either the marker of the computed thread or
a fresh marker that is computed from the markers of all the interacting threads.
The values associated with variables may have three distinct origins. Some vari-
ables were already in the interface of the computed thread: they keep the same
value. Some variables are associated with some values that are passed by the
other threads: these associations are computed by the primitive vpassing. Some
variables are created just after the interaction and associated with a fresh value
obtained by tagging a static label with the marker of the thread. We first introduce
an auxiliary primitive update which allows for updating an environment with the
binding of the new variables. This primitive takes the marker of the computed
thread, the environment of the computed thread, and the static environment that
is associated with the continuation thread. It returns the updated environment,
which is obtained by associating fresh variables with the correct syntactic labels
stamped with the marker of the computed thread.

Definition 4.4.6 (environment updating). Let id be a marker in M . Let Ed be
an environment over Vd (i.e. Ed ∈Vd →L ×M). Let Es be a static environment
over Vs (i.e. Es ∈ Vs → L). We define the environment update(id,Ed,Es) over
Vd ∪Vs as follows:

update(id,Ed,Es)(x)
∆
=

{

(Es(x), id) if x ∈Vs

Ed(x) if x ∈Vd \Vs.

We can now introduce the primitive launch, which describes the launching
of the continuation of a partial interaction. This primitive requires the syntactic
continuation of the partial interaction, the marker of the computed thread and its
environment. It computes the set of all threads launched when computing the
partial interaction.

Definition 4.4.7 (continuation launching). Let Ct ∈℘(Lp× (V ⇀ L)) be a
continuation. Let id ∈M be a thread marker. Let E ∈ V ⇀ L ×M be an
environment. We define the set launch(Ct, id,E) of threads as follows:

launch(Ct, id,E)
∆
=
{(

t, id,(update(id,E,Es))|I(t)

) ∣

∣

∣
(t,Es) ∈ Ct

}

.

4.4.1.7 Broadcast value passing

Broadcast value passing consists in substituting all occurrences of a value in the
system by another one. In practice, it allows pointer re-addressing. We first com-

60 CHAPTER 4. META LANGUAGE

pute a substitution τ . This substitution replaces each value that may be associ-
ated at run-time with some formal variables with one of these formal variables.
In case several formal parameters are associated with the same value, we non-
deterministically choose which formal variable replaces the value. We introduce
a primitive subs_choice that computes the choice of all the substitutions. This
primitive takes the tuple of the interacting threads, a binding between formal vari-
ables and the parameters of the threads that interact, and a substitution among
formal variables. It computes a set of substitutions over the set L ×M of values.

Definition 4.4.8 (substitution choice). Let n ∈ N be an integer. Let (tk)1≤k≤n =
(pk, idk,Ek) be an n-tuple of threads. Let (paramk

l)k,l be an n-tuple of parameter
sequences (paramk

l is associated with the l-th parameter of the k-th thread) and
broadcast be a partial map from V I

R
into V X

R
∪V I

R
.

The set D of the values that are replaced by the substitution is given as follows:

D
∆
= {(pk, idk) | ∃k, Ik ∈ Dom(broadcast)}.

Then, we define the set subs_choice((tk),(parameterk
l),broadcast) of potential

substitutions as the set of mappings τ ∈L ×M →L ×M such that:

1. ∀x ∈ (L ×M)\D , τ(x) = x;

2. ∀x ∈D , τ(x) ∈ {σ(broadcast(Ik)) | x = (pk, idk)},

where σ :

{

Ik′ 7→ (pk′, idk′)

X k′
l′ 7→ Ek′(paramk′

l′).

This substitution is simultaneously applied on all the threads, which yields the
following definition:

Definition 4.4.9 (broadcast value passing). Let τ ∈ (L ×M)→ (L ×M) be
a substitution. Let C be a set of threads. We now define subs(τ,C) by:

subs(τ,C)
∆
= {(q, id,τ ◦E) | (q, id,E) ∈C}.

Remark 4.4.10. We consider a set of potential substitutions because we make
no assumption about the model that we encode. When the model satisfies the
marker freshness sufficient conditions that are given in Def.4.5.11 on page 66,
distinct threads have distinct identities, so for any distinct integer k and l, the
formal variables Ik and Il may not be associated with the same run-time value.
This way, only one substitution may apply.

4.5. MARKER AND VALUE FRESHNESS 61

4.4.2 Transition system

We use these primitives in order to describe both initial states and the semantics
of computation steps according to a formal rule. Initial states are obtained by
launching a continuation in inits with an empty marker and an empty environment.
Thus the set C0 of initial states is defined by:

C0
∆
= {launch(continuation,ε, /0) | continuation ∈ inits}.

Computation steps are described by a reduction relation in Fig. 4.1. We recall
the different steps of this computation, as follows:

• interaction enabling:

– first, we find some threads that exhibit the right partial interactions;

– then, we check that their interfaces are compatible with the synchro-
nization constraints of the formal rule;

• interaction computation:

– we remove the threads that do not compute a replication;

– we choose a syntactic continuation for each thread;

– we compute dynamic data for each of these continuations:

∗ we compute the marker;
∗ we take into account name passing;
∗ we create fresh variables and associate them with the right values;
∗ we restrict the environment to the new interface;

– we apply the broadcast substitution to the whole system in order to
model potential re-addressing.

Each computation step is labeled with all the information we need to know
the system updating. More precisely, a computation step label is of the form
(R,((t1,pi1,Ct1), . . . ,(tn,pin,Ctn)),τ), where R is a reduction rule which expects
n interacting threads; where for any k ∈ J1;nK, the k-th thread that is involved in
the interaction is the thread tk, this thread computes the partial interaction pik

before launching the continuation Ctk; and where τ is the broadcast substitution
that is applied to any thread at the end of the computation step.

4.5 Marker and value freshness

In this section, we give some sufficient conditions that ensure that our allocation
scheme always provides fresh values.

62 CHAPTER 4. META LANGUAGE

Let C be a configuration.
Let R = (n,components,compatibility,v-passing,broadcast) be a reduction rule.
We suppose that there exist both:

• an n-tuple (tk)1≤k≤n = (pk, idk,Ek)1≤k≤n ∈Cn of distinct threads

• and an n-tuple

(pik)1≤k≤n = (sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n

of partial interactions,

such that:

1. ∀k ∈ J1;nK, exhibit(tk,pik);

2. ∀k ∈ J1;nK, components(k) = sk;

3. sync((t1, . . . , tn),(parameterk
l)k,l,compatibility) is satisfied.

Then:

C
(R,(α1,...,αn),τ)
−→ subs(τ,C \ removed_threads∪new_threads)

where:

• τ ∈ subs_choice
(

(

tk
)

k ,
(

parameterk
l

)

k,l ,broadcast
)

;

• removed_threads = remove
(

(

tk, type(sk)
)

1≤k≤n

)

;

• new_threads =
⋃

{launch
(

Ctk, id
k
,E

k
)

| 1≤ k ≤ n},

with ∀k ∈ J1;nK:

– Ctk ∈ continuationk,

– id
k
= marker

(

type(sk),
(

pk′ , idk′ ,Ek′
)

1≤k′≤n
,k

)

,

– E
k
= vpassing(k,(tk′)k′,(bdk

l)l,(parameterk′
l)k′,l,communications);

• ∀k ∈ J1;n;K, αk = (tk,pik,Ctk).

Figure 4.1: Generic transition rule.

4.5. MARKER AND VALUE FRESHNESS 63

4.5.1 Marker freshness sufficient conditions

We describe some assumptions over system syntaxes. These assumptions help
in proving that there is ambiguity neither between the markers associated with
distinct instances of threads (see Sect. 4.5.2), nor between the markers associated
with fresh values (see Sect. 4.5.3), when computing the operational semantics (see
Sect. 4.4).

4.5.1.1 Migrating threads

The threads that migrate may create neither new thread, nor new value. However,
a migration may change the environment and the control point of a thread. Chang-
ing the control point allows the encoding of thread polarity: a cycle of migrations
among two program points may describe a membrane that have a different behav-
ior according to its orientation (as in the projective brane calculus [28]). Thus,
we require that the continuations of migrating threads contain at most one thread
(no thread creation) and that their static environment is empty (no value creation).
This yields the following well-formedness condition over migrating threads:

Definition 4.5.1 (well-formed migrating threads). The interaction map
interaction well-defines migrating threads if ans only if the following property
is satisfied:

∀p ∈Lp,(s,(parameteri),(boundi),constraints,continuation) ∈ interaction(p),
if type(s) = migration, then ∀Ct ∈ continuation\{ /0},Ct matches {(q, /0)}.

4.5.1.2 Program point classes

Migration may just change the environment or the polarity of a thread. To observe
a thread progress, we consider the set of the program point labels up to a binary
equivalence relation ∼. This equivalence relation ∼ is the strongest equivalence
relation that relates the program point labels that are reachable through migration
steps. We first define a relation! that relates two labels such that one of these
label is the label of a thread in the continuation of a partial interaction that may be
computed at the program point labeled by the other label.

Definition 4.5.2 (migration transition). p! q if and only if:

1. either there exists (s,(parameteri),(boundi),constraints,continuation) ∈
interaction(p), such that both type(s) = migration and {(q, /0)} ∈
continuation,

2. or there exists (s,(parameteri),(boundi),constraints,continuation) ∈
interaction(q), such that both type(s) = migration and {(p, /0)} ∈
continuation.

64 CHAPTER 4. META LANGUAGE

Then, we define the equivalence relation ∼ as the strongest equivalence rela-
tion that is compatible with the relation!.

Definition 4.5.3 (migration equivalence relation). We define ∼∈L 2
p as the re-

flexive, symmetric, and transitive closure of the relation !. Thus, the relation
∼ is an equivalence relation. For any program point p ∈Lp, we denote by [p]∼
its equivalence class (i.e. [p]∼ = {q ∈Lp | p ∼ q}). We denote by C∼ the set
{[p]∼ | p ∈Lp} of all the equivalence classes.

4.5.1.3 Thread creation injectivity

First, we ensure that both at the beginning of the system and when computing a
partial interaction at most one thread is launched in each program point class.

Definition 4.5.4 (thread creation injectivity). The syntax (I, inits, interaction)
creates threads injectively if and only if the following properties are satisfied:

1. for any Ct ∈ inits, for any (q,Es),(q′,E ′s) ∈ Ct, q ∼ q′⇒ (q = q′ and Es =
E ′s);

2. for any p∈Lp, for any (s,(parameteri),(boundi),constraints,continuation)
∈ interaction(p), for any Ct∈ continuation(p), for any (q,Es),(q′,E ′s)∈Ct,
q∼ q′⇒ (q = q′ and Es = E ′s).

4.5.1.4 Syntactic forest

In practice, a mobile system is described by a syntax tree (or a syntactic forest).
This assumption is crucial to ensure the freshness of the markers that are associ-
ated with thread instances, since it prevents cyclic computation sequences. That
is why we restore the notion of syntactic forest.

We first define the set of the successors of a program point class.

Definition 4.5.5 (syntactic successor). We say that the class C2 is a syntactic
successor of the class C1 (and we write C1 −→s C2) if and only if C1 contains a
program point label p and C2 contains a program point label q such that q is the
label of a continuation thread of a partial interaction in interaction(p) that is not
of type migration. This way, we define C1 −→s C2 by:










∃p ∈ C1,q ∈ C2,

∃(s,(parameteri),(boundi),constraints,continuation) ∈ interaction(p),

such that ∃Es ∈ V ⇀ L , (q,Es) ∈
⋃

continuation and type(s) 6= migration.

A program point class is initial if and only if it is the successor of no other
program point class:

4.5. MARKER AND VALUE FRESHNESS 65

Definition 4.5.6 (initial program point classes). A program point class C2 is
initial if and only if:

∀C1 ∈ C∼, C1 6−→s C2.

The set of all initial program point classes is denoted by initp.

At the beginning of the computation, any thread in the system is an instance
of of threads at initial program points. This yields the following well-formedness
condition over the description of the initial states:

Definition 4.5.7 (well-formedness initial state description). The description of
the initial states inits is well-formed if and only if for any (p,Es) in

⋃

inits, we
have [p]∼ ∈ initp.

The syntax of a system must define a syntax forest. So, for each program point
class C2, there must be at most one edge in −→s that ends in C2.2 Moreover,
we require that two partial interactions that compute threads at program points
indexed with labels in the same class and that may launch threads at program
points indexed with labels in the same class have the same type.

Definition 4.5.8 (syntax forest). The interaction map interaction of a program
defines a syntax forest if and only if the following properties are satisfied:

1. ∀C2 ∈ C∼, ∀C1,C′1 ∈ C∼, [C1 −→s C2 and C′1 −→s C2] =⇒ C1 = C′2.

2. for any p, p′ ∈Lp, for any (s,_,_,_,continuation)∈ interaction(p), for any
(s′,_,_,_,continuation′)∈ interaction(p′), for any (q,Es)∈

⋃

continuation,
for any (q′,E ′s) ∈

⋃

continuation′, if p ∼ p′ and q ∼ q′, then type(s) =
type(s′).

4.5.1.5 Fresh values

When computing a partial interaction or at the beginning of the system computa-
tion, a thread declares some variables (excluding the variables that are bound by
name passing) and associates them with some fresh values. We define here the
set of the static labels of the fresh values that may be declared at a given program
point class or at the beginning of the system computation.

Definition 4.5.9. The set value(C1) of the values that may be declared when
computing an instance of a thread at a program point in the class C1 is
defined as follows: the set value(C1) is the set of all the value Es(x)
such that there exists a program point label p in C1, a partial interaction

2We are only interested in the program point classes that are reachable from an initial program
point class, so that we do not need to forbid cyclic paths.

66 CHAPTER 4. META LANGUAGE

(s,(parameteri),(boundi),constraints,continuation) ∈ interaction(p), a continu-
ation thread (q,Es) ∈

⋃

continuation and a variable x ∈ Dom(Es)∩ I(q).
Moreover, the set value(0) of the values that may be declared in an initial state

is defined as follows:

value(0)
∆
=
⋃

{Es(x) | (q,Es) ∈ inits, x ∈ Dom(Es)}.

In a syntactic forest, name restrictions are well-labeled if restriction symbols
are associated with distinct labels. We translate this assumption into the syntax
syntax(S). More precisely, we require that the sets of the static labels of the fresh
values that may be declared at a program point class are disjointed pairwise. This
yields the following definition:

Definition 4.5.10 (fresh values well-definition). The syntax syntax(S) well-
defines its fresh values if and only if the following property is satisfied:

∀C1,C2 ∈ C∼∪{0}, [C1 6= C2 =⇒ value(C1)∩ value(C2) = /0].

4.5.1.6 Sufficient conditions

We summarize our sufficient conditions in the following definition:

Definition 4.5.11 (sufficient conditions). The syntax syntax(S) =
(I, inits, interaction) allocates unambiguous markers if and only if the fol-
lowing properties are satisfied:

1. the map interaction well-defines migrating threads (Cf. Def. 4.5.1);

2. the syntax syntax(S) creates threads injectively (Cf. Def. 4.5.4);

3. the description of the initial state inits is well-formed (Cf. Def. 4.5.7);

4. the interaction map interaction defines a syntactic forest (Cf. Def. 4.5.8);

5. the interaction map interaction well-defines fresh values (Cf. Def. 4.5.10).

In the rest of this section, we suppose that our systems satisfy Def. 4.5.11.

4.5.2 Thread marker freshness

Let C0 ∈ C0 be an initial state and let C0
λ (1)
−→ . . .

λ (n)
−→Cn be a com-

putation sequence. For any i such that 1 ≤ i ≤ o, we denote
λ (i) = (R(i),((t1(i),pi1(i),Ct1(i)), . . .,(tni(i),pini(i),Ctni(i))),τ(i))
where R(i) is a formal rule (we also denote R(i) =

4.5. MARKER AND VALUE FRESHNESS 67

(n(i),components(i),compatibility(i),v-passing(i),broadcast(i)), (t k(i))
is an n(i)-tuple of threads (we also denote tk(i) = (pk(i), idk(i),Ek(i))),
(pik(i)) is an n(i)-tuple of partial interactions (we also denote (pik(i)) =
(sk(i),(parameterk

l (i))l,(bdk
l (i))l,constraintsk(i),continuationk(i))), (Ctk(i)) is

an n(i)-tuple of continuations that satisfy Ctk(i) ∈ continuationk(i) for any k such
that 1 ≤ k ≤ n(i), and τ(i) is a value substitution. For any i ∈ J1;oK, we define

the n(i)-tuple of markers (id
k
(i)) by marker(type(sk(i)),(tk′(i))1≤k′≤n(i),k)

and the n(i)-tuple of environments (E
k
(i)) by

vpassing(k,(tk′(i))1≤k′≤n(i),(bdk
l (i))l,((parameterk′

l (i))l),communications(i)).
We write consumed(i,k) for the set of threads that are removed when computing
the k-th thread in the i-th computation step and created(i,k) for the set of threads
that are launched when computing the k-th thread in the i-th computation step.
They are defined as follows:

• consumed(i,k)
∆
= remove

((

tk(i),sk(i)
))

;

• created(i,k)
∆
=

{

C0 if i = k = 0

launch(Ctk(i), id
k
(i),E

k
(i)) otherwise.

The set created(0,0) denotes the initial threads. It is worth noting that we define
the set of threads that are launched before applying the broadcast substitution,
since this substitution only applies to thread environments (it modifies neither
program point labels, nor thread markers).

The following lemma ensures that any thread in the system has been pre-
viously created either during a computation step or during a resource fetching,
modulo some environment updating and some migration steps:

Lemma 4.5.12. For any i ∈ J0;oK and for any thread (p, id,E) ∈Ci, there exists
a 4-tuple (p′, i′,k,E ′) such that i′ and k are two integers and E ′ is an environment
over I(p′) such that [i′ = k = 0 or (1 ≤ i′ ≤ i and 1≤ k ≤ ni′ and type(sk(i′)) 6=
migration)] and such that both p∼ p′ and (p′, id,E ′) ∈ created(i′,k).

The freshness of allocated markers is expressed by Thm. 4.5.13 as follows:

Theorem 4.5.13. Let i be an integer between 0 and o and let (p, id,E) be a thread
in Ci. Then, there exists an unique 4-tuple (p′, i′,k,E ′) such that p′ is a program
point label, i′ and k are integers, and E ′ is an environment that satisfy p ∼ p′,
(p′, id,E ′) ∈ created(i′,k) and such that either i = 0, or type(sk(i)) 6= migration.

So, for each thread, the class of the program point and the marker completely
identify both the computation step where the thread has been created and which
thread has been computed to launch it. Moreover, each partial interaction com-
putation may launch at most one instance of a same thread. The proof of this
theorem is given in Appendix B.1.

68 CHAPTER 4. META LANGUAGE

4.5.3 Fresh values

We now define the set of values that are used in a system at the i-th step of the
computation:

Definition 4.5.14 (used values). We define the set used_values(i) by:

{E(x) | (p, id,E) ∈Ci,x ∈ I(p)}.

We now define the set declared_value(i,k) of the values that have been de-
clared during the i-th computation step by the k-th interacting thread, as follows:

Definition 4.5.15 (declared values). We define the set declared_value(i,k) by:
{

used_values(0) if k = i = 0,

{(Es(x), id
k
(i)) | (p,Es) ∈ Ctk(i), x ∈ Dom(Es)} otherwise .

The set declared_value(0,0) denotes the set of the initial values. The Lemma
4.5.16 ensures that any value that occurs in the system has been previously de-
clared:

Lemma 4.5.16. For any i ∈ J0;oK, the set of value used_values(i) is included in
the set:

declared_value(0,0)∪
⋃

{

declared_value(i′,k)

∣

∣

∣

∣

1≤ i′ ≤ i,
1≤ k ≤ n(i′)

}

.

The Thm. 4.5.17 ensures that a given value may only be declared once in a
system computation.

Theorem 4.5.17 (value freshness). The following property is satisfied:

declared_value(i,k)∩declared_value(i′,k′) 6= /0 =⇒ k = k′ and i = i′.

Proof. Let k, k′, i and i′ be four integers and a be a value such that a ∈
declared_value(i,k) and a ∈ declared_value(i′,k′). We want to prove that k = k′

and i = i′.
By Def. 4.5.15, there exist two static environments Es and E ′s, two variables

x ∈ Dom(Es) and x′ ∈ Dom(E ′s), and two program point classes C1 and C2 in

C∼∪{0} such that a = (Es(x), id
k
(i)) = (E ′s(x

′), id
k′
(i′)) (we set id

0
(0) = ε) and

Es(x) ∈ value(C1) and E ′s(x
′) ∈ value(C2). By Def. 4.5.10, we have C1 = C2.

Then, there exist two environments E and E ′, and two program point label p and p′

such that p∼ p′, (p, id
k
(i),E)∈ created(i,k), and (p′, id

k′
(i′),E ′)∈ created(i′,k′).

Since we have id
k
(i) = id

k′
(i′) and p ∼ p′, we deduce from Thm. 4.5.13, that

E = E ′, k = k′ and i = i′.

4.6. CONCLUSION 69

Moreover, according with the following proposition, we can simplify the
shape3 of the markers without losing marker allocation consistency:

Proposition 4.5.18. Let φ1 and φ2 be the two following functions:

φ1 =











M → (L ∗)∗

N((a1, . . . ,an),b1, . . . ,bn) 7→ φ1(b2).(a1, . . . ,an))

ε 7→ ε,

φ2 =











M → L ∗

N((a1, . . . ,an),b1, . . . ,bn) 7→ φ2(b2).a2

ε 7→ ε.

Marker allocation remains consistent when replacing each marker by its image
by φ1 or φ2.

Proof. Thanks to Def. 4.1.6, the proof of Thm. 4.5.13 is still valid.

Such simplifications allow us to reduce the cost of our analysis, but also lead
to a loss of accuracy, since they merge information related to distinct computation
sequences of the system.

4.6 Conclusion

We have proposed a unifying framework to generically describe the semantics of
mobile models. This framework encodes explicitly the relation between thread
instances and what they create. It allows name matching, synchronization among
several threads, value passing and broadcast substitution. In the next chapter,
we will instantiate our framework in order to describe the semantics of the most
popular mobile models. This way, we will show how to deal with channeled
communication, migration, dissolution, encryption, decryption, and recursion. . .

3We have reversed markers in order to restore the chronological order (so that the past is on the
left and the future in on the right)

Chapter 5

Encoding examples

In this chapter, we use the meta language that we have introduced in Chap. 4
in order to encode the most frequently used models for mobility in the current
literature: We provide an encoding of a π-calculus version in Sect. 5.1, the join-
calculus in Sect. 5.2, the spi-calculus in Sect. 5.3, the ambients in Sect. 5.4, and
the BIO-ambients in Sect. 5.5.

This way, our meta language allows for the description of: internal choices (in
Sect. 5.1) and external choices (in Sect. 5.1 and in Sect. 5.5); guarded replication
(in Sect. 5.1, in Sect. 5.3, and in Sect. 5.4) and explicit recursion (in Sect. 5.2 and
in Sect. 5.5); location, migration, and dissolution (in Sect. 5.4 and in Sect. 5.5);
term construction and term destruction (in Sect. 5.3); safe migration (in Sect. 5.5)
and channeled communication across boundaries (in Sect. 5.5).

Our meta language may also mix these features easily. Nevertheless we cannot
model the bang operator, since spontaneous replication prevents from tracking the
thread history. Moreover, we cannot deal with an equational theory such as in the
applied-π calculus [1], or with symmetric communications such as in the solo-
calculus [49, 48] or in the fusion-calculus [65], since this feature may destroy the
origin of the values that are used in the system. We have also avoided testing
equalities among terms (in the spi-calculus we have assumed that we only match
atomic names or public part of atomic keys). We do not show how we can deal
with higher order communications [70] although our meta language may model
them. We explain how we can extend our framework in Sect. 8.2.11. We also
sketch the encoding of the projective brane calculus [28].

5.1 Revisiting the π-calculus

In this section, we consider a version of the synchronous polyadic π-calculus
which handles with both internal and external choices, name matching, and

71

72 CHAPTER 5. ENCODING EXAMPLES

guarded replication. We use the meta language that we have introduced in Chap. 4
to describe a non standard semantics for it.

5.1.1 A polyadic π-calculus with external choice

5.1.1.1 Syntax

Let N be a countable set of channel names. Let Lp be a set of program point
labels and Ln be a set of name restriction labels. We suppose that Lp∩Ln = /0 and
we denote by L the set of labels Lp∪Ln. The syntax of threads is described in
Fig. 5.1. Program points are external choices between some threads Σl

iMi.acti.Qi:
they are labeled by distinct labels l ∈ Lp. Input guard, replication guard, and
name restriction act as name binders, i.e in the threads M.c?[x1, . . . ,xn].P, M. ∗
d?[y1, . . . ,yp].Q and (να x)R, the occurrences of x1,. . . ,xn in P, y1,. . . ,yp in Q and
x in R are bound. Moreover, we suppose that in the thread M.c?[x1, . . . ,xn].P
or in the thread M. ∗ c?[x1, . . . ,xn].P, the names x1,. . . ,xn are pairwise distinct.
Name restrictions are labeled with distinct labels in Ln. Usual rules about scope,
substitution, and α-conversion apply. We denote by fn(P) the set of the names
that are free in P, i.e names that are not under the scope of a binder, and by bn(P)
the set of the names that are bound in P.

x,y,a ∈ N

x,y ∈ N ∗

α ∈ Ln

l ∈ Lp

I ∈ {J1;nK | n ∈ N∗}

P ::= Σl
i∈IMi.acti.Pi | (P | P) | (P ⊕ P) | (να x)P | 0

M ::= [x = y].M | [x 6= y].M | ε
act ::= a?[y] | a![x] | ∗a?[y]

Figure 5.1: Syntax.

An external choice Σl
i∈IMi.acti.Pi between threads may compute the action acti

and may launch the continuation Pi only if on the left hand the matching conditions
Mi are satisfied and on the right hand its concurrent threads may perform the
corresponding co-actions.

5.1.1.2 Semantics

As usual, the operational semantics is given by both a transition relation in
Figs. 5.3 and 5.4, and a congruence relation in Fig. 5.5. The transition relation

5.1. REVISITING THE π-CALCULUS 73

ΣiMi.acti.Pi⇒ ΣiMi.acti.Pi 0⇒ 0

P1⇒ Q
P1 ⊕ P2⇒ Q

P2⇒ Q
P1 ⊕ P2⇒ Q

P1⇒ Q1, P2⇒ Q2
(P1 | P2)⇒ (Q1 |Q2)

P⇒Q
(να x).P⇒ (να x).Q

Figure 5.2: Continuation computation.

|= Mi0, |= M′j0, acti0 = a?[y], act′j0 = a![x], Pi0[y← x]⇒ Q, P′j0 ⇒ Q′

Σl
i∈IMi.acti.Pi | Σl′

j∈JM′j.act′j.P
′
j

com(l,l′)
−→ Q | Q′

|= Mi0, |= M′j0, acti0 = ∗a?[y], act′j0 = a![x], Pi0[y← x]⇒ Q, Pj0 ⇒ Q′

Σl
i∈IMi.acti.Pi | Σl′

j∈JM′j.act′ j.P
′
j

fetch(l,l′)
−→ Q | Q′ | Σl

i∈IMi.acti.Pi

Figure 5.3: Interaction computation.

P
λ
−→ Q

(να x)P
λ
−→ (να x)Q

P′ ≡ P P
λ
−→ Q Q≡ Q′

P′
λ
−→ Q′

P
λ
−→ P′

P | Q
λ
−→ P′ |Q

Figure 5.4: Compatibility rules.

(να x)P ≡ (να y)P[x← y] if y 6∈ fn(P) (α-conversion)
P | Q ≡ Q | P (commutativity)

P | (Q | R) ≡ (P | Q) | R (associativity)
P | 0 ≡ P (end of a thread)

(να x)0 ≡ 0 (garbage collecting)
(ναx)(νβ y)P ≡ (νβ y)(ναx)P if x 6= y (swapping)
((ναx)P) | Q ≡ (να x)(P |Q) if x 6∈ fn(Q) (extrusion)

Figure 5.5: Structural congruence.

74 CHAPTER 5. ENCODING EXAMPLES

describes thread computation, whereas the congruence relation explicitly allows
for thread interactions. An interaction is enabled when we have two concurrent
threads such that the first one has a summand which may perform a reception on
a channel and such that the second thread has a summand which may perform an
emission over the same channel. Moreover the length of both the sent and the
expected message must be the same, otherwise the interaction is disabled. The
result consists in launching the corresponding two continuations, just after having
applied name passing. We propose to directly launch a set of external choices
among some partial interactions (internal choices are always systematically per-
formed just after an interaction). The choice between the potential continuations
is given by an auxiliary relation in Fig.5.2. More precisely, we write P⇒ Q if Q
is a system made of concurrent external choices such that Q is obtained from P
by applying only internal choices. We also use an auxiliary relation |= to check
whether matching conditions are satisfied or not.

5.1.2 Non standard semantics

5.1.2.1 Partial interaction names

We distinguish communications according to the length of the communicated
message. Thus, we define the set of partial interaction names, their types and
their arities as follows:

{outn | n ∈ N}∪{inn | n ∈ N}∪{fetchn | n ∈ N} ;

Ari =











outn 7→ (n+1,0)

inn 7→ (1,n)

fetchn 7→ (1,n);

type =











outn 7→ computation

inn 7→ computation

fetchn 7→ replication.

The partial interaction name outn denotes a thread that is sending a message
of n names. Such a partial interaction is a regular computation, it has n + 1 pa-
rameters: the first one is the name of the channel on which the message is sent
and the others are the names of which the message consists. Such a partial in-
teraction bounds no variable. The partial interaction name inn denotes a thread
that is waiting for a message of n names. Such a partial interaction is a regular
computation. It has one parameter which is the name of the channel on which the
message is waited for and it bounds n variables. Finally, the partial interaction
name fetchn denotes a thread that may replicate itself when receiving a message
of n names. Such a partial interaction is a replication. It has one parameter which
is the channel on which the message is waited for and it bounds n variables.

5.1. REVISITING THE π-CALCULUS 75

5.1.2.2 Formal rules

We now define the formal rules that implement communication and resource
fetching. The rule comn which is described in Fig. 5.6 implements the commu-
nication of n names. It requires two threads: the first one waits for a message of
n names (inn) and the second one sends a message of the same size (outn). The
synchronization condition X 1

1 = X2
1 ensures that the first parameters of each com-

ponent are associated with the same value, which means that the emission and the
reception are performed on the same channel. At last, when interacting, the i-th
bound variable of the receiver is associated with the value that is linked with the
(i+1)-th parameter of the message sender which models name passing. There is
no broadcast communication.

comn = (2,component,synchronization,communication,global)

where

1. component(1) = inn and component(2) = outn;

2. synchronization = {X 1
1 = X2

1 };

3. communication = [Y 1
i ← X2

i+1,∀i ∈ J1;nK];

4. global = /0.

Figure 5.6: Formal rule for communication.

The rule fetchn which is described in Fig. 5.7 implements the replication of a
resource when receiving a n names message. It is exactly the same as the com-
munication rule, except the fact that the second thread computes a replication
(fetchn). The facts that the resource is still available after the computation step
and that a new marker is associated with the new instance are dealt with system-
atically by the generic operational semantics (Cf. Sect. 4.4.2). That is why they
are not described explicitly in the rule.

5.1.2.3 Abstract syntax extraction

We now define the syntax extraction function that takes a program describing the
initial state of a mobile system in the standard syntax and extracts the abstract
syntax of it.

The interface of a program point P labeled with l is the set of the free names
fn(P) of P. The abstract syntax maps each program point label l that is used to
label the program point Σl

i∈IMi.ai.Pi to the following set of partial interactions:

{(act(ai),arg(ai),bound(ai),flat(Mi),β (Pi, /0)) | i ∈ I},

76 CHAPTER 5. ENCODING EXAMPLES

fetchn = (2,component,synchronization,communication,global)

where

1. component(1) = fetchn and component(2) = outn;

2. synchronization = {X 1
1 = X2

1 };

3. communication = [Y 1
i ← X2

1+i, ∀i ∈ J1;nK];

4. global = /0.

Figure 5.7: Formal rule for resource fetching.

where auxiliary primitives are defined as follows:

• The primitive act maps each action of the standard syntax into the corre-
sponding partial interaction name in the abstract syntax; it is defined as
follows:

act =











a?[y1, . . . ,yn] 7→ inn

a![x1, . . . ,xn] 7→ outn
∗a?[y1, . . . ,yn] 7→ fetchn.

• The primitive arg gives the set of the syntactic variables that are used as
parameters of the partial interactions:

arg =











a?[y1, . . . ,yn] 7→ [a]

a![x1, . . . ,xn] 7→ [a;x1; . . . ;xn]

∗a?[y1, . . . ,yn] 7→ [a].

In the case of a message reception and in the case of a replication, the only
parameter is the variable that is bound at run-time to the name of the channel
on which the reception is performed. In the case of a message emission, the
first parameter is the variable that is bound at run-time to the name of the
channel on which the reception is made, the others are the variables that are
bound to the names that compose the message.

• The primitive bound maps each action of the standard syntax into the se-
quence of the variables that are bound when computing the partial interac-
tion.

bound =











a?[y1, . . . ,yn] 7→ [y1; . . . ;yn]

a![x1, . . . ,xn] 7→ []

∗a?[y1, . . . ,yn] 7→ [y1; . . . ;yn].

5.2. ENCODING THE JOIN-CALCULUS 77

This sequence is empty in the case of a message emission, otherwise it is
the sequence of the variables that are used as the arguments of the reception.

• The primitive flat computes inductively the set of synchronization con-
straints, as follows:

flat =











[x = y].M 7→ {x = y}∪ (flat(M))

[x 6= y].M 7→ {x 6= y}∪ (flat(M))

ε 7→ /0.

• Finally the primitive β computes the set of potential continuations. It is
defined inductively over the standard syntax of the syntactic continuation,
as follows:

β ((ναx)P,Es) = β (P,E[x 7→ α])

β (0,Es) = { /0}

β (P ⊕ Q,Es) = β (P,Es)∪β (Q,Es)

β (P | Q,Es) = {A∪B | A ∈ β (P,Es), B ∈ β (Q,Es)}

β (Σl
i∈Ja.P,Es) = {{(l,Es)}}.

The set of the initial states is defined as follows:

β (S , /0).

5.1.3 Correspondence

Proposition 5.1.1. For each system, the extracted syntax satisfies the sufficient
properties in Def. 4.5.11. Thus, allocated markers are unambiguous.

The correspondence between the standard and the non standard semantics is
established as follows:

Theorem 5.1.2. The standard and the non standard semantics are in strong bisim-
ulation.

5.2 Encoding the join-calculus

The join-calculus [40] is a model for mobile systems that is based on the notion
of locality. The π-calculus is based on the use of non-local interactions (such as

78 CHAPTER 5. ENCODING EXAMPLES

rendez-vous) which are very difficult to implement. In the join-calculus, only the
capability to send a message over a channel name may be passed to other threads.
This way the messages that are communicated through a channel may only be
received by exactly one thread in the system. This assumption allows for an easy
and efficient distributed implementation of this model.

Locality is ensured by the use of recursive definitions. Recursive definitions
open some fresh channels and launch continuations. Only the definition has the
capability to receive messages over the channels it has opened. Nevertheless con-
tinuations may send messages on these channels and may communicate the ca-
pability to send messages on these channels to the other threads. Each definition
may be fetched when there are simultaneous emissions over all channels it has
opened.

For the sake of simplicity, we use the core version of the join-calculus that is
described in [41, Sect. 5], where communications are monoadic and definitions
always wait for two simultaneous outputs. The general case may be dealt with
easily. Moreover, we separate the device (that is, the set of declared definitions)
from the set of threads.

5.2.1 Syntax

Let N be a set of channel names. Let Lp be a set of program point labels and Ln

be a set of name labels. We suppose that Lp ∩Ln = /0 and we denote by L the
set Lp ∪Ln. The syntax of threads is described in Fig. 5.8. Program points are

P ::= xl〈u〉 | (P | P) | (defl xα〈u〉 | yβ 〈v〉.P in P).

where u,x,y ∈N , l ∈Lp and α,β ∈Ln.

Figure 5.8: Syntax for the join-calculus.

definitions and message outputs: A definition defl xα〈u〉 | yβ 〈v〉.Q in P defines a
new resource. It opens two fresh channels named x and y in the continuation P and
in any recursive instance of the thread Q. Thus, the variables x and y are bound
in P and in Q. When receiving simultaneous messages over the channels x and y,
the definition may launch an instance of the thread Q where the two variables u
and v are associated with their respective messages. Thus, the variables u and v
are bound in the thread Q (the variables u and v must be distinct). A thread xm〈u〉
performs an asynchronous output on the channel name x. Usual rules about scope,
substitution, and α-conversion apply. We denote by fn(P) the set of the variables
that are free in P and by bn(P) the set of the variables that are bound in P. We
assume that each label occurs only once in the whole system.

5.2. ENCODING THE JOIN-CALCULUS 79

5.2.2 Semantics

The system state is given by a pair (D,P) where P is a system of threads and D is
a set of declared definitions of the form xα〈u〉 | yβ 〈v〉.l P that is called the device.
We denote by dn(D) the set of channel names

⋃

{{x;y} | (xα〈u〉 | yβ 〈v〉.l P)∈D}.
Each definition in D may be fetched by threads of the system P.

As usual, the operational semantics is given by both a transition relation in
Fig. 5.10 and a congruence relation in Fig. 5.9. The transition relation describes
thread computation and definition storage, whereas the congruence relation ex-
plicitly allows for the thread interactions. A definition may be stored when it
reaches the top level. In such a case, we rename the name it declares in order
to avoid conflicts and stores it in the device. Such a definition is then available
and may be fetched during the rest of the computation sequence. An interaction
is enabled when we have a definition in the device and two concurrent outputs
such that the definition waits for simultaneous messages on two channels x and
y and such that the outputs are performed on the channels x and y. The result
consists in launching an instance of the definition body just after having applied
name passing.

The congruence relation allows for the associativity and the commutativity of
the parallel composition. It allows for renaming channels that are opened by each
definition, so that they may be stored in the device.

defl xα〈u〉 | yβ 〈v〉.Q in P ≡ defl zα〈u〉 | tβ 〈v〉.Qσ in Pσif z, t 6∈ fn(P |Q)
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
where σ = [x← z;y← t].

Figure 5.9: Congruence relation for the join-calculus.

x,y 6∈ dn(D)

(D,defl xα 〈u〉 | yβ 〈v〉.P in Q)
ε
−→ (D∪{xα〈u〉 | yβ 〈v〉.l P},Q)

xα〈u〉 | yβ 〈v〉.l P ∈ D

(D,x j〈s〉 | yk〈t〉)
(i, j,k)
−→ (D,P[u← s;v← t])

(D,P)
λ
−→ (D′,P′)

(D,P |R)
λ
−→ (D′,P′ | R)

where x, y, u, v ∈N , l ∈Lp, α,β ∈Ln.

Figure 5.10: Reduction relation for the join-calculus.

80 CHAPTER 5. ENCODING EXAMPLES

5.2.3 Non standard semantics

The non standard semantics is obtained by describing each state of the system by
a set of thread instances where a thread may denote either a recursive definition
or an output instance.

5.2.3.1 Partial interaction names

We define the set of partial interaction names by:

{def ; output} ;

Partial interaction type and arities are defined as follows:

{def ; output} ;

Ari =

{

def 7→ (2,2)

output 7→ (2,0);
type =

{

def 7→ replication

output 7→ computation

A partial interaction named def may be performed by a recursive definition.
Such a partial interaction is a replication. It has two parameters that are the two
names of the channels at which some messages are listened to. It bounds two
variables to the channel names that will be received when fetching the definition.
A partial interaction named output may be performed by a message output. This
partial interaction is a regular computation. It has two parameters: the first one is
the name of the channel on which the emission is made and the second one is the
name that is sent. It bounds no variables.

5.2.3.2 Formal rules

We now define the unique formal rule. The rule fetch which is described in
Fig. 5.11 implements the definition fetching. It requires three threads: the first
one is a definition (def) and the two others send a message (output).

The definition waits two simultaneous names over the channels the names of
which are described by the formal variables X 1

1 and X1
2 . The first output is made

over a channel the name of which is denoted by the formal variable X 2
1 and the

second output is made over a channel the name of which is denoted by the for-
mal variable X3

1 . Thus, the definition fetching is enabled if and only if the formal
variables X1

1 and X2
1 encode the same channel name and the formal variables X 1

2
and X3

1 encode the same channel name which is given by the compatibility condi-
tion set {X1

1 = X2
1 ;X1

2 = X3
1 }. At last, two variables are associated with the names

communicated by the output threads when launching an instance of the definition
body. These two variables are encoded by the formal variables Y 1

1 and Y 1
2 and the

5.2. ENCODING THE JOIN-CALCULUS 81

two communicated names are encoded by the formal variables X 2
2 and X3

2 . This
way name passing is described by the substitution [Y 1

1 ← X2
2 ,Y 1

2 ← X3
2]. There is

no broadcast communication.

fetch = (3,component,synchronization,communication,global)

where:

1. component =











1 7→ def

2 7→ output

3 7→ output;

2. synchronization = {X 1
1 = X2

1 ;X1
2 = X3

1 };

3. communication = [Y 1
1 ← X2

2 ,Y 1
2 ← X3

2];

4. global = /0.

Figure 5.11: Formal rule for computation.

5.2.3.3 Abstract syntax extraction

We now define the syntax extraction function that takes a program describing the
initial state of a mobile system in the standard syntax and extracts its abstract
syntax.

Program points are recursive definitions and message outputs. The abstract
syntax maps each program point label p ∈Lp to the following set of partial inter-
actions according to the syntax of the program point:

• the label of a program point xl〈u〉 is associated with the interface {x;u} and
the following set of partial interactions:

{(output, [x;u], [], /0,{ /0})} ;

• the label of a program point defl xα〈u〉 | yβ 〈v〉.Q in P is associated with the
interface (fn(Q)\{u;v;x;y}) and the following set of partial interactions:

{(def, [x;y], [u;v], /0,{β (Q, /0)})} .

Continuation computations use an auxiliary primitive β . This primitive computes
only one computation, since there is no non-deterministic choice. The primitive

82 CHAPTER 5. ENCODING EXAMPLES

β is defined inductively over the standard syntax of the continuation, as follows:

β (xl〈u〉,Es) = {(l,Es)}
β (P |Q,Es) = β (P,Es)∪β (Q,Es)

β (defl xα〈u〉 | yβ 〈v〉.Q in P,Es) = {(l,Es)}∪β (P,Es[x 7→ α,y 7→ β]).

The set of initial states is defined as follows:

β (S , /0).

5.2.4 Correspondence

Proposition 5.2.1. For each system, the extracted syntax satisfies the sufficient
properties in Def. 4.5.11. Thus, allocated markers are unambiguous.

The correspondence between the standard and the non standard semantics is
established as follows:

Theorem 5.2.2. The standard and the non standard semantics are in weak bisim-
ulation.

5.3 Encoding the spi-calculus

In this section we propose an encoding of the spi-calculus [3,2]. The spi-calculus
is a model of computation for describing cryptographic protocols. In this model,
cryptographic primitives are ideal, which essentially means that the only way to
decrypt an encrypted message is to have the correct key.

Encoding the spi-calculus addresses the problem of dealing with terms: the
encryption of a message is represented by a term which describes the kind of
encryption protocol, the encrypted message, and the key. Threads may decrypt
such cipher-text in the case when they apply the correct decryption protocol with
the correct key. Moreover, threads may pass some terms to each other by using
channeled communications.

Here we consider a version of the spi-calculus with tuples, shared-key en-
cryption, public-key encryption, and message signature. Shared-key encryption
consists in sharing a key between two agents. The first one encrypts a message
using the key, and anybody having this key has the capability to decrypt the en-
crypted message. In public-key encryption, each key has two parts. The public
part is used to encrypt, but only agents who know the private part of the key may
perform the decryption. Signature consists in associating the private part of a key
to a message, so that any agent may check the signature with the public part of the
key.

5.3. ENCODING THE SPI-CALCULUS 83

We suppose that shared keys and private parts of keys are atomic names.
We also suppose that communication primitives are applied with channel names.
This means that at run-time thread computation will be stopped in case of type-
mismatch.

5.3.1 Syntax

Let N be a set of channel names and V be a set of variables. Let La be a set
of thread labels, Lt be a set of term constructor labels, and Ln be a set of name
labels. We suppose that La, Lt and Ln are pairwise disjoint and we denote by
Lp the set La∪Lt ∪Ln. The syntax of threads is described in Fig. 5.12.

A term may be a name, a variable, or a term constructor application. The
term n denotes a name which may describe a channel, a shared-key or the private
part of a key. It has been previously introduced by a restriction (ν αn). The term
x is a variable which will be associated at run-time, either to a communicated
term, or to the result of a term destruction. We use several term constructors and
several term destructors. The term pkt(M) denotes the public part of the private
key M. At run-time, M must be a name. The term tuplet

n(M1, . . . ,Mn) denotes an
n-tuple of terms. The term sencryptt(M1,M2) denotes the result of a shared-key
encryption of a message: the term M2 denotes the shared key, the term M1 is the
message to encrypt. The term pencryptt(M1,M2) denotes the result of a public-
key encryption: the term M2 denotes the public part of the key and the term M1

is the message to encrypt. The term sign(M1,M2) denotes the result of a message
signature: the term M2 denotes the private part of the key, and the term M1 denotes
the signed message.

Threads may declare new names, communicate some terms, and apply term
destructors to terms. A thread (ναn)P introduces a fresh variable and associates
it with a fresh name n in the continuation P. The thread M p〈x〉.P waits for a term
on a channel. When the communication is computed, the variable x is declared
in P and associated with the received name. Conversely, the thread M1

p
〈M2〉.P

sends a term over a channel. It is worth noting that any run-time type mismatch
prevents further thread computation, that is to say that the term M in M p〈x〉.P
(and the term M1 in M1

p
〈M2〉.P) must be bound with a name, otherwise no in-

teraction may be performed. Events begin(M) and end(M) allow for expressing
authentification specification. The term M must be associated with some name at
run-time. Proving the authentification of a protocol boils down to prove that an
event end(n) may not reach the top level before its dual event begin(n) [7]. A
thread [M1 = M2]

p.P tests at run time that M1 and M2 are associated with some
names or with the public part of atomic keys 1 and that these names or the two

1Normally, it tests equality without testing that M1 and M2 are names or key public part: we

84 CHAPTER 5. ENCODING EXAMPLES

atomic keys are the same. In such a case, the continuation P is launched. A thread
(letαx = M in P) manipulates terms by using the appropriate term destructor. In
case of success, it declares the variable x in P and associates it with the result of
the term destruction. Destructors are thn

i that extracts the i-th component of an n-
tuple, sdecrypt that allows for the decryption of a shared-key encrypted message,
pdecrypt that allows for the decryption of a public-key encryption by using the
private part of the key, checksign that checks that the message is signed with the
private version of a public key, and getmessage gives the message while ignoring
the signature. Term destruction is blocked in case of type mismatch, i.e. an en-
cryption with a shared-key which is not a name, or with a public part of a key the
private part is not a name cannot be decrypted. The same way, a signature with
a private key which is not a name cannot be checked and its message cannot be
extracted.

Binders are name restrictions, message input, guarded replication, and term
destructors. The set of variables that are under the scope of a binder in the thread
P is denoted by bn(P), the set of variables that are not in the scope of a binder are
denoted by fn(P). We suppose that the system is well labeled, which means that
no label occurs twice at the beginning of the system computation.

5.3.2 Semantics

As usual, the operational semantics is given by both a transition relation in
Fig. 5.14 and a congruence relation in Fig. 5.13. The transition relation describes
thread computation whereas the congruence relation explicitly allows for thread
interactions. Communications are enabled when we have two concurrent threads
such that the first one performs a reception on a channel and such that the second
one performs an emission over the same channel. The result consists in launching
the two corresponding continuations, just after having applied term passing. We
only allow communications over channels. In case of resource fetching, the re-
source is still available after the communication. A test blocks thread computation
if it is not applied with two equal names or with two public part of atomic keys.
A term destruction tests that the arguments match, and associates the variables to
the result of the destruction. The structural congruence allows for extending the
scope of names, and thread meeting.

5.3.3 Non standard semantics

The major difficulty is to deal with terms. For that purpose, we intuitively model
a memory in which each cell denotes a sub-term of the system and points to the

make this assumption to avoid testing full term equality.

5.3. ENCODING THE SPI-CALCULUS 85

n ∈N (names)
x ∈ V (variables)

α ∈Ln (name labels)
t ∈Lt (term labels)
p ∈La (program point labels)

M ::= n (names)
| x (variables)
| pktM (public key)
| tuplet

n(M1, . . . ,Mn) (tuples)
| sencryptt(M,M) (shared-key encryption)
| pencryptt(M,M) (public-key encryption)
| signt(M,M) (signature)

P ::= M
p
〈M〉.P (output)

| Mp〈x〉.P (input)
| !Mp〈x〉.P (guarded replication)
| 0 (nil)
| P | P (parallel composition)
| (ναn)P (name restriction)
| beginp(M) (begin event)
| endp(M) (end event)
| [M = M]p.P (name matching)
| letpx = thn

i (M) in P (i-th component)
| letpx = sdecrypt(M,M) in P (shared-key decryption)
| letpx = pdecrypt(M,M) in P (public-key decryption)
| letpx = checksign(M,M) in P (signature checking)
| letpx = getmessage(M) in P (getting message)

Figure 5.12: Syntax of the spi-calculus.

86 CHAPTER 5. ENCODING EXAMPLES

(ναx)P ≡ (ναy)P[x← y] if y 6∈ fn(P) (α-conversion)
P | Q ≡ Q | P (commutativity)

P | (Q | R) ≡ (P | Q) | R (associativity)
P | 0 ≡ P (end of a thread)

(ναx)0 ≡ 0 (garbage collecting)
(να x)(νβ y)P ≡ (νβ y)(ναx)P if x 6= y (swapping)
((να x)P) | Q ≡ (ναx)(P | Q) if x 6∈ fn(Q) (extrusion)

where x, y ∈N , α,β ∈Ln.

Figure 5.13: Structural congruence of the spi-calculus.

ni〈x〉.P | n j〈m〉.Q
(i, j)
−→ P[x←m] | Q

!ni〈x〉.P | n j〈m〉.Q
(i, j)
−→ !ni〈m〉.P | P[x← m] |Q

[n = n]p.P
p
−→ P

[pk(n) = pk(n)]p.P
p
−→ P

letpx = thn
i (tuplet

n(M1, . . . ,Mn)) in P
p
−→ P[x←Mi]

letpx = sdecrypt(sencryptt(M,n),n) in P
p
−→ P[x←M]

letpx = pdecrypt(pencryptt(M,pk(n)),n) in P
p
−→ P[x←M]

letpx = checksign(signt(M,n),pk(n)) in P
p
−→ P[x←M]

letpx = getmessage(signt(M,n)) in P
p
−→ P[x←M]

P
λ
−→ Q

(ναx)P
λ
−→ (να x)Q

P′ ≡ P P
λ
−→ Q Q≡ Q′

P′
λ
−→ Q′

P
λ
−→ P′

P | Q
λ
−→ P′ | Q

where m,n ∈N , x ∈ V , i, j, p ∈La, t ∈Lt , and λ ∈L ∗
a .

Figure 5.14: reduction relation of the spi-calculus.

5.3. ENCODING THE SPI-CALCULUS 87

children of this sub-term. This way, we introduce term threads: each sub-term
in the system is associated with a thread. The interface of this thread contains
one variable for each argument of the root term constructors. These variables are
associated with the child sub-term addresses. Moreover, a term thread may com-
pute one partial interaction which has the same name as the corresponding term
constructor. Term threads are not consumed during computation and launch no
continuation, so the type of their partial interaction names is migration. Names
are terminal. So we introduce for each name a term thread with an empty inter-
face. This thread may compute a migration partial interaction named name. Such
threads allow for run-time type checking.

5.3.3.1 Partial interaction names

We define the set of the partial interaction names as follows:

{input;output; fetch;match-names;match-pk;name;pk}
∪{sencrypt;pencrypt;sign;sdecrypt;pdecrypt;checksign;getmessage}

∪{tuplen | n ∈ N}
∪{thi,n | 1≤ i≤ n}.

We define partial interaction type and arities as follows:

Ari =







































































































































input 7→ (1,1)

output 7→ (2,0)

fetch 7→ (1,1)

match-names 7→ (2,0)

match-pk 7→ (2,0)

name 7→ (0,0)

pk 7→ (1,0)

tuplen 7→ (n,0)

sencrypt 7→ (2,0)

pencrypt 7→ (2,0)

sign 7→ (2,0)

thi,n 7→ (1,1)

sdecrypt 7→ (2,1)

pdecrypt 7→ (2,1)

checksign 7→ (2,1)

getmessage 7→ (1,1),

type =







































































































































input 7→ computation

output 7→ computation

fetch 7→ replication

match-names 7→ computation

match-pk 7→ computation

name 7→ migration

pk 7→ migration

tuplen 7→ migration

sencrypt 7→ migration

pencrypt 7→ migration

sign 7→ migration

thi,n 7→ computation

sdecrypt 7→ computation

pdecrypt 7→ computation

checksign 7→ computation

getmessage 7→ computation.

88 CHAPTER 5. ENCODING EXAMPLES

A partial interaction named input denotes a thread that is waiting for a term on
a channel. Such a partial interaction is a regular computation, it has one parameter
which is the name of the channel on which the term is waited for. When receiving
the term, it declares one variable and associates it with the received term. A par-
tial interaction named output denotes a thread that is sending a term on channel.
Such a partial interaction is a regular computation, it has two parameters which
are the name on which the term is sent and the communicated term; it bounds
no variable. A partial interaction named fetch denotes a thread that may replicate
itself when receiving a term on a channel. This is a replication. It requires one
parameter which is the name on which the reception is made and bounds one new
variable to the received term. A partial interaction named match-names denotes
a thread that is testing whether two names are equal, or not. A partial interaction
named match-public denotes a thread that is testing whether two terms denote the
public part of the same atomic key. It is a regular computation that requires two
arguments, one for each tested name. It bounds no variable. A partial interaction
named name denotes a term which is a name. This term allows for the compu-
tation of other threads, without being modified: it is a migration. Moreover, it
has no argument and bounds no variable. A partial interaction named pk denotes
a term that is the public part of a name. It is not computed, but allows for the
computation of other threads. Thus, it is a migration. Moreover, it requires one
argument which is the name and bounds no variable. A partial interaction named
tuplen denotes a term which is a tuple of n terms. It is a migration. Moreover it
requires n arguments each of which denotes a term component and it bounds no
variable. A partial interaction named sencrypt, pencrypt, or sign denotes a term
which is an encryption (that respectively uses shared-key or public-key) or a signa-
ture. This term allows for the computation of the other threads: it is a migration.
It requires two arguments: the first one is a term denoting the message and the
second one is a term denoting the key. It bounds no variable. A partial interac-
tion named thi,n denotes a thread that extracts the i-th component of an n-tuple.
It is a regular computation that requires one argument, the n-tuple and associates
a new variable with the i-th component of this tuple. A partial interaction named
sdecrypt, pencrypt, or checksign denotes a thread which tries to inverse an en-
cryption or a signature. It requires two arguments the first of which is a term that
denotes the cypher-text and the second of which is a term that denotes the key.
In case of success, it associates a new variable with the plain message. A partial
interaction named getmessage denotes a thread that extracts the plain message of
a signed message. It requires one argument which is the term that denotes the
signed message. In case of success, it associates a new variable with the original
message.

5.3. ENCODING THE SPI-CALCULUS 89

5.3.3.2 Formal rules

We now define the formal rules that implement reduction steps. The rule com
which is described in Fig. 5.15 implements the communication. It requires three
threads: the first two threads denote the communicating threads: the first one waits
for a message (input) and the second one sends a message (output); the third thread
is used to check that the communication is done over a channel name (name).
The synchronization condition X 1

1 = X2
1 ensures that the first parameters of each

component are associated with the same value. The synchronization condition
X1

1 = I3 ensures that this value is the name of a channel. At last, when interacting,
the first bound variable of the receiver is associated with the value linked with the
second parameter of the message sender: this models term passing. There is no
broadcast communication.

com = (3,component,synchronization,communication,global)

where

1. component =











1 7→ input

2 7→ output

3 7→ name;

2. synchronization = {X 1
1 = X2

1 ;X1
1 = I3};

3. communication = [Y 1
1 ← X2

2 ,∀i ∈ J1;nK];

4. global = /0.

Figure 5.15: Formal rule for communication in the spi-calculus.

The rule fetch which is described in Fig. 5.16 implements the replication of a
guarded resource. It is exactly the same as the communication rule, except the fact
that the second thread computes a replication (fetch). The facts that the resource
is still available after the computation step and that a new marker is associated
with the new instance are dealt with systematically by the generic operational se-
mantics (Cf. Sect. 4.4.2). That is why we did not need to describe them explicitly
in the rule.

The rule name-matching which is described in Fig. 5.17 implements name
matching. It requires two threads: the first thread denotes the thread that perform
the matching (match-names); the second one denotes the name (name). The for-
mal variable X1

1 and X1
2 denote pointers to the first and the second arguments of the

matching guard. The formal variable I2 denotes the name. The synchronization
conditions X1

1 = I2 and X1
2 = I2 ensure that both parameters of the matching guard

90 CHAPTER 5. ENCODING EXAMPLES

fetch = (3,component,synchronization,communication,global)

where:

1. component =











1 7→ fetch

2 7→ output

3 7→ name;

2. synchronization = {X 1
1 = X2

1 ;X1
1 = I3};

3. communication = [Y 1
1 ← X2

2 ,∀i ∈ J1;nK];

4. global = /0.

Figure 5.16: Formal rule for guarded replication in the spi-calculus.

are associated with the name. There is no local communication and no broadcast
communication.

name-matching = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ match-names

2 7→ name

2. synchronization = {X 1
1 = I2;X1

2 = I2};

3. communication = /0;

4. global = /0.

Figure 5.17: Formal rule for name matching in the spi-calculus.

The rule public-key-matching which is described in Fig. 5.18 implements pub-
lic key matching. It requires four threads: the first thread denotes the thread that
perform the matching (match-pk); the second one denotes the private part of the
key: it must be a name (name); the third and the fourth one denote two instances of
the public part of the key (pk). The formal variable X 1

1 and X1
2 denote pointers to

the first and the second arguments of the matching guard. The formal variable I2

denotes the name. The formal variables I3 and I4 denote the instances of the pub-
lic part of the name. The formal variable X 3

1 denotes a pointer to the private part
of the first instance of the public key. The formal variable X 4

1 denotes a pointer to

5.3. ENCODING THE SPI-CALCULUS 91

the private part of the second instance of the public key. The test may be passed if
and only if:

• the first argument of the guard points to the first instance of the public key
(i.e. X1

1 = I3);

• the second argument of the guard points to the second instance of the public
key (i.e. X1

2 = I4);

• the argument of the first instance of the public key points to the private key
(i.e. X3

1 = I2);

• the argument of the second instance of the public key points to the private
key (i.e. X4

1 = I2).

There is no communication and no broadcast communication.

public-name-matching = (2,component,synchronization,communication,global)

where

1. component =



















1 7→ match-pk

2 7→ name

3 7→ pk

4 7→ pk

2. synchronization = {X 1
1 = I3;X1

2 = I4;X3
1 = I2;X4

1 = I2};

3. communication = /0;

4. global = /0.

Figure 5.18: Formal rule for public key matching in the spi-calculus.

Remark 5.3.1. We could have proposed other rules to extend matching to any
syntactic skeleton.

The formal rule projni which is described in Fig. 5.19 denotes the projection
of an n-tuple according to its i-th component. It requires two threads: the first
one denotes the thread which performs the projection (thi,n) and the second one
denotes the term which is projected (tuplen). The formal variable X 1

1 denotes a
pointer to the projected term. The formal variable X 2

j denotes a pointer to the
j-th component of the term and the variable I2 denotes the term identity. The

92 CHAPTER 5. ENCODING EXAMPLES

reduction step is enabled if and only if the pointer of the thread point to the tuple
(i.e. X1

1 = I2). In such a case, the thread declares a fresh variable which is denoted
by the formal variable Y 1

1 and which is associated with the i-th component of the
tuple (i.e. [Y 1

1 ← X2
i]). There is no broadcast communication.

projni = (2,component,synchronization,communication,global)

where:

1. component(1) = thi,n and component(2) = tuplen;

2. synchronization = {X 1
1 = I2};

3. communication = [Y 1
1 ← X2

i];

4. global = /0.

Figure 5.19: Formal rule for tuple destruction.

The formal rule sdecrypt which is described in Fig. 5.20 denotes a shared-key
decryption. It requires three threads: the first one denotes the thread which per-
forms the decryption (sdecrypt), the second one denotes the term that is decrypted
(sencrypt), the third one denotes the key that is used for both the encryption and
the decryption, this key must be a name (name). The formal variables X 1

1 and X1
2

denote pointers to the first and the second arguments of the decryption. The for-
mal variables X2

1 and X2
2 denote pointers to the first and the second arguments of

the encryption. The formal variable I2 denotes the encryption term identity, and
the formal variable I3 denotes the identity of the key. The decryption is enabled if
and only if:

• the first argument of the decryption points to the encrypted term (i.e. X 1
1 =

I2);

• the second argument of the decryption points to the key (i.e. X 1
2 = I3);

• the second argument of the encryption points to the key (i.e. X 2
2 = I3).

In such a case, the thread declares a fresh variable, which is denoted by the formal
variable Y 1

1 and which is associated with the plain message (i.e. [Y 1
1 ←X2

1]). There
is no broadcast communication.

The formal rule pdecrypt which is described in Fig. 5.21 denotes a public-
key decryption. It requires four threads: the first one denotes the thread which
performs the decryption (pdecrypt), the second one denotes the term that is de-
crypted (pencrypt), the third one denotes the public part of the key that has been

5.3. ENCODING THE SPI-CALCULUS 93

sdecrypt = (3,component,synchronization,communication,global)

where:

1. component =











1 7→ sdecrypt

2 7→ sencrypt

3 7→ name;

2. synchronization = {X 1
1 = I2;X1

2 = I3;X2
2 = I3};

3. communication = [Y 1
1 ← X2

1];

4. global = /0.

Figure 5.20: Formal rule for shared-key decryption.

used for the encryption (pk) and the fourth one denotes the private part of the key:
this must be a name (name). The formal variables X 1

1 and X1
2 denote pointers to

the first and the second arguments of the decryption. The formal variables X 2
1 and

X2
2 denote pointers to the first and the second arguments of the encryption. The

formal variable X3
1 denotes a pointer to the private part of the key. The formal

variable I2 denotes the encryption term identity, the formal variable I3 denotes the
identity of the key public part, and the formal variable I4 denotes the identity of
the private part of the key. The decryption is enabled if and only if:

• the first argument of the decryption points to the encrypted term (i.e. X 1
1 =

I2);

• the second argument of the decryption points to the private part of the key
(i.e. X1

2 = I4);

• the second argument of the encryption points to the public part of the key
(i.e. X2

2 = I3);

• the argument of the key public part points to the private part of the key
(i.e. X3

1 = I4).

In such a case, the thread declares a fresh variable, which is denoted by the formal
variable Y 1

1 and which is associated with the plain message (i.e. [Y 1
1 ← X2

1]). There
is no broadcast communication.

The formal rule checksign which is described in Fig. 5.22 denotes a signature
checking. It requires four threads: the first one denotes the thread which checks
the signature (checksign), the second one denotes the term that is signed (sign),
the third one denotes the public part of the key that has been used for the signature

94 CHAPTER 5. ENCODING EXAMPLES

pdecrypt = (4,component,synchronization,communication,global)

where:

1. component =



















1 7→ pdecrypt

2 7→ pencrypt

3 7→ pk

4 7→ name;

2. synchronization = {X 1
1 = I2;X1

2 = I4;X2
2 = I3;X3

1 = I4};

3. communication = [Y 1
1 ← X2

1];

4. global = /0.

Figure 5.21: Formal rule for public-key decryption.

(pk) and the fourth one denotes the private part of the key: this must be a name
(name). The formal variables X 1

1 and X1
2 denote pointers to the first and the second

arguments of the signature checking. The formal variables X 2
1 and X2

2 denote
pointers to the first and the second arguments of the signed message. The formal
variable X3

1 denotes a pointer to the private part of the key. The formal variable
I2 denotes the signed message term identity, the formal variable I3 denotes the
identity of the key public part, and the formal variable I4 denotes the identity of
the private part of the key. The signature checking is enabled if and only if:

• the first argument of the signature checking points to the signed message
(i.e. X1

1 = I2);

• the second argument of the signature checking points to the public part of
the key (i.e. X1

2 = I3);

• the second argument of the signed message points to the private part of the
key (i.e. X2

2 = I4);

• the argument of the key public part points to the private part of the key
(i.e. X3

1 = I4);

In such a case, the thread declares a fresh variable, which is denoted by the formal
variable Y 1

1 and which is associated with the plain message (i.e. [Y 1
1 ←X2

1]). There
is no broadcast communication.

The formal rule getmessage which is described in Fig. 5.23 denotes the sig-
nature removing. It requires three threads: the first one denotes the thread which
removes the signature (getmessage), the second one denotes the term that is signed

5.3. ENCODING THE SPI-CALCULUS 95

checksign = (4,component,synchronization,communication,global)

where

1. component =



















1 7→ checksign

2 7→ sign

3 7→ pk

4 7→ name;

2. synchronization = {X 1
1 = I2;X1

2 = I3;X2
2 = I4;X3

1 = I4};

3. communication = [Y 1
1 ← X2

1];

4. global = /0.

Figure 5.22: Formal rule for signature verification.

(sign), the third one denotes the private part of the key that signs the message, it
must be a name (name). The formal variable X 1

1 denotes a pointer to the argument
of the signature removing. The formal variables X 2

1 and X2
2 denote pointers to the

first and the second arguments of the signed message. The formal variable I2 de-
notes the signed message term identity, the formal variable I3 denotes the identity
of the private part of the key. The signature checking is enabled if and only if:

• the argument of the signature removing points to the signed message
(i.e. X1

1 = I2);

• the second argument of the signed message points to the private part of the
key (i.e. X2

2 = I3).

In such a case, the thread declares a fresh variable, which is denoted by the formal
variable Y 1

1 and which is associated with the plain message (i.e. [Y 1
1 ← X2

1]). There
is no broadcast communication.

5.3.3.3 Abstract syntax extraction

We now define the syntax extraction function that takes a program that describes
the initial state of a mobile system in the standard syntax and extracts the ab-
stract syntax of it. Program points are term constructors, name restrictions, term
destructors and communication actions:

• the label α of a name restriction (να x).P is associated with the empty inter-
face and with the following set of partial interactions:

{(names, [], [], /0,{{(α, /0)}})};

96 CHAPTER 5. ENCODING EXAMPLES

getmessage = (3,component,synchronization,communication,global)

where

1. component =











1 7→ getmessage

2 7→ sign

3 7→ name;

2. synchronization = {X 1
1 = I2;X2

2 = I3};

3. communication = [Y 1
1 ← X2

1];

4. global = /0.

Figure 5.23: Formal rule for getting message.

• the label p of a program point Q = M p〈x〉.P is associated with the interface
{X} ∪ fn(Q) (X denotes a pointer to the term that describes the channel
on which the reception is performed) and with the following set of partial
interactions:

{(input, [X], [x], /0,{β (P,Es)})};

• the label p of a program point Q =!M p〈x〉.P is associated with the interface
{X}∪ fn(Q) and with the following set of partial interactions:

{(fetch, [X], [x], /0,{β (P,Es)})};

• the label p of a program point Q = M1
p
〈M2〉.P is associated with the inter-

face {X1;X2}∪ fn(Q) and with the following set of partial interactions:

{(output, [X1;X2], [], /0,{β (P,Es)})};

• the label p of a program point beginp(M) or endp(M) is associated with the
interface {X} and with the empty set of partial interactions;

• the label p of a program point Q = [M1 = M2]
p.P is associated with the

interface {X1;X2}∪ fn(Q) and with the following set of partial interactions:
{

(match-names, [X1;X2], [], /0,{β (P,Es)})
(match-pk, [X1;X2], [], /0,{β (P,Es)})

}

;

• the label t of a term construction pkt(M) is associated with the interface {X}
and with the following set of partial interactions:

{(pk, [X], [], /0,{{(t, /0)}})};

5.3. ENCODING THE SPI-CALCULUS 97

• the label t of a term construction tuplet
n(M1, . . . ,Mn) is associated with the

interface {X1; . . . ;Xn} and with the following set of partial interactions:

{(tuplen, [X1; . . . ;Xn], [], /0,{{(t, /0)}})};

• the label t of a term construction sencryptt(M1,M2) is associated with the
interface {X1;X2} and with the following set of partial interactions:

{(sencrypt, [X1;X2], [], /0,{{(t, /0)}})};

• the label t of a term construction pencryptt(M1,M2) is associated with the
interface {X1;X2} and with the following set of partial interactions:

{(pencrypt, [X1;X2], [], /0,{{(t, /0)}})};

• the label t of a term construction signt(M1,M2) is associated with the inter-
face {X1;X2} and with the following set of partial interactions:

{(sign, [X1;X2], [], /0,{{(t, /0)}})};

• the label p of a term destruction letpx = destruct in P is associated with
the interface var(desctruct)∪ (fn(Q)) and with the following set of partial
interactions:

{(act(desctruct),arg(destruct), [x], /0,{β (P,Es)})},

where the auxiliary function act, arg, and var are defined as follows:

act =































thn
i (M) 7→ thi,n

sdecrypt(M,M) 7→ sdecrypt

pdecrypt(M,M) 7→ pdecrypt

checksign(M,M) 7→ checksign

getmessage(M) 7→ getmessage;

arg =































thn
i (M) 7→ [X]

sdecrypt(M,M) 7→ [X1;X2]

pdecrypt(M,M) 7→ [X1;X2]

checksign(M,M) 7→ [X1;X2]

getmessage(M) 7→ [X];

var =































thn
i (M) 7→ {X}

sdecrypt(M,M) 7→ {X1;X2}

pdecrypt(M,M) 7→ {X1;X2}

checksign(M,M) 7→ {X1;X2}

getmessage(M) 7→ {X}.

98 CHAPTER 5. ENCODING EXAMPLES

Continuation computations use mutually recursive auxiliary primitives β , A,
and B. The primitive β computes the continuation2. It is defined inductively over
the standard syntax of the continuation in Fig. 5.24. Primitives A and B are used
to store terms. The primitive A allocates a memory location for each sub-term.
The primitive B returns the address of the term root. The primitive β is defined
inductively in Fig. 5.24. Primitives A and B are defined in Fig. 5.25.

β (M1
p
〈M2〉.P,Es) =

⋃

{

{(p,Es[Xi 7→ B(Mi,Es)])}
A(M1,Es);A(M2,Es)

}

β (Mp〈x〉.P,Es) =
⋃

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β (!Mp〈x〉.P,Es) =
⋃

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β (0,Es) = /0
β (P |Q,Es) = β (P,Es)∪β (Q,Es)
β ((ναn)P) = β (P,Es[n 7→ α])∪{(α, /0)}

β (beginp(M),Es) =

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β (endp(M),Es) =

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β ([M1 = M2]
p.P,Es) =

⋃

{

{(p,Es[Xi 7→ B(Mi,Es)])};
A(M1,Es);A(M2,Es)

}

β (letpx = thn
i (M) in P,Es) =

⋃

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β (letpx = getmessage(M) in P,Es) =
⋃

{

{(p,Es[X 7→ B(M,Es)])};
A(M,Es)

}

β (letpx = sdecrypt(M1,M2) in P,Es) =
⋃

{

{(p,Es[Xi 7→ B(Mi,Es)])};
A(M1,Es);A(M2,Es)

}

β (letpx = pdecrypt(M1,M2) in P,Es) =
⋃

{

{(p,Es[Xi 7→ B(Mi,Es)])};
A(M1,Es);A(M2,Es)

}

β (letpx = checksign(M1,M2) in P,Es) =
⋃

{

{(p,Es[Xi 7→ B(Mi,Es)])};
A(M1,Es);A(M2,Es)

}

Figure 5.24: Abstract syntax extraction.

The set of initial states is defined as follows:

β (S , /0).

2We avoid defining a set of continuations, since we use no non-deterministic choice

5.4. REVISITING THE AMBIENT CALCULUS 99

A(n,Es) = /0
A(x,Es) = /0

A(tuplet
n(M1, . . . ,Mn),Es) = {(t, [Xi 7→ B(Mi,Es))]}∪

⋃

{A(Mi,Es) | 1≤ i≤ n}
A(pkt(M),Es) = {(t, [X1 7→ B(M,Es)])}∪A(M,Es)

A(sencryptt(M1,M2),Es) = {(t, [Xi 7→ B(Mi,Es)])}∪A(M1,Es)∪A(M2,Es)
A(pencryptt(M1,M2),Es) = {(t, [Xi 7→ B(Mi,Es))]}∪A(M1,Es)∪A(M2,Es)

A(signt(M1,M2),Es) = {(t, [Xi 7→ B(Mi,Es))]}∪A(M1,Es)∪A(M2,Es)

B(n,Es) = Es(n)
B(x,Es) = Es(x)

B(tuplet
n(M1, . . . ,Mn),Es) = t

B(pkt(M),Es) = t
B(sencryptt(M1,M2),Es) = t
B(pencryptt(M1,M2),Es) = t

B(signt(M1,M2),Es) = t

Figure 5.25: Term allocation.

5.3.4 Correspondence

Proposition 5.3.2. For each system, the extracted syntax satisfies the sufficient
properties in Def. 4.5.11. Thus, allocated markers are unambiguous.

The correspondence between the standard and the non standard semantics is
established as follows:

Theorem 5.3.3. The standard and the non standard semantics are in strong bisim-
ulation.

5.4 Revisiting the ambient calculus

In this section, we consider the same standard semantics as in Chap. 3 and we
show how we may specify the same non standard semantics in our meta language.

The encoding of the ambients requires a careful treatment of locations. The
location of ambients and of threads will be stored in their environment, by using
a special variable loc. Migrations are modeled by updating the value that is as-
sociated with the variable loc. The last difficulty is to model ambient dissolution
where the whole content of an ambient is moved inside another ambient. This is
modeled by using a broadcast communication in order to replace any instance of
the dissolved ambient identity with the dissolved ambient location.

100 CHAPTER 5. ENCODING EXAMPLES

5.4.1 Non standard semantics

5.4.1.1 Partial interaction names

We define the set of partial interaction names as follows:

{input; fetch;output; in;out;open;ropen;mov-ambient;dis-ambient} ;

Their types and their arities are given as follows:

Ari =







































































input 7→ (1,1)

fetch 7→ (1,1)

output 7→ (2,0)

in 7→ (2,0)

out 7→ (2,0)

open 7→ (2,0)

ropen 7→ (2,0)

mov-ambient 7→ (2,1)

dis-ambient 7→ (2,0);

type =







































































input 7→ computation

fetch 7→ replication

output 7→ computation

in 7→ computation

out 7→ computation

open 7→ computation

ropen 7→ replication

mov-ambient 7→ migration

dis-ambient 7→ computation.

The partial interaction name input denotes a thread that is waiting for an ambi-
ent name. Such a partial interaction is a regular thread computation, it has one
parameter which is the location of the thread and it bounds one variable. The par-
tial interaction name fetch denotes a thread that replicates itself when receiving
an ambient name. Such a partial interaction is a replication, it has one param-
eter which is the location of the thread and it bounds one variable. The partial
interaction name output denotes a thread that sends an ambient name. Such a
partial interaction is a regular thread computation, it has two parameters: the first
one is the location of the thread and the second one is the name which is com-
municated. This partial interaction bounds no variable. The partial interaction
name in denotes a thread that provides to its surrounding ambient the capability
to move inside another ambient. The partial interaction name out denotes a thread
that provides to its parent ambient the capability to exit its grand-parent ambient.
The partial interaction name open denotes a thread that may dissolve a concurrent
ambient. The partial interaction name ropen denotes a thread that may replicate
itself when dissolving an ambient. The partial interactions named in, out, and
open are regular computations whereas the partial interactions named ropen are
replications. All these interactions have two parameters which are the location of
the thread and the name on which the capability may be applied with. They bound
no variables.

Ambients may migrate and may be dissolved. In order to compute the result of
a migration or of a dissolution, the ambient must check some assumptions about

5.4. REVISITING THE AMBIENT CALCULUS 101

its identity, its location, and its name. In the case of a migration, it redefines its
location and in the case of a dissolution, it replace each occurrence of its iden-
tity in the whole system with the location of its parent. Thus, we introduce two
other partial interaction names: The name mov-ambient denotes the capability of
migrating. Such a partial interaction has two parameters: the first one is the lo-
cation of the ambient before the migration and the second one is the name of the
ambient. It bounds one variable which is the updated location after the migration.
The name dis-ambient denotes the capability of being dissolved. Such a partial
interaction has two parameters: the first one is the location of the ambient and the
second one the ambient name. It bounds no variable.

5.4.1.2 Formal rules

We now define the formal rules that implement migrations, dissolutions, and local
communications. The rule in which is described in Fig. 5.26 implements the mi-
gration of an ambient inside its parent ambient. It requires three threads: the first

in = (3,component,synchronization,communication,global)

where

1. component =











1 7→ mov-ambient

2 7→ mov-ambient

3 7→ in;

2. synchronization = {X 1
1 = X2

1 ;X3
1 = I1;X2

2 = X3
2 };

3. communication = [Y 1
1 ← I2,Y 2

1 ← X2
1];

4. global = /0.

Figure 5.26: Formal rule for in migration.

one is the migrating ambient (mov-ambient), the second one is the target ambient
(mov-ambient) and the third one denotes a thread (in) that provides to the first am-
bient the capability to migrate into the second one. The formal variables X 1

1 , X2
1 ,

and X3
1 respectively denote the locations of the migrating ambient, of the target

ambient, and of the thread. The formal variable X 2
2 denotes the name of the target

ambient and the formal variable X 3
2 denotes the name with which the capability

applies. The name of the migrating ambient is not relevant for the computation
step. The formal variables I1 and I2 respectively denote the identity of the mi-
grating ambient and of the target ambient. The migration is enabled if and only
if:

102 CHAPTER 5. ENCODING EXAMPLES

1. the migrating and the target ambients are located in the same ambient
(i.e. X1

1 = X2
1);

2. the migrating ambient contains the thread (i.e. X 3
1 = I1);

3. the capability applies with the name of the target ambient (i.e. X 2
2 = X3

2).

At last, when interacting, the migrating ambient updates its location which is now
the identity of the target ambient. The formal variable Y 1

1 denotes the new location
of the migrating ambient. Thus, the variable Y 1

1 is associated with the variable I2.
The second ambient does not move. The formal variable Y 2

1 denotes the location
of the second ambient. Thus, the variable Y 2

1 is associated with the variable X 2
1 .

There is no broadcast communication.
The rule out which is described in Fig. 5.27 implements the migration of

an ambient out of its parent ambient. It requires three threads: the first one

out = (3,component,synchronization,communication,global)

where

1. component =











1 7→ mov-ambient

2 7→ mov-ambient

3 7→ out;

2. synchronization = {X 1
1 = I2;X3

1 = I1;X2
2 = X3

2 };

3. communication = [Y 1
1 ← X2

1 ,Y 2
1 ← X2

1];

4. global = /0.

Figure 5.27: Formal rule for out migration.

is the migrating ambient (mov-ambient), the second one is the exited ambient
(mov-ambient) and the third one denotes a thread (out) that provides to the first
ambient the capability to migrate out of the second one. The formal variables
X1

1 , X2
1 , and X3

1 respectively denote the locations of the migrating ambient, of the
exited ambient, and of the thread. The formal variable X 2

2 denotes the name of
the exited ambient and the formal variable X 3

2 denotes the name with which the
capability applies. The name of the migrating ambient is not relevant for the com-
putation step. The formal variables I1 and I2 respectively denote the identity of
the migrating ambient and of the exited ambient. The migration is enabled if and
only if:

1. the exited ambient contains the migrating ambient (i.e. X 1
1 = I2);

5.4. REVISITING THE AMBIENT CALCULUS 103

2. the migrating ambient contains the thread (i.e. X 3
1 = I1);

3. the capability applies with the name of the target ambient (i.e. X 2
2 = X3

2).

At last, when interacting, the migrating ambient updates its location which is now
the location of the target ambient. The formal variable Y 1

1 denotes the new location
of the migrating ambient. Thus, the variable Y 1

1 is associated with the variable X 2
1 .

The second ambient does not move. The formal variable Y 2
1 denotes the location

of the second ambient. Thus, the variable Y 2
1 is associated with the variable X 2

1 .
There is no broadcast communication.

The rules open and ropen which are described in Fig. 5.28 and Fig. 5.29 im-
plement the dissolution of an ambient and the dissolution of an ambient with the
replication of the dissolving thread.

open = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ open

2 7→ dis-ambient

2. synchronization = {X 1
1 = X2

1 ;X1
2 = X2

2 };

3. communication = /0;

4. global = [I2 7→ X2
1].

Figure 5.28: Formal rule for dissolution.

ropen = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ ropen

2 7→ dis-ambient

2. synchronization = {X 1
1 = X2

1 ;X1
2 = X2

2 };

3. communication = /0;

4. global = [I2 7→ X2
1].

Figure 5.29: Formal rule for dissolution with replication.

104 CHAPTER 5. ENCODING EXAMPLES

They require two threads: the first one denotes a thread (open in the case when
the thread is not replicated, ropen otherwise) which may dissolve an ambient and
the second one is the ambient. The formal variables X 1

1 and X2
1 respectively denote

the locations of the thread and of the ambient. The formal variable X 1
2 denotes the

name with which the capability applies and the formal variable X 2
2 denotes the

name of the ambient. The formal variable I2 denotes the ambient identity. The
dissolution is enabled if and only if:

1. the thread and the ambient are located inside the same location (i.e. X 1
1 =

X1
2);

2. the capability applies with the name of the ambient (i.e. X 1
2 = X2

2).

There is no name passing communication, but any instance of the ambient iden-
tity in the whole system must be updated with the old location of the ambient.
The dissolved ambient is automatically removed because the name of the partial
interaction that it computes is of type computation and because it has an empty
continuation. If a replication is required, it is automatically handled thanks to the
type of the partial interaction that is computed by the thread.

The rules com and fetch which are described in Fig. 5.30 and Fig. 5.31 imple-
ment the local communication between two threads and the local communication
with replication. They require two threads: the first one denotes a thread that is

com = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ input

2 7→ output

2. synchronization = {X 1
1 = X2

1 };

3. communication = [Y 1
1 ← X2

2];

4. global = /0.

Figure 5.30: Formal rule for communication.

waiting for an ambient name (input in the case when the thread is not replicated,
fetch otherwise) and the second one denotes a thread that is sending an ambi-
ent name. The formal variables X 1

1 and X2
1 denote the locations of these threads.

The formal variable X 1
2 denotes the name which is sent. The communication is

enabled if and only if the thread and the ambient are located inside the same loca-
tion (i.e. X1

1 = X1
2). In such a case, a new variable is declared and associated with

5.4. REVISITING THE AMBIENT CALCULUS 105

fetch = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ fetch

2 7→ output

2. synchronization = {X 1
1 = X2

1 };

3. communication = [Y 1
1 ← X2

2];

4. global = /0.

Figure 5.31: Formal rule for resource fetching.

the output ambient name. The new variable is denoted by the formal variable Y 1
1 .

Name passing is described by associating the formal variable Y 1
1 with the formal

variable X2
2 . These is no broadcast communication.

5.4.1.3 Abstract syntax extraction

We now define the syntax extraction function that takes a program describing the
initial state of a mobile system in the standard syntax and extract the abstract
syntax of it.

Program points are ambient creation and actions. The abstract syntax maps
each program point label l to the following set of partial interactions according to
the syntax of the program point:

• the label l of a program point nl[P] is associated with the interface {loc;n}
and the following set of partial interactions:

{

(mov-ambient, [loc;n], [loc], /0,{{(l, /0)}});
(dis-ambient, [loc;n], [], /0,{ /0})

}

.

• the label l of a program point aln.P with a ∈ {in,out,open, !open} is as-
sociated with the interface {loc;n}∪ (fn(P)) and with the following set of
partial interactions:

{(a, [loc;n], [], /0,{β (P, /0)})};

• the label l of a program point (n)l.P or !(n)l.P is associated with the inter-
face {loc}∪ fn(P)\{n} and with the following set of partial interactions:

{(act, [loc], [n], /0,{β (P, /0)})},

106 CHAPTER 5. ENCODING EXAMPLES

where act = input in the case when the program point matches (n)l.P and
act = fetch otherwise;

• the label l of a program point 〈n〉l is associated with the interface {loc;n}
and with the following set of partial interactions:

{(output, [loc;n], [], /0,{ /0})}.

Continuation computations use an auxiliary primitive β . This primitive com-
putes the continuation3. It is defined inductively over the standard syntax of the
continuation, as follows:

β (ni[P],Es) = β (P,Es[loc 7→ i])∪{(i,Es)}
β (P | Q,Es) = β (P,Es)∪β (Q,Es)

β ((ν ln)P,Es) = β (P,Es[n 7→ l])
β (M,Es) = {(M,Es)}
β (io,Es) = {(io,Es)}
β (0,Es) = /0

The set of initial states is defined as follows:

β (S , [loc 7→ (top,ε)]),

where the location (top,ε) denotes the address of the top level ambient.

5.4.2 Correspondence

Proposition 5.4.1. For each system, the extracted syntax satisfies the sufficient
properties in Def. 4.5.11. Thus, allocated markers are unambiguous.

The correspondence between the standard and the non standard semantics is
established as follows:

Theorem 5.4.2. The standard and the non standard semantics are in strong bisim-
ulation.

5.5 Encoding BIO-ambients

The BIO-ambients [68] allow the description of biological systems: A BIO-
ambient can be seen as a compartment that may describe a cell, an organelle, or
a vesicle. BIO-ambients are bounded places which are delimited by membranes.

3We avoid defining a set of continuations, since we use no non-deterministic choice.

5.5. ENCODING BIO-AMBIENTS 107

These compartments are anonymous and they may contain other compartments
and threads. These threads provide their surrounding ambient some capability to
transform the topology of the biological system. As in the ambient calculus [17],
ambients may enter into a sibling ambient or exit their surrounding ambient. There
is no dissolution, but sibling ambients may merge their content and become an
unique compartment. As in the safe-ambients calculus [52], any modification of
the ambients hierarchy requires two threads: the first one in the migrating ambi-
ent and the second one in the target ambient for migration or one thread in each
merging ambient. These threads must perform the correct capability over the same
name to enable the corresponding computation step. As in the seal-calculus [75]
or in the boxed ambients [13, 12], threads may pass some names through ambient
boundaries. These communications are channeled, so that two threads may only
communicate if they communicate via the same channel name and if their location
satisfies the good assumption.

We use a version of the BIO-ambients with explicit recursion à la join-calculus
[40]. Whenever a recursive process is defined, recursive instances are always
launched at the locations of the threads which unfold the recursion.

5.5.1 Syntax

Let Nc and Np be two disjoint sets of names. The set Nc is a set of channel
names, whereas the set Np is a set of recursive variable names. Let La be a set
of thread labels, Lc be a set of channel name labels, Lamb be a set of ambient
labels, and Lp be a set of recursive variable labels. We suppose that the sets La,
Lc, Lamb, and Lp are pair-wise distinct. Moreover, we set Lp = La ∪Lamb

and L = Lp ∪Lc ∪Lp. The syntax of BIO-ambients is described in Fig. 5.32.
Program points are communication choices, capability choices, recursive defini-
tions, and recursion unfolders. We assume that any label occurs at most once in
the syntax of the initial system. A definition (letp Aα〈n1, . . . ,nq〉 = Q in P)
defines a recursive process. It bounds the variable A to a fresh process name in the
continuation P and in any recursive instance of the thread Q. When unfolded, the
definition receives some channel names which are bound to the variables n1,. . . ,nq.
Thus, A,n1,. . . ,nq are bound in Q and A is bound in P. A thread Ap〈m〉 allows for
unfolding the recursive definition that is bound to the process variable A. The
name restriction (νcn)P opens a fresh channel and bounds the variable n to its
name in the continuation P. The thread a[P] creates a new ambient labeled with
a and launches the continuation P inside it. The thread Σl

i∈Iπi.Pi denotes an ex-
ternal communication choice: it may compute the communication action πi0 and
may launch the continuation Pi0 if the dual communication action is available in
the context at the correct location. A message reception bounds a variable to the
name that is passed during the communication. Thus, in the thread $n?{m}.P,

108 CHAPTER 5. ENCODING EXAMPLES

m,n, p ∈ Nc (channel name)
A ∈ Np (recursive variable name)
p ∈ Lp (program point label)

c,d,e ∈ Ln (channel name label)
a,b ∈ Lamb (ambient label)

α ∈ Lp (recursive variable name label)
I ∈ {J1;nK | n ∈ N∗} (integer interval)

P,Q ::= letp Aα〈m1, . . . ,mp〉= Q in P (recursive definition)
| Ap〈n1, . . . ,np〉 (recursion unfolder)
| (νcn)P (restriction)
| 0 (inactivity)
| P | Q (composition)
| a[P] (ambient)
| Σp

i∈Iπi.Pi (communication choice)
| Σp

i∈IMi.Pi (capability choice)

M ::= enter n (synchronous entry)
| accept n (synchronous accept)
| exit n (synchronous exit)
| expel n (synchronous expel)
| merge+ n (positive synchronous merge)
| merge- n (negative synchronous merge)

π ::= $n!{p} (output action)
| $n?{m} (input action)

$::= local (intra-ambient)
| s2s (inter-siblings)
| p2c (parent to child)
| c2p (child to parent)

Figure 5.32: Syntax of BIO-ambients.

5.5. ENCODING BIO-AMBIENTS 109

the variable m is bound in P. There are four kinds of channeled communica-
tions. Local communications (local n?{m}/local n!{p}) happen between threads
in the same ambient. Sibling communications (sibling n?{m}/sibling n!{p}) hap-
pen between threads that are located in sibling ambients. Parent to child com-
munications (c2p n?{m}/p2c n!{p}) happen when a name sender is concurrent
with an ambient that contains a name reception. Conversely, child to parent com-
munications (p2c n?{m}/c2p n!{p}) happen when a reception is concurrent with
an ambient that contains a name sending. The thread Σl

i∈IMi.Pi is an external
choice between several capabilities. When two ambients interact, each of them
must exhibit the good capability. They change the hierarchy of ambients, and
launch their corresponding continuations. Capabilities enter n/accept n control
ambient entering, capabilities exit n/expel n control ambient expelling and capa-
bilities merge+ n/merge- n control ambient merging. It is worth noting that ambi-
ent merging is not symmetric. The ambient that computes the merge- capability is
dissolved, and its content migrates inside the ambient that computes the merge+.
Since ambients are not named, we use channel names to control the computation
of these capabilities.

Usual rules about scope, substitution, and α-conversion apply. We denote by
fn(P) the set of the names that are free in P, i.e names that are not under the scope
of a binder, and by bn(P) the set of the names that are bound in P.

5.5.2 Semantics

The system state is given by a pair (D,P) where P is a system and D is a set of
definitions of the form Aα〈n〉.p P defined over distinct recursive variable names.
The set of the recursive variable names that are defined in a set of definitions is
denoted by dn(D).

As usual, the operational semantics is given by both a transition relation and
a congruence relation. The transition relation in Fig. 5.34 describes thread com-
putation, whereas the congruence relation in Fig. 5.33 explicitly allows for thread
interactions.

5.5.3 Non standard semantics

5.5.3.1 Partial interaction names

We define the set of partial interaction names as follows:

{enter;accept;expel;exit;merge+;merge-;mov-ambient;dis-ambient}
∪{$io | $ ∈ {local;s2s;p2c;c2p}, io ∈ {?; !}}
∪{defn | def ∈ {rec;unfold}, n ∈ N}.

110 CHAPTER 5. ENCODING EXAMPLES

P |Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P
(νcn)0 ≡ 0

(νcn)(νdm)P ≡ (νdm)(νcn)P if n 6= m
(νcn)(P | Q) ≡ P | ((νcn)Q) if n 6∈ fn(P)
(νcn)(a[P]) ≡ a[(νcn)P]

(νcn)P ≡ (νcm)P[n← m] if m 6∈ fn(P)
letp Aα〈m〉= Q in P ≡ (letp Aα〈m〉= Q in P)[A← B] if B 6∈ fn(P | Q)

Figure 5.33: Congruence relation for BIO-ambients.

Their types and their arities are given as follows:

Ari =



































































































enter 7→ (2,0)

accept 7→ (2,0)

expel 7→ (2,0)

exit 7→ (2,0)

merge+ 7→ (2,0)

merge- 7→ (2,0)

recn 7→ (1,n+1)

unfoldn 7→ (n+2,0)

$? 7→ (2,1)

$! 7→ (3,0)

mov-ambient 7→ (1,1)

dis-ambient 7→ (1,0);

type =



































































































enter 7→ computation

accept 7→ computation

expel 7→ computation

exit 7→ computation

merge+ 7→ computation

merge- 7→ computation

recn 7→ replication

unfoldn 7→ computation

$? 7→ computation

$! 7→ computation

mov-ambient 7→ migration

dis-ambient 7→ computation

Partial interaction names enter, accept, expel, exit, merge+ and merge- denote
threads that may compute a corresponding partial interaction. Such partial inter-
actions are regular thread computations, they all have two parameters: the first
one is the location of the thread and the second one denotes the name with which
the capability applies. These partial interactions bound no variable.

The partial interaction name recn denotes a recursive definition that requires
an n-length message to be unfolded. Such a partial interaction is a replication, it
has one parameter which is the name which is used to define the recursion. The
location of the thread is not relevant, since the recursive instance will be launched
at the unfolder thread location. This partial interaction bounds n + 1 variables.
The first variable encodes the location where the recursive instance is launched
and the last n variables are bound to the passed names. The partial interaction

5.5. ENCODING BIO-AMBIENTS 111

Mi0 = enter n, M′j0 = accept n
(

D,a[Σl
iMi.Pi |Q] | a′ [Σl′

j M′j.P
′
j |Q

′]
)

in(l,l′)
−→

(

D,a′[P′j0 |Q
′ | a[Pi0 |Q]]

)

Mi0 = exit n, M′j0 = expel n
(

D,a′[a[Σl
iMi.Pi |Q] | Σl

jM
′
j.P
′
j | Q

′]
)

out(l,l′)
−→

(

D,a[Pi0 |Q] | a′[P′j0 | Q
′]
)

Mi0 = merge+ n, M′j0 = merge- n
(

D,a[Σl
iMi.Pi | Q] | a′[Σl′

j M′j.P
′
j | Q

′]
)

merge(l,l′)
−→

(

D,a[P′j0 | Q
′ | Pi0 | Q]

)

πi0 = local n?{m}, π ′j0 = local n!{p}
(

D,Σl
iπi.Pi | Σl′

j π ′j.P′j | Q
)

local(l,l′)
−→

(

D,Pi0[m← p] | P′j0 | Q
)

πi0 = c2p n?{m}, π ′j0 = p2c n!{p}
(

D,a[Σl
iπi.Pi | Q] | Σl′

j π ′j.Pj | Q
′
)

p2c(l,l′)
−→

(

D,a[Pi0[m← p] |Q] | P′j0 |Q
′
)

πi0 = p2c n?{m}, π ′j0 = c2p n!{p}
(

D,Σl
iπi.Pi | Q |

a[Σl′
j π ′j.P

′
j |Q

′]
)

2pc(l,l′)
−→

(

D,Pi0[m← p] | Q | a[P′j0 | Q
′]
)

πi0 = s2s n?{m}, π ′j0 = s2s n!{p}
(

D,a[Σl
iπi.Pi | Q] | a′ [Σl′

j π ′j.P
′
j | Q

′]
)

s2s(l,l′)
−→

(

D,a[Pi0[m← p] | Q] | a′ [P′j0 |Q
′]
)

A 6∈ dn(D)

(D, letp Aα〈m〉= Q in P)
ε
−→ (D∪{Aα〈m〉.p Q},P)

Aα〈m〉.p Q ∈ D
(

D,Ap′〈n〉
)

fetch(p,p′)
−→ (D,Q[m← n])

(D,P)
λ
−→ (E,Q)

(D, a[P])
λ
−→ (E, a[Q])

(D,P)
λ
−→ (E,Q)

(D,(νcn)P)
λ
−→ (E,(νcn)Q)

(D,P)
λ
−→ (E,Q)

(D,P | R)
λ
−→ (E,Q | R)

P′ ≡ P, (D,P)
λ
−→ (E,Q) , Q≡ Q′

(

D,P′
) λ
−→

(

E,Q′
)

Figure 5.34: Reduction relation for BIO-ambients.

112 CHAPTER 5. ENCODING EXAMPLES

name unfoldn denotes a recursion unfolding. Such a partial interaction is a regular
computation, it has n+2 parameters which are the location of the thread, the name
of the definition which is unfolded, and the n passed names. It bounds no variable.

Partial interaction names local?, p2c?, c2p?, and s2s? denote threads that are
waiting for a name via a channel. These partial interactions have two parameters:
the location of the thread that is computing the partial interaction and the name of
the channel at which the thread listens. They bound one variable. Conversely, par-
tial interaction names local!, c2p!, p2c!, and s2s! denote threads that are sending a
name on a channel. These partial interactions have three parameters: the location
of the thread that is computing the partial interaction, the name of the channel on
which the name is sent, and the name that is passed. They bound no variable.

As in the case of the initial ambient calculus, ambients may migrate and may
be dissolved. In order to compute the result of a migration or of a dissolution, the
ambient must check some assumptions about its identity and about its location. In
the case of a migration, it redefines its location and in the case of a dissolution,
it replaces each occurrence of its identity with the location of its sibling ambient.
Thus, we introduce two other partial interaction names: The name mov-ambient
denotes the capability of migrating. Such a partial interaction has one parameter:
the location of the ambient before the migration. It bounds one variable which
is the updated location after the migration. The name dis-ambient denotes the
capability of being dissolved. Such a partial interaction has one parameter: the
location of the ambient.

5.5.3.2 Formal rules

We now define the formal rules that implement migrations, dissolutions, and lo-
cal communications. The rule enter which is described in Fig. 5.35 implements
the migration of an ambient inside its parent ambient. It requires four threads:
the first one is the moving ambient (mov-ambient), the second one is the target
ambient (mov-ambient), the third one denotes a thread (enter) that provides to the
first ambient the capability to move into the second one, and the fourth one pro-
vides the target ambient the capability to accept (accept) the moving ambient. The
formal variables X1

1 , X2
1 , X3

1 , and X4
1 respectively denote the locations of the mi-

grating ambient, of the target ambient, of the entering thread, and of the accepting
thread. The formal variables X 3

2 and X4
2 denote respectively the name with which

the entering capability applies and the name with which the accepting capability
applies. The formal variables I1 and I2 respectively denote the identity of the
moving ambient and of the target ambient. The migration is enabled if and only
if:

1. the moving and the target ambients are located in the same ambient
(i.e. X1

1 = X2
1);

5.5. ENCODING BIO-AMBIENTS 113

enter = (4,component,synchronization,communication,global)

where

1. component =



















1 7→ mov-ambient

2 7→ mov-ambient

3 7→ enter

4 7→ accept;

2. synchronization = {X 1
1 = X2

1 ;X3
1 = I1;X4

1 = I2;X3
2 = X4

2 };

3. communication = [Y 1
1 ← I2,Y 2

1 ← X2
1];

4. global = /0.

Figure 5.35: Formal rule for enter movement.

2. the moving ambient contains the capability to enter (i.e. X 3
1 = I1);

3. the target ambient contains the capability to accept (i.e. X 4
1 = I2);

4. the capabilities apply with the same name (i.e. X 3
2 = X4

2).

At last, when interacting, the moving ambient updates its location which is now
the identity of the target ambient. The formal variable Y 1

1 denotes the new location
of the moving ambient. Thus, the variable Y 1

1 is associated with the variable I2.
The second ambient does not move. The formal variable Y 2

1 denotes the location
of the second ambient. Thus, the variable Y 2

1 is associated with the variable X 2
1 .

There is no broadcast communication.
The rule expel which is described in Fig. 5.36 implements the migration of

an ambient outside its parent ambient. It requires four threads: the first one
is the expelled ambient (mov-ambient), the second one is the exited ambient
(mov-ambient), the third one denotes a thread (exit) that provides to the first am-
bient the capability to exit the second one and the fourth one denotes a thread
(expel) that provides the capability to the second ambient to expel the first one.
The formal variables X 1

1 , X2
1 , X3

1 , and X4
1 respectively denote the locations of the

expelled ambient, of the exited ambient, of the exiting capability, and of the ex-
pelling capability. The formal variables X 3

2 and X4
2 respectively denote the name

with which the exiting capability applies and the name with which the expelling
capability applies. The formal variables I1 and I2 respectively denote the identity
of the exiting ambient and of the expelling ambient. The migration is enabled if
and only if:

1. the expelling ambient contains the exiting ambient (i.e. X 1
1 = I2);

114 CHAPTER 5. ENCODING EXAMPLES

expel = (4,component,synchronization,communication,global)

where

1. component =



















1 7→ mov-ambient

2 7→ mov-ambient

3 7→ exit;

4 7→ expel

2. synchronization = {X 1
1 = I2;X3

1 = I1;X3
1 = I2;X3

2 = X4
2 ;};

3. communication = [Y 1
1 ← X2

1 ,Y 2
1 ← X2

1];

4. global = /0.

Figure 5.36: Formal rule for expelling.

2. the exiting ambient contains the capability to exit (i.e. X 3
1 = I1);

3. the expelling ambient contains the capability to expel (i.e. X 4
1 = I2);

4. the capabilities apply with the same name (i.e. X 3
2 = X4

2).

At last, when interacting, the exiting ambient updates its location which is now the
location of the expelling ambient. The formal variable Y 1

1 denotes the new location
of the exiting ambient. Thus, the variable Y 1

1 is associated with the variable X 2
1 .

The second ambient does not move. The formal variable Y 2
1 denotes the location

of the second ambient. Thus, the variable Y 2
1 is associated with the variable X 2

1 .
There is no broadcast communication.

The formal rule merge which is described in Fig. 5.37 implements the merging
of two ambients. It requires four threads: the first two ones denote the merging
ambients and the last two ones denote some threads. The first ambient will re-
main unchanged (mov-ambient) and the second will be dissolved (dis-ambient).
Threads compute merging partial interactions (merge+ and merge-). The formal
variables X1

1 , X2
1 , X3

1 , and X4
1 respectively denote the locations of the two ambients

and the locations of the two threads. The formal variables X 3
2 and X4

2 denote the
name with which the two threads capabilities apply. The formal variables I1 and
I2 encode the two ambients identities. The ambient merging is enabled if and only
if:

1. the ambients are located inside the same location (i.e. X 1
1 = X2

1);

2. each thread is located in the correct ambient (i.e. X 3
1 = I1 and X4

1 = I2);

5.5. ENCODING BIO-AMBIENTS 115

merge = (4,component,synchronization,communication,global)

where

1. component =



















1 7→ mov-ambient

2 7→ dis-ambient

3 7→ merge+

4 7→ merge-

2. synchronization = {X 1
1 = X2

1 ;X3
1 = X1

1 ;X4
1 = X2

1 ;X3
2 = X4

2 };

3. communication = [Y 1
1 ← X1

1];

4. global = [I2 7→ I1].

Figure 5.37: Formal rule for merging.

3. the two capabilities apply with the same name (i.e. X 3
2 = X4

2);

The first ambient does not move. The formal variable Y 1
1 denotes the location

of the first ambient. Thus, the variable Y 1
1 is associated with the variable X 1

1 .
Any thread in the second ambient is now in the first one. Thus, any instance of
the second ambient identity in the whole system must be updated with the first
ambient identity [I2 7→ I1].

The rule local-com in Fig. 5.38 implements local communications. A local

local-com = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ local?

2 7→ local!

2. synchronization = {X 1
1 = X2

1 ;X1
2 = X2

2 };

3. communication = [Y 1
1 ← X2

3];

4. global = /0.

Figure 5.38: Formal rule for local communication.

communication requires two threads that denote the two communicating threads
(local? and local!). The formal variables X 1

1 and X2
1 denote the locations of these

two threads. The formal variables X 1
2 and X2

2 denote the name on which the com-
munication is performed. The local communication is enabled if and only if:

116 CHAPTER 5. ENCODING EXAMPLES

1. the threads are located in the same ambient (i.e. X 1
1 = X2

1);

2. the threads communicate through the same channel (i.e. X 1
2 = X2

2);

The formal variable X 2
3 denotes the name which is sent. In the case when the

communication is enabled, a new variable is declared and associated with the
output channel name. The new variable is denoted by the formal variable Y 1

1 .
Name passing is described by associating the formal variable Y 1

1 with the formal
variable X2

3 . These is no broadcast communication.
The rule p2c in Fig. 5.39 implements a communication from a parent to a

child. Such a communication requires three threads that denote the two com-

p2c = (3,component,synchronization,communication,global)

where

1. component =











1 7→ c2p?

2 7→ p2c!

3 7→ mov-ambient

2. synchronization = {X 1
1 = I3;X2

1 = X3
1 ;X1

2 = X2
2 };

3. communication = [Y 1
1 ← X2

3 ,Y 3
1 ← X3

1];

4. global = /0.

Figure 5.39: Formal rule for parent to child communication.

municating threads (c2p? and p2c!) and an ambient (mov-ambient). The formal
variables X1

1 and X2
1 denote the location of the two communicating threads and the

variable X3
1 denotes the location of the ambient. The formal variables X 1

2 and X2
2

denote the name on which the communication is performed. The parent to child
communication is enabled if and only if:

1. the ambient contains the thread that is waiting for a message (i.e. X 1
1 = I3);

2. the thread that sends the message is at the same location as the ambient
(i.e. X2

1 = X3
1);

3. the two threads communicate over the same channel (i.e. X 1
2 = X2

2).

The formal variable X 2
3 denotes the name which is sent. In the case when the

communication is enabled, a new variable is declared and associated with the
output channel name. This new variable is denoted by the formal variable Y 1

1 .
Name passing is described by associating the formal variable Y 1

1 with the formal

5.5. ENCODING BIO-AMBIENTS 117

variable X2
3 . The ambient does not move. The formal variable Y 3

1 denotes the
location of the ambient. Thus, the variable Y 3

1 is associated with the variable X 3
1 .

The rule c2p in Fig. 5.40 implements a communication from a child to a parent.
Such a communication requires three threads that denote the two communicating

c2p = (3,component,synchronization,communication,global)

where

1. component =











1 7→ p2c?

2 7→ c2p!

3 7→ mov-ambient

2. synchronization = {X 2
1 = I3;X1

1 = X3
1 ;X1

2 = X2
2 };

3. communication = [Y 1
1 ← X2

3 ,Y 3
1 ← X3

1];

4. global = /0.

Figure 5.40: Formal rule for content to parent communication.

threads (p2c? and c2p!) and an ambient (mov-ambient). The formal variables X 1
1

and X2
1 denote the location of the two communicating threads and the variable X 3

1
denotes the location of the ambient. The formal variables X 1

2 and X2
2 denote the

name on which the communication is performed. The child to parent communi-
cation is enabled if and only if:

1. the ambient and the thread that is waiting for a message are at the same
location (i.e. X1

1 = X3
1);

2. the ambient contains the thread that sends the message (i.e. X 2
1 = I3);

3. the two threads communicate over the same channel (i.e. X 1
2 = X2

2).

The formal variable X 2
3 denotes the name which is sent. In the case where the

communication is enabled, a new variable is declared and associated with the
output channel name. This new variable is denoted by the formal variable Y 1

1 .
Name passing is described by associating the formal variable Y 1

1 with the formal
variable X2

3 . The ambient does not move. The formal variable Y 3
1 denotes the

location of the ambient. Thus, the variable Y 3
1 is associated with the variable X 3

1 .
The rule sibling-com in Fig. 5.41 implements a communication through

two sibling ambients. Such a communication requires four threads that denote
the two communicating threads (s2s? and s2s!) and the two sibling ambients
(mov-ambient). The formal variables X 1

1 and X2
1 denote the locations of the two

118 CHAPTER 5. ENCODING EXAMPLES

sibling-com = (4,component,synchronization,communication,global)

where

1. component =



















1 7→ s2s?

2 7→ s2s!

3 7→ mov-ambient

4 7→ mov-ambient

2. synchronization = {X 1
1 = I3;X2

1 = I4;X3
1 = X4

1 ;X1
2 = X2

2 };

3. communication = [Y 1
1 ← X2

3 ,Y 3
1 ← X3

1 ,Y 4
1 ← X4

1];

4. global = /0.

Figure 5.41: Formal rule for sibling communication.

communicating threads and the variables X 3
1 and X4

1 denote the ambient locations.
The formal variables X 1

2 and X2
2 denote the name on which the communication is

performed. The communication between sibling ambients is enabled if and only
if:

1. the first ambient contains the thread that is waiting for a message (i.e. X 1
1 =

I3);

2. the second ambient contains the thread that sends the message (i.e. X 2
1 = I4);

3. the two ambients have the same location (i.e. X 3
1 = X4

1);

4. the two threads communicate over the same channel (i.e. X 1
2 = X2

2).

The formal variable X 2
3 denotes the name which is sent. In the case when the

communication is enabled, a new variable is declared and associated with the
output channel name. This new variable is denoted by the formal variable Y 1

1 .
Name passing is described by associating the formal variable Y 1

1 with the formal
variable X2

3 . The two ambients do not move. The formal variables Y 3
1 and Y 4

1
denote the locations of these ambients. Thus, the variable Y 3

1 is associated with
the variable X3

1 and the variable Y 4
1 is associated with the variable X 4

1 .
The rule recn in Fig. 5.42 implements recursion unfolding. The parameter

n denotes the number of arguments. Recursion unfolding requires two threads.
The first one is a recursive definition (recn) that requires n parameters and the
second one it an unfolding thread (unfoldn) that passes n parameters. The formal
variable X2

1 denotes the location of the unfolding thread. We recall that definitions
are in the ether, so they have no location. The formal variable X 1

1 denotes the

5.5. ENCODING BIO-AMBIENTS 119

recn = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ recn

2 7→ unfoldn

2. synchronization = {X 1
1 = X2

2 };

3. communication = [Y 1
1 7→ X2

1 ,Y 1
1+i 7→ X2

2+i];

4. global = /0.

Figure 5.42: Formal rule for unfolding recursions.

variable name that has been used at the creation of the definition and the variable
X2

2 denotes the variable name that is used by the unfolding thread. The recursion
may be unfolded if and only if these two variable names are the same (X 1

1 = X2
2).

In such a case, the recursion is unfolded at the unfolding thread location, that is
described by the association Y 1

1 7→ X2
1 where the formal variable Y 1

1 denotes the
location of the unfolded instance. Moreover, n variables are created and associated
with the passed parameters. This is described by the associations Y 1

i+1 7→ X2
i+2

where each variable Y 1
i+1 denotes the i-th created variable and each variable X 2

i+2
denotes the i-th passed name. These is no broadcast communication.

5.5.3.3 Abstract syntax extraction

We now define the syntax extraction function that takes a program describing the
initial state of a mobile system in the standard syntax and extract the abstract
syntax of it.

Program points are ambient creation, actions, and definitions. The abstract
syntax maps each program point label l to the following set of partial interactions
according to the syntax of the program point:

• the label a of a program point a[P] is associated with the interface {loc} and
the following set of partial interactions:

{(mov-ambient, [loc], [loc], /0,{{(a, /0)}});(dis-ambient, [loc], [], /0,{ /0})}.

• the label p of a program point P = Σp
i∈Iπi.Pi is associated with the interface

{loc}∪ fn(P) and with the following set of partial interactions:

{(act(πi),arg(πi),bound(πi), /0,{β (Pi, /0)}) | i ∈ I},

120 CHAPTER 5. ENCODING EXAMPLES

where act =

{

$n?{m} 7→ $?

$n!{p} 7→ $!,
arg =

{

$n?{m} 7→ [loc;n]

$n!{p} 7→ [loc;n; p],

and bound =

{

$n?{m} 7→ [m]

$n!{p} 7→ [].

• the label p of a program point P = Σp
i∈IMi.Pi is associated with the interface

{loc}∪ fn(P) and with the following set of partial interactions:

{(act(Mi), [loc;name(Mi)], [], /0,{β (Pi, /0)}) | i ∈ I},

where act =







































enter n 7→ enter

accept n 7→ accept

exit n 7→ exit

expel n 7→ expel

merge+ n 7→merge+

merge- n 7→merge-,

and name =







































enter n 7→ n

accept n 7→ n

exit n 7→ n

expel n 7→ n

merge+ n 7→ n

merge- n 7→ n.

• the label p of a program point Ap〈p1, . . . , pn〉 is associated with the interface
{loc;A}∪{p1; . . . ; pn} and with the following set of partial interactions:

{unfoldn, [loc;A; p1; . . . ; pn], [], /0,{ /0}},

• the label p of a program point letp Aα〈m1, . . . ,mn〉 = Q in P is associated
with the interface {A}∪ (fn(Q) \ {m1; . . . ;mn}) and with the following set
of partial interactions:

{recn, [A], [m1; . . . ;mn], /0,β (Q, /0)}.

Continuation computations use an auxiliary primitive β . This primitive com-
putes the continuation4. It is defined inductively over the standard syntax of the
continuation, as follows:

β (letp Aα〈m1, . . . ,mp〉= Q in P,Es) = β (P,Es)∪{(p,Es[A 7→ α])}
β (Ap〈m〉,Es) = {(Ap〈m〉,Es)}
β ((νcn)P,Es) = β (P,Es[n 7→ c])

β (0,Es) = /0
β (P |Q,Es) = β (P,Es)∪β (Q,Es)
β (a[P],Es) = {(a,Es)}∪β (P,Es[loc 7→ a])

β (Σp
i πi.Pi,Es) = {(Σp

i πi.Pi,Es)}
β (Σp

i Mi.Pi,Es) = {(Σp
i πi.Pi,Es)}

4We avoid defining a set of continuations, since we use no non-deterministic choice.

5.6. EXTENDING THE FRAMEWORK 121

The set of initial states is defined as follows:

β (S , [loc 7→ (top,ε)]),

where the location (top,ε) denotes the address of the top level ambient.

5.5.4 Correspondence

Proposition 5.5.1. For each system, the extracted syntax satisfies the sufficient
properties in Def. 4.5.11. Thus, allocated markers are unambiguous.

The correspondence between the standard and the non standard semantics is
established as follows:

Theorem 5.5.2. The standard and the non standard semantics are in weak bisim-
ulation.

5.6 Extending the framework

Our meta language cannot model the bang operator, since spontaneous replication
prevents from tracking the history of the threads. So bang operator must be sim-
ulated by using fetched replication. Moreover, we cannot deal with an equational
theory such as in the applied-π calculus [1], or with symmetric communications
such as in the solo-calculus [49, 48] or in the fusion-calculus [65], since this fea-
ture may destroy the origin of the values that are used in the system. We have also
avoided testing term equalities (in the spi-calculus we have assumed that we know
the syntactic skeleton of the term we match). We do not show how we can deal
with higher order communications [70] although our meta language can model
them. We explain how we can relax some of these limits.

5.6.1 Testing term equalities

We have avoided testing full term equalities when encoding the spi-calculus, be-
cause term unification may require visiting an unbounded number of nodes in a
term. Anyway, we may consider abstract version of equality test by using k-depth
limiting. Let M and N be two terms. We say that M and N are 0-equal if and
only if M and N are associated to a same name. Moreover, we say that M and
N are 0-disequal if and only if either M or N is associated to a name and if M
and N are not 0-equal. Then, we say that M and N are n + 1-equal either if they
are n-equal, or if there are associated with the same term constructor applied to
pairwise n-equal arguments. Moreover, we say that M and N are n+1-disequal if

122 CHAPTER 5. ENCODING EXAMPLES

they are n-disequal, if they are associated with two distinct term constructor, or if
they are associated with the same term constructor with a pair of arguments that
are n-disequal.

Then there are two possible approaches.

• The first approach consists in disallowing equality tests among incompara-
ble terms (neither k-equal, nor k-disesqual) at run-time. So that we only
consider type-safe computations. In the abstract, we over approximate the
relation k-equal, by enumerating all potential patterns.

• The second approach consists in considering any equality test and any uni-
fication. In the abstract, we will soundly abstract the equality test by the
negation of the relation k-disequal. This way, we will consider that two
terms may be equal whenever the abstraction cannot prove that they are not
equal.

5.6.2 Higher order model encoding

We have not investigate the encoding of higher order communication. Never-
theless, we believe that usual pointer-based encoding such as in [70], may give
convenient result. But it is not obvious, since such an encoding may lose all the
structure of the model, which is not the case for the models we have already en-
coded.

5.6.3 Encoding the projective brane calculus

Projective brane calculus [28] is a refinement of brane calculus [14], where mem-
branes are oriented. Some capability may interact either with the outside, or with
the inside of a membrane. This notion is relative to the point of view. Moreover,
orientation dynamically changes during computation.

To model it, we use one program point at the meta language level per program
point/orientation pair at the brane calculus level. Then, the encoding is straight-
forward.

Chapter 6

Context approximation

Until now, we have only considered closed systems. However, a mobile system
is usually a small part of a bigger system. The rest of the bigger system is called
the context. The system part under assumption is called an open system. The
open system aims at interacting with its context. Nevertheless, this context may
be known or not: It can be made of some trustful threads or of an hostile intruder.
This context may either try to force the open system into violating its usual be-
haviors, or exploit a security leak in order to spy some sensitive information of the
open system. The aim of this chapter is to extend our framework to open systems.

We now give the summary of this chapter. In Sect. 6.1, we recall usual methods
for including a context in the semantics. In Sect. 6.2, we recall the framework that
we proposed in [32] in order to deal with an arbitrary context in the π-calculus and
establishes both the soundness and the completeness of the approach. In Sect. 6.3,
we show how this context abstraction can be applied to the meta language level.
In Sect. 6.3.4, we give incompleteness counter-examples in the case of the spi-
calculus and in the case of the ambient-like calculi.

6.1 Introduction

6.1.1 Three approaches

There are different approaches to model the context.

6.1.1.1 Modeling a context in the language

We can consider that the context is encoded in the concrete semantics by an ele-
ment (i.e. a system part) of the model. This approach has been followed in [5, 6]
in the case of the π-calculus and in [5,4] in the case of the spi-calculus. The main
advantage of this approach is that it can be applied straightforwardly by analyzing

123

124 CHAPTER 6. CONTEXT APPROXIMATION

the parallel composition of the open system and its context. The main drawback
is that we may give too less control of the system to the context. Thus, we may
fail to discover some attacks.

6.1.1.2 Abstracting a context

We can describe explicitly or implicitly an abstraction of the knowledge of the
context and give some rules to model the interaction with the context and the
open system. We must describe how the open system is modified when it inter-
acts with the context and how the context knowledge is updated. For instance, the
Dolev and Yao approach [31] is widely used when analyzing cryptographic pro-
tocols. The context (which is called the intruder in cryptographic protocols) may
control each channel (to receive communicated terms and to send spoiling terms).
Moreover, the context may build any term from the messages it may spy from the
open system.

The main advantage of abstracting the context by a set of rules is that the
power of the intruder may overpass the semantics of the model: the rules that
specify the intruder’s behavior can be chosen arbitrarily. We can capture attacks
that are not described in the model, provided that we model them in the intruder
abstraction. The mail drawback is that the abstraction may not be related to the
semantics. Thus, it is arbitrary.

6.1.1.3 Abstracting any context in the model

We can derive the semantics of open systems by abstraction of the semantics of
closed systems. In [36, 32], we propose a semantics for open systems in the π-
calculus. In this semantics, the behavior of the context is approximated: we only
keep the set of the channel names with which the context may use. We have
proved in [32] that this approach is both sound and complete with respect to an
abstraction function that maps each computation trace for any closed system that
encloses an open system into a computation trace of this open system. So given
an open system, the abstraction of a trace of a closed system that encloses this
open system is always a trace of the context independent semantics of the open
system (soundness). Reciprocally, any trace in the context independent semantics
is the abstraction of a trace of a closed system that encloses the open system
(completeness). Our approach provides sound abstractions at the meta language
level. But completeness is not provided in general: completeness relies heavily
on the structure of the encoded model.

The main advantage of this approach is that we can relate the intruder power
to the semantics of the model. The intruder may do whatever any context encoded
in the model may do. This allows for modular analysis. We detect all the potential

6.2. CONTEXT INDEPENDENT SEMANTICS FOR THE π-CALCULUS 125

interactions of the system in any context that can be written in the model. More-
over, if the abstraction is proved complete, the intruder may not do more than it is
allowed to in the semantics.

6.1.1.4 Some remarks

Remark 6.1.1. In the case of the π-calculus, we usually design a label transition
system (LTS) to describe the context behavior. The knowledge of the system is
implicitly described as the set of the channel names that are not in the scope of a
restriction. There are two kinds of transitions: the τ transitions denote some tran-
sitions inside the open system, some transitions allow the extrusion of open sys-
tem channel names to the context, and some others allow the context to send some
names through an untrusted channel (through channels the scope of the name of
which is not restricted). The LTS semantics are widely used when proving bisim-
ulations. The idea is to prove that two system parts have the same behavior (with
respect to an observational semantics) when stimulated with the same sequences
of interactions with a context. Our requirements are quite different. On one hand,
we want the context independent semantics and the closed semantics to coincide
on the trace level and on the other hand, we are only interested in reachability
properties instead of relating observation semantics of two systems.

Remark 6.1.2. These three approaches enjoy strong connections. For instance, if
the abstraction of a context behavior by a set of rules satisfies the semantics, then it
may be described by a system in the model. Moreover the proof of completeness
of the abstraction of any context is very likely to use the existence of a generic
context that can be encoded in the model and that abstracts the behavior of any
context. In such a case, the abstraction of any context boils down to modeling the
context by a given system.

6.2 Context independent semantics for the π-
calculus

In this section, we explain how we can extend the non standard semantics that
we have proposed in Chap. 2 for closed mobile systems in the π-calculus to open
systems. These results have been published in [32].

6.2.1 Context approximation

An open system S is a part of a bigger closed system, the rest of which is called
its context. The context is a set of threads, concurrently running with S . We

126 CHAPTER 6. CONTEXT APPROXIMATION

represent this context by the set of channel names it shares with the system S , we
call such names the unsafe names, and approximate the behavior of the system S

as if it was an intruder who was able to compose any possible thread working on
these channel names. An interaction between the system S and its context may
only consist in a communication between a thread pS of the first and a thread
pcont of the second, via a channel the name of which is unsafe. This communi-
cation is called spying if pcont is the receiver, and spoiling if pcont is the message
sender. When spying, the context listens to obtain new channel names which be-
come unsafe. When spoiling, the context may pass some names to S . Each of
these names is either an unsafe name denoting a channel opened by a binder of the
system S , or a name denoting a channel opened by the context itself; as a conse-
quence, we have to introduce an infinite set of unsafe names for the channels that
the context may have opened. Eventually, spoiling may lead to the replication of a
resource, which requires the allocation of an unambiguous marker, otherwise the
consistency of the semantics would not be preserved.

Since α-conversion allows us to choose the names of the new channels opened
by the context, we may assume that those channels have been declared by recur-
sive instances of a single thread. By choosing some fresh distinct program point
labels 0, cont?, cont! ∈L and a name ext ∈N \ bn(S), such channels will be
seen as if they had been created by the restriction (ν ext) of a recursive instance of
a thread the marker of which is tn, where tn is recursively defined as follows:

{

t0 = N((cont?,cont!),ε,ε)

tn+1 = N((cont?, cont!),ε, tn).

Thus, we choose the set of the names of the channels that are opened by the
context as the set {(ext, tn) | n ∈ N}. We denote this set by en. We also assume
that all spoiling messages are recursive instances of a single thread the first action
of which is labeled with 0.

The coherence of our semantics mainly relies on the fact that during a compu-
tation sequence, there cannot be two different instances of a single thread with the
same marker. We guarantee this property by associating to each spoiling message
a fresh marker in the set {tn | n ∈ N}.

6.2.2 Open transition system

A non standard configuration is now a triple (C,U,F), where C is a set of threads,
U is a set of channel names, and F is a set of markers. The set C contains the
running threads. The set U contains all names (a, id) such that the channel opened
by the restriction (ν a) of the thread instance tagged with the marker id is unsafe.
The set F contains fresh markers which have not been used as markers for spoiling

6.2. CONTEXT INDEPENDENT SEMANTICS FOR THE π-CALCULUS 127

C
o
0 (S) =

{

(Ct,en,{tn | n ∈ N})

∣

∣

∣

∣

Ct ∈ β (S ,ε,E),
E ∈ (fn(S)→ en)

}

(a) Initial configurations.

C
λ
−→ e C′

(C,U,F)
λ
(C′,U,F)

(b) Internal interactions.

t = (x! j[x1, . . . ,xn]P, id,E), E(x) ∈U, Ct ∈ β (P, id,E)

(C∪{t},U,F)
(0, j)
(C∪Ct,U ∪{E(xk) | k ∈ J1;nK},F)

(c) Spied communication.











t = (y?i[y1, . . . ,yn]P, id,E),

E(y) ∈U, c1, . . . ,cn ∈U,

Ct ∈ β (P, id,E[yk 7→ ck])

(C∪{t},U,F)
(i,0)
(C∪Ct,U,F)

(d) Spoiled communication.































t = (∗y?i[y1, . . . ,yn]P, id,E),

E(y),c1, . . . ,cn ∈U,

id! ∈ F,

id∗ = N((i,0), id, id!),

Ct ∈ β (P, id∗,E[yk 7→ ck])

(C∪{t},U,F)
(i,0)
(C∪{t}∪Ct,U,F \{id!})

(e) Spoiled resource replication.

Figure 6.1: Context independent non standard semantics.

128 CHAPTER 6. CONTEXT APPROXIMATION

messages. At the beginning of the system computation, free names have to be
chosen among the set of initial unsafe names. We make no assumptions about
the past of the system, so that distinct free names may be bound to the same
unsafe name. This is especially useful, when analyzing an instance of a resource
without any knowledge of the relations between channel names that have been
communicated to it.

The transition relation# takes into account the computations inside the mo-
bile system S , as well as the computations involving the system S and its
context. Initial non standard configurations and computation rules are given in
Fig. 6.1. Their definition both use the definition of the efficient semantics for the
closed mobile systems of the π-calculus that is given in Fig. 2.8 on page 31.

6.2.3 Coherence

We propose to establish a relation between the non standard semantics of closed
and open systems. Let SI(x1, . . . ,xn) be an open system the set of the free names
of which are exactly the set {xi | i ∈ J1;n]]}. We want to construct a projection
function Πτ , such that:

• any non standard computation sequence τ of a closed system of the form
(ν c1) . . .(ν ck)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl)), is mapped to a non stan-
dard computation sequence Πτ(τ) of the open system SI;

• reciprocally for any non standard computation sequence τ ′ of the open sys-
tem SI, there exists a computation sequence τ of a closed system of the
form (ν c1) . . .(ν ck) (SI(ci1, . . . ,cin) |Sc(c j1, ...c jl)), such that τ ′= Πτ(τ).

6.2.3.1 Trace abstraction

Let LI ⊆L be the part of the labels occurring in SI and NI ⊆N be the part of
the names used in name restrictions of SI. The function lab maps each syntactic
component beginning with an action to the label of this action. We introduce two
one-to-one functions in order to interpret names and threads created by the context
of SI: let ΦM be a one-to-one map from the set (L ×M) into the set {tn | n∈N},
and ΦN be a one-to-one function from the set (N ×M) into the set en. We
now define the projection Πτ(SI,ΦM ,ΦN) which transforms each computation
sequence of a closed mobile system S = (ν c)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl))
into a computation sequence of the part SI of the system S . We assume without
any loss of generality that fn(SI) = {cik | k ∈ J1;nK}, and that no name occurs
twice as an argument of a name binder.

We first project each syntactic component label, by replacing each label which
does not occur in SI by the unique label of the context, that is to say the 0 label.

6.2. CONTEXT INDEPENDENT SEMANTICS FOR THE π-CALCULUS 129

Definition 6.2.1 (program point label projection). The projection Πl(l) of a
syntactic component label l ∈L is defined as follows:

Πl(l) =

{

l if l ∈LI

0 otherwise.

Then, we apply the syntactic component label projection pair-wise on transi-
tion labels.

Definition 6.2.2 (transition label projection). The projection Πλ (i, j) of transi-
tion label (i, j) ∈L 2 is defined as follows:

Πλ (i, j) = (Πl(i),Πl(j)).

Next, we project the instance markers of the syntactic components of SI. Only
the right sibling of such markers may be the marker of a syntactic component of
the context, since the replicated resource necessarily belongs to SI. When a re-
source is replicated by a message of the context, we replace its syntactic compo-
nent, and compute a coherent marker according to ΦM .

Definition 6.2.3 (marker projection). Marker projection is defined as follows:

ΠΦM

M
:











N((i, j), t1, t2) 7→ N(Πλ (i, j),ΠΦM

M
(t1),Π

ΦM

M
(t2)) if j ∈LI

N((i, j), t1, t2) 7→ N(Πλ (i, j),ΠΦM

M
(t1),ΦM (j, t2)) if j 6∈LI

ε 7→ ε.

We now project channel names. For a channel opened by a name restriction
of SI, we just project the marker. For those opened by the context, we replace the
name restriction by the unique restriction (ν ext) of the context, and compute the
coherent marker according to ΦN .

Definition 6.2.4. Channel name projection is defined as follows:

ΠΦM ,ΦN

N
(x, idx) =

{

(x,ΠΦM

M
(idx)) if x ∈NI

ΦN (x, idx) otherwise.

We easily project an instance of a syntactic component of SI by projecting its
marker and each channel name that occurs in its environment.

Definition 6.2.5 (thread projection). Thread projection is defined as follows:

ΠΦM ,ΦN

t (P, id,E) = (P,ΠΦM

M
(id), [x 7→ΠΦM ,ΦN

N
(E(x))]).

130 CHAPTER 6. CONTEXT APPROXIMATION

Then, we project a configuration by projecting all the threads the syntactic
component of which is a sub-term of SI, and removing the other threads:

Definition 6.2.6 (configuration projection). Configuration projection is defined
as follows:

ΠΦM ,ΦN

C (C) = {ΠΦM ,ΦN

t (P, id,E) | (P, id,E) ∈C, lab(P) ∈LI}.

We now define the projection of a computation sequence. At each computation
step, we obtain the set of the threads by projecting all the instances of syntactic
components of SI, and throwing away instances of syntactic components of the
context. Unfortunately, the set of unsafe names, and the set of fresh markers,
maynot be constructed without any knowledge of the previous computation steps,
so we construct them incrementally: at each computation step, we insert spied
names into the set of unsafe names, and remove the used markers from the set of
fresh markers. We also ignore all computation steps only involving the context.

Definition 6.2.7. (trace projection). Computation sequence projection is then

defined as follows: Let τ = C0
λ1−→ e . . .

λn−→ e Cn be a non standard computation
sequence, with C0 ∈ C e

0 (S). We define the projection of τ , Πτ(SI,ΦM ,ΦN)(τ)
as the non standard computation sequence:

(A0,U0,F0)
Πλ (λa1)

. . .
Πλ (λap)

(Ap,Up,Fp)

of the open system SI, where

• a1, . . . ,ap is the strictly ascending sequence of the elements of the set {i ∈
J1;nK | λi ∈L 2 \ (L \LI)

2};

• the initial configuration (A0,U0,F0) is the following triple:

(ΠΦM ,ΦN

C (C0),en,{tn | n ∈ N});

• for k ∈ J1; pK, the configuration (Ak,Uk,Fk) is defined as follows:

– Ak = ΠΦM ,ΦN

C (Cak),

– Uk =

{

Uk−1 if fst(λak) ∈LI,

Uk−1∪{Π
ΦM ,ΦN

N
(E(xr)) | r ∈ J1;nK} otherwise,

where, in the last case, (x! j[x1, . . . ,xn]P, id,E) is the unique thread in
Cak−1 \Cak which matches this notation;

– Fk =















Fk−1 if







snd(λak) ∈LI or
λak−→ e is not a resource fetching,

Fk−1 \{ΦM (snd(λak), id) | (P, id,E) ∈Cak−1\Cak} otherwise.

6.2. CONTEXT INDEPENDENT SEMANTICS FOR THE π-CALCULUS 131

6.2.3.2 Soundness

We first establish the soundness of the context independent semantics (i.e. the
context independent semantics captures the abstraction of any trace for the com-
putation of the open system in any context).

Theorem 6.2.8. (Soundness) Let τ = C0 . . .Cn be a non standard computation
sequence of the following closed system:

S = (ν c1) . . .(ν ck)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl)),

with C0 ∈ C e
0 (S). Then Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0) . . .(Ap,Up,Fp) is

a non standard computation sequence of the open system SI and (A0,U0,F0) ∈
C o

0 (S).

Soundness is ensured by construction. The full proof of Thms. 6.2.8 is shown
in appendix C.

6.2.3.3 Completeness

Then, we establish the completeness of the context independent semantics
(i.e. any trace in the context independent semantics is the abstraction of a trace
for the computation of the open system in a given context).

Theorem 6.2.9. (Completeness) Let τ ′ be the non standard computation se-
quence of an open system SI, that we denote by:

(C0,U0,F0)
(i1, j1)
. . .

(in, jn)
(Cn,Un,Fn),

where (C0,U0,F0) ∈ C o
0 (SI).

Then, there exists:

• a closed system S∗ = (ν c)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl)),

• two one-to-one functions ΦN and ΦM ,

• a non standard computation sequence τ of the system S∗,

such that Πτ(SI,ΦM ,ΦN)(τ) = τ ′.

Completeness relies on the existence of a most general context which may be
used in simulating any context. It is given in Fig. 6.2. It uses a global channel,
named unsafe via which unsafe names are sent an arbitrary amount of times. It
is made of four kinds of resources. The resource new opens a new unsafe chan-
nel; the resource repli is used to replicate the information that a channel name is

132 CHAPTER 6. CONTEXT APPROXIMATION

unsafe, so that a context may use each unsafe name an arbitrary number of time;
the resource spyk collects an unsafe channel c, and receive through this channel a
message of arity k; the resource spoilk collects an unsafe channel c, and k unsafe
names, and sends the k names through the channel c. Resources spy0 and spoil0
simply enforce some synchronization with the system. In Fig. 6.2, n denotes the
greatest arity of the messages occurring in the part of the system we analyze.
Thus, the closed system may be assumed to be of the following form:

S∗ = (ν unsafe)(ν x1) . . .(ν xp)
(unsafe![x1] | . . . | unsafe![xp] |SI(xi1, . . . ,xin) |Sc(unsafe)).

The non standard computation sequence is obtained by mimicking spied and
spoiled computation steps in Sc. The full proof of Thm. 6.2.9 is shown in ap-
pendix C.

Sc =(ν new)
(new | repli
| spy0 | . . . | spyn

| spoil0 | . . . | spoiln
| new![]
)

where

• new := ∗new?[]((ν channel)(unsafe![channel] | new![]))

• repli := ∗unsafe?[x](unsafe![x] | unsafe![x])

• spyi := ∗unsafe?[c]c?[y1, . . . ,yi](unsafe![y1] | . . . | unsafe![yi])

• spoili := ∗unsafe?[c]unsafe?[x1] . . .unsafe?[xi]c![x1, . . . ,xi]

Figure 6.2: The most general context.

6.3 Generalization for the meta language

We want to extend the framework that we have proposed in the previous section
to any model that is compiled in our meta language. This way, we abstract the
context by the set of the values it may use and by a set of fresh markers for the

6.3. GENERALIZATION FOR THE META LANGUAGE 133

thread that it spawns. Using this abstraction, we derive a sound abstraction of
the context behavior. Unlike the π-calculus case, this approach is not complete in
general. This context abstraction may be easily encoded at the level of the meta
language, so that further analyses may be designed without distinguishing context
independent and closed semantics.

6.3.1 Context approximation

The context is a set of threads, concurrently running with the analyzed system. We
represent this context by the set of the values that may be used by the context. We
call such values the unsafe values. We approximate the behavior of the context
as if it was an intruder who was able to compute any partial interaction that uses
these unsafe values. Furthermore, whenever a partial interaction is computed by
the context, the context gets new unsafe values. When fetching a resource, the
markers and the labels of the threads that fetch the resource are required. However,
the history of this thread is not insightful, so we assume (by using an injective
function from L ×M into M) that the label of each context thread is the same
and that the marker is picked in a set of fresh markers. The same way, we are
not interested in the history of the creation of the values that are declared by the
context. That is why we assume that those values are all created by recursive
instances of a same thread. We choose1 some fresh distinct labels cont?, cont!,
and ext ∈ Lp some fresh labels. The values that are created by the context are
seen as if they had been declared with the static label ext by a recursive instance
of a thread the marker of which is tn, where tn is recursively defined as follows:

{

t0 = N((cont?, cont!),ε,ε)

tn+1 = N((cont?, cont!),ε, tn).

Thus, the set of the values opened by the context may be chosen as the set
{(ext, tn) | n ∈ N}, which we denote by en. We also assume that all spoiling mes-
sages are recursive instances of a single thread the first action of which is labeled
with ext (so that the context may create pointers to the thread that it computes).

The coherence of our semantics mainly relies on the fact that during a compu-
tation sequence, there maynot be two different instances of a single thread with the
same marker. We guarantee this property by associating to each spoiling message
a fresh marker in the set {tn | n ∈ N}.

1We have assumed ext ∈Lp so that the context may build pointers to the thread it creates, we
make no syntactic distinction between the names and the pointers that are created by the context

134 CHAPTER 6. CONTEXT APPROXIMATION

6.3.1.1 Context knowledge

A non standard configuration is now a triple (C,U,F), where C is a set of threads,
U is a set of values, and F is a set of markers. The set C contains the running
threads. The set U contains all the value (a, id) that are known by the context.
The set F contains fresh markers which have not been used as markers for spoil-
ing messages. At the beginning of the system, free variables2 have to be chosen
among the set of initial unsafe values. We make no assumption about the past of
the system, so that distinct free variables may be bound to the same unsafe value.
This is especially useful when analyzing an instance of a resource without any
knowledge of the relations between the values that have been communicated to it.

6.3.1.2 Primitives

6.3.1.2.1 Thread synthesis The context may build any thread (t, id,E)
with an available marker and an environment that associates some variables to
unsafe values. Let N be the maximum parameter number of a partial interaction.
We may assume without any loss of generality that the domain of E is the set
{Si | 1≤ i≤ N} of distinct variables in V .

We may now define the set CONTEXT_THREAD(U,F) of the threads that may
be built by a context that satisfies the abstraction (U,F) as follows:

Definition 6.3.1. Let U ∈℘(L ×M) be a set of values. Let F ∈℘(M) be a set
of fresh markers. The set CONTEXT_THREAD(U,F) is given by:







(0, id,E)

∣

∣

∣

∣

∣

∣

id ∈ F
Dom(E) = {Si | 1≤ i≤ N}
∀i ∈ J1;NK, E(i) ∈U







.

6.3.1.2.2 Interaction synthesis We suppose that the threads that are cre-
ated by the context may compute any kind of partial interactions that deals with
unsafe values. We also suppose that the context only computes threads at program
point 0 with a fresh marker. Moreover, we assume without any loss of general-
ity that the context ignores guards. We ignore the continuation launched by the
context, since it is modeled when updating the context knowledge.

This yields the following definition:

Definition 6.3.2. Let pi = (s,(parameteri),(boundi),constraints,continuation) be
a partial interaction. Let (m,n) = arity(s) be the arities of s. We say that the
partial interaction pi may be computed by a thread in CONTEXT_THREAD(U,F)

2 A variable v is free, if it is in the interface of an initial program point, but not in the static
environment of this initial program points (i.e. if v ∈

⋃

{I(p)\Dom(Es) | (p,Es) ∈
⋃

inits}).

6.3. GENERALIZATION FOR THE META LANGUAGE 135

and we write CONTEXT_PARTIAL_INT(pi) if and only if the following properties
are satisfied:

1. (paramateri) ∈ {Si | 1≤ i≤ N}m;

2. (bound j) ∈ V n;

3. constraints = /0;

4. continuation = { /0}.

6.3.1.2.3 Knowledge updating During an interaction, the context gets all
the values that are associated to one of the variable of its threads. We now in-
troduce a primitive that describes the set of the values that are got by the context
when performing a partial interaction. This primitive takes a thread index i, a tu-
ple of threads, the tuple of the sequences of each thread parameters, and the value
passing formal description. It returns the set of the values that are spied by the
context.

Definition 6.3.3 (spied values). Let m,n ∈ N be two integers. Let i be an in-
teger such that 1 ≤ i ≤ n. Let (tk)1≤k≤n = (pk, idk,Ek)1≤k≤n be an n-tuple of
threads. Let (bdl)1≤l≤m be a sequence of variables (bdl is associated with the
l-th variable that is bounded by the partial interaction in the i-th thread). Let
(paramk

l)k,l be an n-tuple of parameter sequences (paramk
l is associated with the

l-th parameter of the k-th thread). Let communications be a partial map from V Y
f

into V X
f ∪V I

f such that {Y i
l | 1≤ l ≤ m} ⊆ Dom(communications), we define the

set SPIEDVAL(i,(tk),(bdl),(paramk
l),communications) by:

{

/0 if pi 6= 0,

{σ(communications(Y i
j)) | 1≤ j ≤ m} otherwise,

where σ =

{

X k
l 7→ Ek(paramk

l)

Ik 7→ (pk, idk).

6.3.1.2.4 Marker consumption To ensure marker allocation freshness, the
context may not perform several partial interactions of type computation with the
same thread marker. In the case when a partial interaction is not of type computa-
tion, we do not remove any marker: this allows the context to use pointers to its
thread and to use pointed threads without consuming them (in a migration step for
instance).

136 CHAPTER 6. CONTEXT APPROXIMATION

Definition 6.3.4 (marker consumption). Let t be a partial interaction name type
in {replication;computation;migration}. Let id be a marker in M . We define the
set CONSUM(t, id) of the markers that are consumed when a thread with marker
id computes a partial interaction of type t by:

CONSUM(t, id)
∆
=

{

{id} if t = computation

/0 otherwise.

6.3.1.2.5 Broadcast communication The substitution is applied to model
broadcast communications just after having launched thread continuations. This
substitution can be computed as in the case of the semantics for closed systems.
Nevertheless, this substitution also changes the knowledge of the context. We de-
fine a primitive that takes a substitution and the context knowledge. This primitive
returns the context knowledge after having computed broadcast communications.

Definition 6.3.5 (broadcast substitution of the context knowledge). Let τ ∈
(L ×M)→ (L ×M) be a substitution. Let U ∈℘(L ×M) be a set of unsafe
values. We define the set subs_context(τ,U) ∈℘(L ×M) of unsafe values by:

subs_context(τ,U)
∆
= {τ(u) | u ∈U}.

6.3.1.3 Transition system

We use these primitives in order to describe both initial states and the seman-
tics of computation steps according to a formal rule. We consider an open sys-
tem. We denote by V0 the set of its free variables; the set V0 is defined as
⋃

{I(p) \Dom(Es) | (p,Es) ∈
⋃

inits}. Initial states are obtained by launching
a continuation in inits with an empty marker and an environment that maps each
initial free variable v ∈ V0 to an unsafe value u ∈ en. Thus the set C o

0 of the initial
state is defined as:

C
o
0 =

{

(launch(continuation,ε,E0),en,{tn | n ∈ N})

∣

∣

∣

∣

continuation ∈ inits,
E0 ∈ V0→ en

}

.

Computation steps are described by a reduction relation in Fig. 6.3. We recall
the different steps of this computation, as follows:

• interaction enabling:

– first, we find some threads that exhibit the right partial interactions
(these threads either belong to the system, or are built by the context);

– then, we check that their interface is compatible with the synchroniza-
tion constraints in the formal rule;

6.3. GENERALIZATION FOR THE META LANGUAGE 137

• interaction computation:

– we remove the threads that do not compute a replication;

– we choose a syntactic continuation for each thread;

– we compute dynamic data for each of these continuations:

∗ we compute the marker;

∗ we take into account name passing;

∗ we create fresh variables and associate them with the correct val-
ues;

∗ we restrict the environment to the interface of the thread that is
launched;

– we update the set of unsafe names;

– we update the set of available markers;

– we apply broadcast substitution to both the system threads and the
unsafe names in order to model potential re-addressing.

Each computation step is labeled with some information we need to update
the state of the system. More precisely, a computation step label is of the form
(R,((t1,pi1,Ct1), . . . ,(tn,pin,Ctn)),τ(i)) where R is a reduction rule which ex-
pects n interacting threads; where, for any k ∈ J1;nK, the k-th thread that is in-
volved in the interaction is the thread tk, this thread computes the partial inter-
action pik before launching the continuation Ctk; and where τ is the broadcast
substitution that is applied to any thread at the end of the computation step.

6.3.2 Soundness

We propose to establish a relation between the non standard semantics of closed
and open systems. We consider an open system SI. We recall that the set V0 =
⋃

{I(p)\Dom(Es) | (p,Es) ∈
⋃

inits} is the set of the free variables of the mobile
system SI. We denote by L I

p the set of the labels of the program points of the
system SI. Let S be a mobile system. We denote by (I, inits, interaction) the
syntax of the system S and by (I I, initIs, interactionI) the syntax of the system SI.
We say that the system S encloses the open system SI if and only if the two
following conditions are satisfied:

• The syntax of S satisfies the sufficient properties in Def. 4.5.11.

• The syntax of S coincides with the syntax of SI. This means that:

1. I|L I
p
= II,

138 CHAPTER 6. CONTEXT APPROXIMATION

Let (C,U,F) be a configuration.
Let R = (n,components,compatibility,v-passing,broadcast) be a reduction rule.
Let Kc be a subset of J1;nK. We denote Ks = J1;nK\Kc.
If there exists (tk)1≤k≤n = (pk, idk,Ek)1≤k≤n ∈Cn a sequence of distinct threads,
and (pik)1≤k≤n = (sk,(parameterk

l)l,(bdk
l)k,l,constraintsk,continuationk)1≤k≤n an

n-tuple of partial interactions, such that:

1. • ∀k ∈Ks, exhibit(tk,pik);

• ∀k,k′ ∈Kc,











tk ∈ CONTEXT_THREAD(U,F),

CONTEXT_PARTIAL_INT(pik),

idk = idk′ =⇒ k = k′;

2. ∀k ∈ J1;nK, components(k) = sk;

3. sync((t1, . . . , tn),(parameterk
l)k,l,compatibility) is satisfied.

Then:

C
(R,(α1,...,αn),τ)

(subs(τ,C\removed_threads∪new_threads),subs_context(τ,U ′),F ′)

where:

1. τ ∈ subs_choice((tk)k,(parameterk
l)k,l,broadcast);

2. removed_threads = remove((tk, type(sk))k∈Ks);

3. new_threads =
⋃

{launch(Ctk, id
k
,E

k
) | k ∈Ks},

with ∀k ∈Ks:

• Ctk ∈ continuationk;

• id
k
= marker(type(sk),

(

pk′ , idk′ ,Ek′
)

1≤k′≤n
,k);

• E
k
= vpassing(k,(tk′)k′,(bdk

l)l,(parameterk′
l)k′,l,communications).

4. U ′ = U ∪U ;

5. U =
⋃

{SPIEDVAL(k,(tk′)k′ ,(bdk
l)l,(parameterk′

l)k′,l,communication) | k ∈
Kc};

6. F ′ = F \ (
⋃

{CONSUM(type(sk), idk) | k ∈Kc});

7. • ∀k ∈Ks, αk = (tk,pik,Ctk);

• ∀k ∈Kc, αk = (tk,pik, /0).

Figure 6.3: Generic transition rule.

6.3. GENERALIZATION FOR THE META LANGUAGE 139

2. for any continuation thread (p,Es) ∈
⋃

(
⋃

(inits)), such that p ∈L I
p ,

there exists a continutation thead (p′,E ′s)∈
⋃
(
⋃

initIs
)

such that p = p′

and E ′s(x) = Es(x) for any x ∈ Dom(E ′s).

• Computations are compatible with the thread partition: this means that
for any program point pair (p,q), if there exist a partial interaction pi =
(s,(parameteri),(boundi),constraints,continuation) in interaction(p) and
a static environment Es such that (q,Es) ∈

⋃

continuation, then we have
p ∈L I

p if and only if q ∈L I
p .

We want to construct a projection function Πτ , such that any non standard com-
putation sequence τ of a closed system that encloses the system SI is mapped to
a non standard computation sequence Πτ(τ) of the open system SI;

6.3.2.1 Trace abstraction

Let L I
p ⊆L be the subset of labels of the program points of the system SI and

NI ⊆L be the subset of the name labels that are used in the static environments
in continuations threads in the system SI in syntaxI. We introduce two one-to-one
functions in order to interpret names and threads created by the context of SI: let
ΦM be a one-to-one map from the set (L ×M) into the set {tn | n∈N}, and ΦN

be a one-to-one function from the set (N ×M) into the set en. We now define the
projection Πτ(SI,ΦM ,ΦN) which transforms each computation sequence of any
closed mobile system that encloses the system SI into a computation sequence for
the open system SI. We assume without any loss of generality that V0 = {cik | k ∈
J1;nK}, and that no variable occurs twice as an argument of a variable binder.

We first project each syntactic component label, by replacing each label which
does not occur in SI by the unique label of the context, that is to say the 0 label.

Definition 6.3.6 (program point label projection). The projection Πl(l) of a
syntactic component label l ∈L is defined as follows:

Πl(l) =

{

l if l ∈L I
p

0 otherwise.

Next, we project the instance markers of syntactic components of SI. Each
marker that denotes the history of a context thread is replaced by its image by
ΦM . Each marker that denotes the history of a thread of the system is replaced by
applying recursively marker projection to its sub-markers.

Definition 6.3.7 (marker projection). Marker projection is defined as follows:

ΠΦM

M
(N((l1, . . . , ln), t1, . . . , tn)) = N((Πl(l1), . . . ,Πl(ln)),h(l1, t1), . . . ,h(ln, tn)),

140 CHAPTER 6. CONTEXT APPROXIMATION

where h(l, id) =

{

ΦM (l, id) if li 6∈L I
p ,

ΠΦM

M
(ti) otherwise.

We now project values. For any value the label of which belongs to the system,
we just project the marker. For any value that has been declared by the context, we
replace the label with the label ext and we compute the coherent marker according
to ΦN .

Definition 6.3.8 (value projection). Value projection is defined as follows:

ΠΦM ,ΦN

L×M
(x, idx) =

{

(x,ΠΦM

M
(idx)) if x ∈NI

ΦN (x, idx) otherwise.

We can easily project an instance of a syntactic component of SI by projecting
its marker and each value that occurs in its environment.

Definition 6.3.9 (thread projection). Thread projection is defined as follows:

ΠΦM ,ΦN

t (P, id,E) = (P,ΠΦM

M
(id), [x 7→ΠΦM ,ΦN

L×M
(E(x))]).

Then, we can project a configuration by projecting all the threads at program
point in L I

p and by removing the other threads:

Definition 6.3.10 (configuration projection). Configuration projection is defined
as follows:

ΠΦM ,ΦN

C (C) = {ΠΦM ,ΦN

t (p, id,E) | (p, id,E) ∈C, P ∈L
I

p}.

Now, we project broadcast substitution by using the value projection which is
injective:

Definition 6.3.11 (substitution projection). Let τ = [ui 7→ vi, i ∈ I] a broadcast
substitution, where I is a finite set, (ui) is a family of pair-wise distinct values, and
(vi) is a family of values. The projection ΠΦM ,ΦN

SUBS (τ) is defined as:

[ΠΦM ,ΦN

L×M
(ui) 7→ΠΦM ,ΦN

L×M
(vi)].

Then, we can define transition label projection by applying both label projec-
tion and substitution projection component-wise and by removing the continua-
tion of the threads of the context:

Definition 6.3.12 (transition label projection). The projection
Πλ (R,(pi,pii,Cti)i,τ) of transition label (R,((pi,pii,Cti)i),τ) is defined
as follows:

Πλ (R,(pi,pii,Cti)i,τ) = (R,(Πl(pi),pii,h(pi,Cti))i,ΠΦM ,ΦN

SUBS (τ)),

where h(p,Ct) =

{

Cti if p ∈L I
p ,

/0 otherwise.

6.3. GENERALIZATION FOR THE META LANGUAGE 141

We can now define the projection of a computation sequence. At each com-
putation step, we obtain the set of threads by projecting all instances of syntactic
components of SI and by throwing away instances of syntactic components of
the context. Unfortunately, the set of values and the set of fresh markers cannot
be constructed without any knowledge of the previous computation steps, so we
construct them incrementally: at each computation step, we insert spied values
into the set of unsafe values and remove the used markers from the set of fresh
markers. We also apply the broadcast subsitution to each unsafe names.

Definition 6.3.13. (trace projection). Computation sequence projection is then

defined as follows: Let τ = C0
λ1−→ . . .

λn−→ Cn be a non standard computation
sequence in the closed semantics of a mobile system that encloses the open system
SI, with C0 ∈ C0. We define the projection of τ , Πτ(SI,ΦM ,ΦN)(τ) as the non
standard computation sequence:

(A0,U0,F0)
Πλ (λa1)

. . .
Πλ (λan)
(An,Un,Fn)

of the open system SI, where

• the initial configuration (A0,U0,F0) is the following triple:

(ΠΦM ,ΦN

C (C0),en,{tn | n ∈ N});

• for k ∈ J1;nK,

we denote λk = (R,(t i,pii,Cti),τ i),

we denote (t i) = (pi, idi,E i),

we denote (pii) = (si,(parami
j) j,(bdi

j) j,constraintsi,continuationi),

we denote R = (n,components,compatibility,v-passing,broadcast);

then, the configuration (Ak,Uk,Fk) is defined as follows:

– Ak = ΠΦM ,ΦN

C (Ck),

– Uk = subs(Uk−1∪ SPY)

where:

∗ SPY = {ΠΦM ,ΦN

L×M
(σ(v-passing(Y i

l))) | i 6∈L I
p},

where σ(X i
l) = Ei(parami

l) and σ(I i) = (pi, idi),

∗ subs = ΠΦM ,ΦN
SUBS (τk),

– Fk = Fk−1 \{ΦM (pi, idi) | pi 6∈L I
p , type(pii) = computation}.

142 CHAPTER 6. CONTEXT APPROXIMATION

6.3.2.2 Soundness

We establish the soundness of the context independent semantics (i.e. the context
independent semantics captures the abstraction of any trace for the computation
of the open system in any context).

Theorem 6.3.14. (Soundness) Let τ = C0 . . .Cn be a non standard computation
sequence of a closed system that encloses the open system SI, with C0 ∈ C0. Then
Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0) . . .(An,Un,Fn) is a non standard computation
sequence of the open system SI and (A0,U0,F0) ∈ C o

0 .

Soundness is ensured by construction. The full proof of Thm. 6.3.14 is shown
in appendix C.

6.3.3 Implementation at the meta language level

We now encode our context abstraction at the meta language level.

6.3.3.1 Unsafe values

We model the set of unsafe values by using some factious program points and
some extra partial interactions. More precisely, we introduce a fresh program
point label ppick. The program point ppick is associated with the interface {X}. A
thread at program point ppick and with the environment [X 7→ (x, id)] means that
the context may use the unsafe value (x, id) to build its own threads. A thread at
program point ppick may compute a partial interaction names pick that allows for
picking the unsafe value. More precisely, the arity of the name pick is (1,0) and
its type is computation. A thread at program point ppick may compute the partial
interaction (pick, [X], [], /0,{ /0}).

Each unsafe values may be used several times, and even several times simul-
taneously. So, we have to spawn an unbounded number of thread instances at
program point ppick for each unsafe value. We introduce a sequence of program
point labels (punsafe

n)n∈N. Each program point punsafe
n is associated with the in-

terface {Xn}. A thread at the program point punsafe
n and with the environment

[Xn 7→ (x, id)] is a resource that may spawn an unbounded number of thread in-
stances at program point ppick with the environment [X 7→ (x, id)]. The meaning
of the index n will be explained later. (It means that this value has become unsafe,
because it has be bound to the n-th bound variable in a partial interaction). A
thread at program point punsafe

n may compute a partial interaction named duplicate
that allows for spawning a thread at program point ppick where the variable X is
associated with the value of the variable Xn. More precisely, the arity of the name

6.3. GENERALIZATION FOR THE META LANGUAGE 143

duplicate is (1,1) and its type is replication. A thread at program point punsafe
n

may compute the partial interaction (duplicate, [Xn], [X], /0,{{(ppick, /0)}}).
Then, we introduce the program point pfetch for the threads that fetch the re-

sources at program point punsafe
n . The program point pfetch is associated with

the interface /0. Threads at program point pfetch may compute a partial interac-
tion named duplicate. The arity of the name duplicate is (0,0) and its type is
computation. A thread at program point pfetch may compute the partial interac-
tion (duplicate, [], [], /0,{ /0}). We give in Fig. 6.4 the formal rule that allows for
the replication of unsafe values. The communication [Y 1

1 7→ X1
1] describes the fact

that the value of the variable Xn is passed to the variable X at program point ppick.

rec = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ duplicate

2 7→ duplicate

2. synchronization = /0;

3. communication = [Y 1
1 ← X1

1];

4. global = /0.

Figure 6.4: Formal rule for duplicating unsafe values.

In order to spawn an unbounded number of threads at program point pfetch,
we introduce two program points pfetch

resource and pfetch
fetch. Each time a thread at pro-

gram point pfetch
resource interacts with a thread at program point pfetch

fetch, two threads

are launched: the first one at program point pfetch
fetch and the second one at pro-

gram point pfetch. Thus, we introduce two names fetch and fetch of partial
interactions. the arity of these names are (0,0), the name fetch is of type
replication, and the name fetch is of type computation. A thread at program
point pfetch

resource has an empty interface and is associated with the set of partial in-
teractions {(fetch, [], [], /0,{{(pfetch, /0);(pfetch

fetch, /0)}})}. A thread at program point

pfetch
fetch has an empty interface and is associated with the set of partial interactions

{(fetch, [], [], /0,{ /0})}. We give in Fig. 6.5 the formal rule that allows for the repli-
cation of the resource at program point pfetch

resource.
We now describe another resource. This resource aims at copying name tuples

that are learnt from the spied system. We introduce a program point label pwait

144 CHAPTER 6. CONTEXT APPROXIMATION

rec = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ fetch

2 7→ fetch

2. synchronization = /0;

3. communication = [];

4. global = /0.

Figure 6.5: Formal rule for unfolding the resource.

and a family of partial interaction names (learnn)n∈N. For any integer n ∈ N,
the partial interaction name learnn is of type replication and have the arity (0,n).
Threads at program point pwait has an empty interface and is associated with the
following set of partial interactions:

{(learnn, [], [X1, . . . ,Xn], /0,{(punsafe
i , /0) | 1≤ j ≤ n}) | n ∈ N}

When an n-tuple is received, this resource launches threads at program points
punsafe

i with an environment that maps the variable Xi to the i-th component of the
tuple (Cf. Fig. 6.8 on page 147).

6.3.3.2 Context instance

The context may launch a context instance for any fresh marker in F . We in-
troduce some factious program points, some fresh partial interaction names, and
some new formal rules. We introduce the program point pavailable. For each integer
n ∈ N, we introduce the program points pconsume

n and precycle
n . We also introduce

the partial interaction names spy and release. Moreover, for each partial interac-
tion name pi of the closed semantics, we introduce both a new program point ppi

and a fresh name of partial interaction pi′.
An informal description of the behavior of a context thread instance is given

in Fig. 6.6. In this figure, we have assumed that there are only two partial in-
teraction kinds in the closed semantics. Partial interactions named pi1 are of type
computation or replication, and partial interactions named pi2 is of type migration.

6.3.3.2.1 Computing a partial interaction More precisely, a thread at
program point pavailable and with the marker id denotes the fact that id is avail-
able in F , its interface is empty. A thread at program point ppi denotes the fact

6.3. GENERALIZATION FOR THE META LANGUAGE 145

migration

pi1

pi2

computation

spy

spy

ppi1

ppi2

unsafepavailable

replication

pick

pick
learn

learn

pconsume

precycle

release

release

pi′1

pi′2

Figure 6.6: Context thread instance behavior.

146 CHAPTER 6. CONTEXT APPROXIMATION

that a thread is using a thread marker and that this thread may compute the par-
tial interaction pi. The interface of this thread is the set {ci | 1 ≤ i ≤ m}, where
Ari(pi) = (m,n). Each variable ci denotes a parameter of the partial interaction pi.
A thread at program point pavailable may reach the program point ppi by com-
putating the partial interaction pi′. Let pi be a partial interaction name. Let
(m,n) = Ari(pi). We define Ari(pi’) = (0,m) and type(pi’) = type(pi). We de-
fine the formal rule Rpi in Fig. 6.7. The formal rule Rpi that gives the capability
to build threads to the context.

Rpi = (m+1,component,synchronization,communication,global)

where

1. (m,n) = type(pi);

2. component =

{

i 7→ pick if i≤ m

m+1 7→ pi′;

3. synchronization = /0;

4. communication = [Y m+1
j ← X j

1 ,1≤ j ≤ m];

5. global = /0.

Figure 6.7: Context thread building.

A thread at program point pavailable is associated with the set
{(pi′, [], [c1, . . . ,cm],{(ppi, /0)} | pi ∈ A ,(m,n) = Ari(pi)}) of partial interac-
tions.

Once it has reached a program point ppi (we denote (m,n) = Ari(pi)), the
instance may compute a partial interaction pi or release the thread marker. Re-
leasing the thread marker is mandatory in the case when the partial interaction pi
is of type replication, since the thread marker may be re-used after having repli-
cated the resource. When the thread computes the partial interaction pi, it has
to declare new unsafe values. That is the purpose of threads at program point
pconsumen and precyclen: a thread at program point pconsumen declares n unsafe val-
ues and launches no continuation (the instance marker is consummed), whereas a
thread at program point precyclen declares n unsafe values and releases the instance
marker. So there are several cases according to the type of the partial interaction.
In the case when type(pi) ∈ {computation;replication}, the program point ppi is
associated with the following set of partial interactions:

{

(pi, [c1, . . . ,cm], [X1, . . . ,Xn], /0,{{(pconsumen , /0)}});
(release, [], [], /0,{{(pavailable, /0)}})

}

.

6.3. GENERALIZATION FOR THE META LANGUAGE 147

Otherwise, the program point ppi is associated with the following set of partial
interactions:

{

{(pi, [c1, . . . ,cm], [X1, . . . ,Xn], /0,{{(precyclen, /0)}})};
(release, [], [], /0,{{(pavailable, /0)}})

}

A thread at program point pconsumen or precyclen has the interface {Xi | 1≤ i≤ n}.

6.3.3.2.2 Learning new unsafe names We now describe how the con-
text enlarges the set of unsafe values. The context learn new unsafe names
when a thread at program point pwait interact with a thread at program point
pconsumen or precyclen . We introduce a family of partial interaction names (spyn).
We define type(spyn) = migration and Ari(spyn) = (n,0). A thread at program
point pconsumen is associated with the set {(spyn, [X1, . . . ,Xn], [], /0,{ /0})} of par-
tial interactions and a thread at program point preleasen is associated with the set
{(spyn, [X1, . . . ,Xn], [], /0,{{(pavailable, /0)}})} of partial interactions. We notice that
a thread at program point preleasen does not consume the thread marker, since it
launches a thread at program point pavailable whenever it computes a partial in-
teraction. The formal rule Rspyn

describes the interaction between a thread at
program point pwait interact with a thread at program point pconsumen or precyclen .
This formal rule is defined in Fig. 6.8.

Rspyn
= (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ learnn;

2 7→ spyn;

2. synchronization = /0;

3. communication = [Y 1
i ← X2

i , 1≤ i≤ n];

4. global = /0.

Figure 6.8: Value learning.

6.3.3.2.3 Releasing thread markers Only partial interaction of type
computation consumes their instance marker. Instance marker of migrating
threads may be release after the migration by applying a partial interaction named
spyn (that launches a thread at program point pavailable whenever the computed par-
tial interaction is of type migration). Unfortunately, we cannot apply this scheme

148 CHAPTER 6. CONTEXT APPROXIMATION

for partial interaction of type replication. That is why we allows a thread at pro-
gram point ppi to release its marker. That is the purpose of the partial interac-
tion name release. When the context instance compute a partial interaction pi of
type replication, the thread at program point ppi is not consumed, and the marker
may be released by applying a partial interaction named release. The formal rule
Rrelease, which is given in Fig. 6.9 allows the release of a thread marker.

Rrelease = (1,component,synchronization,communication,global)

where

1. component =
{

1 7→ release;

2. synchronization = /0;

3. communication = /0;

4. global = /0.

Figure 6.9: Context thread releasing.

6.3.3.3 Initialization

The context may use an unbounded number of fresh markers and build an un-
bounded number of unsafe values. For that purpose, we introduce two resources
that build context fresh markers and fresh unsafe values.

First, we introduce four program points: pvalue
resource, pmarker

resource, pvalue
fetch , and pmarker

fetch .
Threads at any of these four program points have an empty environment. Then,
we introduce four partial interaction names build-value, build-value, build-marker
and build-marker. We set:

Ari :



















build-value 7→ (0,1),

build-value 7→ (0,0),

build-marker 7→ (0,0),

build-marker 7→ (0,0);

type :



















build-value 7→ replication,

build-value 7→ computation,

build-marker 7→ replication,

build-marker 7→ computation.

Thus, these partial interactions have no parameter, they bind no variable, except
the partial interaction build-value that associates a variable with the newly created
value.

Threads at program point pvalue
resource may compute the following partial interac-

tion:
(build-value+, [], [X1], /0,{{(punsafe

1 , /0);(pvalue
fetch , /0)}});

6.3. GENERALIZATION FOR THE META LANGUAGE 149

threads at program point pmarker
resource may compute the following partial interaction:

(build-marker+, [], [], /0,{{(pavailable, /0);(pmarker
fetch , /0)}});

threads at program point pvalue
fetch may compute the partial interaction

(build-value, [], [], /0,{ /0}); and threads at program point pmarker
fetch may compute the

partial interaction (build-marker, [], [], /0,{ /0}).
We now define in Figs. 6.10 and 6.11 two formal rules Rbuild-value and

Rbuild-marker to respectively build fresh values and fresh markers. We notice

Rbuild-value = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ build-value

2 7→ build-value;

2. synchronization = /0;

3. communication = [Y 1
1 ← I2];

4. global = /0.

Figure 6.10: Fresh value declaration.

Rbuild-marker = (2,component,synchronization,communication,global)

where

1. component =

{

1 7→ build-marker

2 7→ build-marker;

2. synchronization = /0;

3. communication = /0;

4. global = /0.

Figure 6.11: Fresh marker declaration.

that when applying the rule Rbuild-value the fresh value is defined as the identity of
the thread that fetch the resource.

150 CHAPTER 6. CONTEXT APPROXIMATION

6.3.3.4 Initial state

We now describe the set of initial states of the system. We consider an open
system S . We suppose that the set of the free variable of S (i.e.

⋃

{I(p) \
Dom(Es) | (p,Es) ∈

⋃

inits}) is given by the set {vi | 1≤ i ≤ m} (where m ∈ N).
An initial state is given first by choosing the value of each free variable, and then
by choosing the initial threads.

We introduce a program point pinit, a partial interaction name init and a formal
rule Rinit to model the initialization of the system. Threads at program point pinit

have an empty interface. Each partial interaction init have the arity (0,m) and the
type computation. Threads at program point pinit may compute the partial interac-
tion (init, [], [v1, . . . ,vm], /0,C0). This partial interaction picks m unsafe values and
launches an initial state of the open system.

Rinit = (m+1,component,synchronization,communication,global)

where

1. component =

{

i 7→ pick if i≤ m

m+1 7→ pi′;

2. synchronization = /0;

3. communication = [Y m+1
j ← X j

1 ,1≤ j ≤ m];

4. global = /0.

Figure 6.12: Context initialization.

The initial states of the system that simulates the computation of the open
system S in any context is given as follows:

{{

(pinit, /0);(pfetch
resource, /0);(pwait, /0);

(pfetch
fetch, /0);(pvalue

resource, /0);(pvalue
fetch , /0);(pmarker

resource, /0);(pmarker
fetch , /0)

}}

.

6.3.3.5 Marker unambiguity

Our context encoding satisfies marker unambiguity sufficient conditions
(Cf. 4.5.11 on page 4.5.11).

6.3.4 Incompleteness

Our context abstraction is complete in the π-calculus (see Thm. 6.2.9). Unfor-
tunately, this is not the case in general, because it gives too much power to the

6.3. GENERALIZATION FOR THE META LANGUAGE 151

context. We isolate two causes of potential incompleteness and give concrete ex-
amples.

6.3.4.1 The case of the spi-calculus

The first cause of incompleteness is due to migrating threads. When a thread
migrates, its environment may change (or not), but its syntactic skeleton is fixed
once for all. For instance, in the case of the spi-calculus, when a term t is a tuple,
we can extract a component of this tuple. After the computation step, the term t
may still be available after the computation step. It is still a tuple, so it cannot be
used as a signed message.

Since we do not keep the syntactic skeleton of the threads that are built by the
context. The context may build two threads which perform a partial interaction of
type migration with the same markers but with distinct syntactic skeletons.

Example 6.3.15. We consider the following open system:

c1〈M〉.let2 x = getmessage(M) in let3 y = thn
i (M) in test4〈P〉.

This open system first receives a term on an unsafe channel. This term is first
matched as a signed message, in case of success the term is then matched as a
tuple. It is obvious that no context may force the open system to succeed these two
matching.

Nevertheless, we give in Fig. 6.13, a computation sequence in our context
independent semantics in where these two matching are passed. More precisely:

1. At the state C0, the context may build the thread

(0, t1, [S1→ (ext, t1),S2→ (ext, t2)]),

which may compute the partial interaction:

(output, [S1;S2], [], /0, /0).

this allows the computation of the step C0 −→C1.

2. At the state C1, the context may build:

• the thread
(0, t2, [S1→ (ext, t3),S2→ (ext, t4)]),

which may compute the partial interaction:

(sign, [S1;S2], [], /0, /0).

152 CHAPTER 6. CONTEXT APPROXIMATION

C0 −→C1 −→C2 −→C3

C0 = ({(1,ε, [c→ (ext, t1)]},en,{tn | n ∈ N})})
C1 = ({(2,ε, [M→ (ext, t2)]},en,{tn | n ∈ N\{1}})})
C2 = ({(3,ε, [M→ (ext, t2)]},en,{tn | n ∈ N\{1}})})
C3 = ({(4,ε, [M→ (ext, t2)]},en,{tn | n ∈ N\{1}})})

Figure 6.13: Trace counter-example in the spi-calculus.

• and the thread

(0, t4, [S1→ (ext, t1),S2→ (ext, t1)]),

which may compute the partial interaction:

(name, [], [], /0, /0).

This allows the computation of the step C1 −→C2.

3. At the state C2, the context may build: the thread

(0, t2, [S1→ (ext, t3),S2→ (ext, t4)]),

which may compute the partial interaction:

(tuple, [S1;S2], [], /0, /0).

This allows the computation of the step C2 −→C3.

6.3.4.2 The case of ambient-like calculi

Our abstraction may loose some constraints on the model structure. For instance,
in the case of mobile ambients, the location of an ambient cannot be replaced with
any arbitrary ambient location. The intruder must know the full rooting path to
reach a given ambient. Then spied data are not necessarily available anywhere in
the system. When an untrusted program receives a new name, it may be unable to
communicate this name at the top level. These constraints are lost in our context
abstraction.

Example 6.3.16. We consider the following open system:

(ν l1secret)(ν l2a)(ν l3b)(a1[b2[in3c.〈secret〉4]] | c5[in6a.open7b])

6.3. GENERALIZATION FOR THE META LANGUAGE 153

A safe ambient named a contains a safe ambient b. The safe ambient b contains
a secret value secret. The ambient c is unsafe. It has the capability to enter the
ambient a. Then, the ambient b may enter the unsafe ambient c. Then, the ambient
c may get the secret secret. But the context may not root the ambient c at the top
level. Thus, the context may not build threads at top level that uses this secret.

Nevertheless, we give in Figs. 6.14 and 6.15, a computation sequence in
our context independent semantics when the context may communicate the secret
secret at top level. More precisely:

1. At the state C0, the context may build:

• the thread
(

0, t2,

[

S1→ (top,ε),
S2→ (ext, t3)

])

,

which may compute the partial interaction:

(mov-ambient, [S1;S2], [loc], /0, /0).

• and the thread
(

0, t3,

[

S1→ (0, t2);
S2→ (ext, t1)

])

,

which may compute the partial interaction:

(in, [S1;S2], [loc], /0, /0).

This allows the computation of the step C0 −→ C1. Then, the context may
send threads inside the ambient named c.

2. Then, the ambient c may enter the ambient a. This gives the computation
step C1 −→C2.

3. Then, the ambient b may enter the ambient c. This gives the computation
step C2 −→C3.

4. Then, the ambient c may open the ambient b. This gives the computation
step C3 −→C4.

5. At the state C4, the context may build the thread

(0, t3, [S1→ (5,ε)]),

which may compute the partial interaction:

(fetch, [S1], [u], /0, /0).

This allows the computation of the step C4 −→ C5. In C5, the secret is
unsafe.

154 CHAPTER 6. CONTEXT APPROXIMATION

C0 −→C1 −→C2 −→C3
C
−→4

C
−→5

C0 =























































































































(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

2,ε,

[

loc → (1,ε)
b → (l3,ε)

])



3,ε,





loc → (2,ε)
c → (ext, t1)

secret → (l1,ε)









(

5,ε,

[

loc → (top,ε)
c → (ext, t1)

])



6,ε,





loc → (5,ε)
a → (l2,ε)
b → (l3,ε)























































































,en∪{(top,ε)},{tn | n ∈ N}









































C1 =























































































































(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

2,ε,

[

loc → (1,ε)
b → (l3,ε)

])



3,ε,





loc → (2,ε)
c → (ext, t1)

secret → (l1,ε)









(

5,ε,

[

loc → (top,ε)
c → (ext, t1)

])



6,ε,





loc → (5,ε)
a → (l2,ε)
b → (l3,ε)























































































,en∪

{

(top,ε);
(5,ε)

}

,{tn | n ∈ N\{3}}









































C2 =











































































































(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

2,ε,

[

loc → (1,ε)
b → (l3,ε)

])



3,ε,





loc → (2,ε)
c → (ext, t1)

secret → (l1,ε)









(

5,ε,

[

loc → (1,ε)
c → (ext, t1)

])

(

7,ε,

[

loc → (5,ε)
b → (l3,ε)

])







































































,en∪

{

(top,ε);
(5,ε)

}

,{tn | n ∈ N\{3}}





































Figure 6.14: Trace counter-example in the ambient calculus.

6.3. GENERALIZATION FOR THE META LANGUAGE 155

C3 =































































































(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

2,ε,

[

loc → (5,ε)
b → (l3,ε)

])

(

4,ε,

[

loc → (2,ε)
secret → (l1,ε)

])

(

5,ε,

[

loc → (1,ε)
c → (ext, t1)

])

(

7,ε,

[

loc → (5,ε)
b → (l3,ε)

])































































,en∪

{

(top,ε);
(5,ε)

}

,{tn | n ∈ N\{3}}

































C4 =















































(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

4,ε,

[

loc → (5,ε)
secret → (l1,ε)

])

(

5,ε,

[

loc → (1,ε)
c → (ext, t1)

])































,en∪

{

(top,ε);
(5,ε)

}

,{tn | n ∈ N\{3}}

















C5 =























(

1,ε,

[

loc → (top,ε)
a → (l2,ε)

])

(

5,ε,

[

loc → (1,ε)
c → (ext, t1)

])















,en∪







(top,ε);
(5,ε);
(l1,ε)







,{tn | n ∈ N\{3}}









Figure 6.15: Trace counter-example in the ambient calculus(continued).

156 CHAPTER 6. CONTEXT APPROXIMATION

6.4 Implementing other context abstractions

Other context abstractions can be designed and implemented in our meta-
language. For instance, we may design abstraction where all the threads built by
the context are kept until they are consumed. This way, the marker of migrating
threads and resource may not be released. This allows for a complete abstraction
of contexts for the spi-calculus.

Moreover, we could have been more precise about the control the context has
over unsafe values. For instance, in the case of the mobile ambients, we could
associate each ambient with the set of the values of the trheads that may both be
built by the context and be rooted inside this ambient. The implementation of such
an abstraction require to index set abstractions by values, which is straightforward.

We did investigate neither completeness results, nor further abstractions, be-
cause it would deeply depend on the models we consider.

Chapter 7

Abstract Interpretation

Abstract Interpretation is a theory of the approximation of semantics. It formalizes
the idea that the semantics may be more or less precise according to the considered
level of observation. In static analysis, abstract interpretation is used to derive a
decidable semantics from a concrete, non decidable, one. Because of the upper-
approximation, the result is not complete: this means that not all the properties of
the program are discovered, nevertheless, the result is sound: this means that all
the captured properties are satisfied in the concrete semantics.

In this chapter, we introduce a generic abstraction to approximate the behavior
of a mobile system. It could indeed apply to any transition system. This abstrac-
tion does not depend on the abstracted properties yet: they are left as a parameter
of our analysis. Hence, our framework is highly generic, and we can make a
reduced product between several analyses. Comparing abstract semantics is usu-
ally a very difficult task. We provide local comparison criteria that allows for
the comparison of two abstract semantics. We will use this framework to derive
an analysis of the control flow in Chap. 8, an analysis of the number of occur-
rences of the threads in Chap. 9, and an analysis of the number of threads inside
computation units in Chap. 10.

7.1 Concrete semantics

We denote by C the set of the non standard configurations that satisfy marker
unambiguity (i.e. for any C ∈ C , for any (t, id,E),(t ′, id′,E ′) ∈ C, if [t ∼ t ′ and
id = id′], then t = t ′ and E = E ′). We denote by Σ the set of the transition la-
bels. The transition labels that we have used contains too much information.
We simplify them by removing any information about the continuation choice
and about the value substitution. Thus, we make no difference between the label
(R,(pk,pik,Ctk),τ) and the label (R,(pk,pik)). We are actually interested in the

157

158 CHAPTER 7. ABSTRACT INTERPRETATION

set C (S) of all the configurations that a system may take during a finite sequence
of computation steps. This is given by its collecting semantics, which is defined
in [21]. It can be expressed as the least fixpoint of a ∪-complete endomorphism F
on the complete lattice ℘(Σ∗×C) defined as follows:

F(X) = ({ε}×C
o
0 (S))∪

{

(u.λ ,C′)

∣

∣

∣

∣

∃C ∈ C , (u,C) ∈ X and C
λ
C′

}

.

7.2 Generic abstraction

This least fixpoint is usually not decidable, so we use the Abstract Interpretation
framework [23] to compute a sound – but not necessarily complete – approxima-
tion of it. More precisely, we use a relaxed version of Abstract Interpretation [24]
in which the abstract domain is not supposed to be complete under least upper
bound; furthermore, no abstraction function is required.

7.2.1 Abstraction definition

Definition 7.2.1. An abstraction is a tuple A = (C],v,t,⊥,γ,C]
0, ,∇) which

satisfies:

1. (C],v) is a pre-order;

2. t :℘finite(C
])→ C] is such that ∀A] ∈℘finite(C

]), ∀a] ∈ A], a] v t(A]);

3. ⊥ ∈ C] satisfies ∀a] ∈ C], ⊥ v a];

4. γ : C]→℘(Σ∗×C) is a monotonic map;

5. C]
0 ∈ C] is such that {ε}×C o

0 ⊆ γ(C]
0);

6. ∈℘(C]×Σ×C]) is an abstract deterministic labeled transition relation
over C] such that: ∀C] ∈ C], ∀(u,C) ∈ γ(C]), ∀λ ∈ Σ, ∀C ∈ C ,

C
λ
C =⇒∃C

]
∈ C

], (C] λ
 C

]
and (u.λ ,C) ∈ γ(C]

));

7. ∇ : C]×C]→ C] is a widening operator:

• ∀C]
1, C]

2 ∈ C], C]
1 v C]

1∇C]
2 and C]

2 v C]
1∇C]

2,

7.2. GENERIC ABSTRACTION 159

• ∀(C]
n)n∈N ∈

(

C]
)N

, the sequence (C∇
n)n∈N defined as

{

C∇
0 = C]

0

C∇
n+1 = C∇

n ∇C]
n+1

is ultimately stationary.

The set C] is an abstract domain. It captures the properties we are interested
in and abstracts away the other properties. The pre-order v describes the amount
of information which is known about the properties that we approximate. We only
use a pre-order to allow some concrete properties to be described by several un-
related abstract elements. The abstract union t is used to gather the information
described by several abstract elements. For the sake of generality, it does not nec-
essarily compute the least upper bound of a finite set of abstract elements (this
least bound may not even exist). The abstract element ⊥ denotes the empty set
and it provides the basis for our abstract iteration. The function γ is a concretiza-
tion function which maps each abstract property to the set of the concrete elements
which satisfy this property. The abstract element C]

0 describes the properties sat-
isfied by the system initial configurations. The relation is used to mimic the
concrete transition system in the abstract domain and the operator ∇ is used to
ensure the convergence of the analysis in finitely many iterations.

7.2.2 Abstract counterpart

Given an abstraction A = (C],v,t,⊥,γ,C]
0 , ,∇), the abstract counterpart F

]
A

of F defined as:

F
]

A
(C]) = t({C

]
| ∃λ ∈ Σ, C] λ

 C
]
}∪{C]

0}),

satisfies the soundness condition ∀C] ∈ C], F ◦ γ(C]) ⊆ γ ◦F
]

A
(C]). Since F is

monotonic, ∀n ∈ N,∀C] ∈ C], F n ◦ γ(C]) ⊆ γ ◦ (F]
A

n
)(C]). On the other hand,

since F is a ∪-complete endomorphism, we have lfp /0 F =
⋃

{F n(/0) | n ∈ N}. As
a consequence, we obtain the soundness of our analysis:

Theorem 7.2.2. lfp /0 F⊆
⋃

{[γ ◦ (F]
A

)
n
](⊥) | n ∈ N}.

7.2.3 Extrapolated iterates

Following [21], we compute a sound and decidable approximation of our abstract
semantics using the widening operator ∇:

160 CHAPTER 7. ABSTRACT INTERPRETATION

Theorem 7.2.3. The abstract iteration [24, 25] of F
]

A
defined as follows:











F
∇
0 =⊥

F
∇
n+1 =

{

F ∇
n if F

]
A

(

F ∇
n

)

vF ∇
n

F ∇
n ∇F

]
A

(

F ∇
n

)

otherwise

is ultimately stationary and its limit JS KA satisfies C (S)⊆ γ(JS KA).

The abstract value JS KA ∈ C] is called the abstract semantics of the mobile
system according to the abstraction A.

7.3 Abstraction algebra

Our framework is highly extensible. We now give some operations over abstrac-
tions to compose them.

7.3.1 Cartesian product

Proposition 7.3.1 (product). Let A1 = (C]
1 ,v1,t1,⊥1,γ1,C

]
01

, 1,∇1) and

A2 = (C]
2 ,v2,t2,⊥2,γ2,C

]
02

, 2,∇2) be two abstractions.

The following tuple (C],v,t,⊥,γ,C]
0, ,∇) where:

• C] = C
]
1 ×C

]
2 ;

• v, t, ⊥ and ∇ are defined pair-wise;

• γ :

{

C]→℘(Σ∗×C)

(a1,a2) 7→ γ1(a1)∩ γ2(a2);

• C]
0 = (C]

01
,C]

02
);

• is defined by:

(a1,a2)
λ
 (b1,b2) if and only if a1

λ
 1 b1 and a2

λ
 2 b2;

is also an abstraction. We call this abstraction the Cartesian product of the two
abstractions A1 and A2.

Proof. The tuple (C],v,t,⊥,γ,C]
0 , ,∇) satisfies Def. 7.2.1:

• Props. (1),(2),(3),(7) are usual properties of the Cartesian product;

7.3. ABSTRACTION ALGEBRA 161

• Prop. (4) is satisfied, since both γ1 and γ2 are monotonic;

• Prop. (5) holds because we have both γ(C]
0) = γ1(C

]
01

)∩ γ2(C
]
02

) and ∀i ∈

{1;2},{ε}×C o
0 ⊆ γi(C

]
0i
);

• Prop. (6) is satisfied:
Let C] = (a1,a2) be an abstract element in C], (u,C) be a concrete element
which satisfies (u,C) ∈ γ(C]), λ be a transition label in Σ and C a concrete

state such that C
λ
C, we need to construct an abstract element C

]
∈ C]

such that C] λ
 C

]
and (u.λ ,C) ∈ γ(C

]
): according to Def. 7.2.1.6, for all

i ∈ {1;2}, we can choose bi ∈C]
i , such that ai

λ
 i bi and (u.λ ,C) ∈ γi(bi);

so, by definition of , we have (a1,a2)
λ
 (b1,b2) and, since γ(b1,b2) =

γ1(b1)∩ γ2(b2), we obtain that (u.λ ,C) ∈ γ(b1,b2); so (b1,b2) is a valid
candidate.

7.3.2 Reduced domain

Proposition 7.3.2 (Reduction). Let A0 = (C]
0 ,v0,t0,⊥0,γ0,C

]
00

, 0,∇0) be an

abstraction, and ρ be a reduction operator1 ρ : C
]
0 → C

]
0 which satisfies:

∀a ∈ C
]
0 , γ0(a)⊆ γ0(ρ(a)).

The following tuple (C]
ρ ,vρ ,tρ ,⊥ρ ,γρ ,C]

0ρ
, ρ ,∇ρ) where

• C
]
ρ = C

]
0 ;

• vρ=v0;

• tρ = t0;

• ⊥ρ =⊥0;

• γρ = γ0;

• C]
0ρ

= C]
00

;

• ρ is defined by:

a ρ c if and only if there exists b∈ C
]
0 , such that ρ(a) 0 b and c = ρ(b);

1ρ simplifies the properties obtained in the abstract domain.

162 CHAPTER 7. ABSTRACT INTERPRETATION

• ∇ρ = ∇0;

is also an abstraction. We call this abstraction the reduction of the abstraction A0

by the reduction operator ρ .

Proof. The tuple (C]
ρ ,vρ ,tρ ,⊥ρ ,γρ ,C]

0ρ
, ρ ,∇ρ) satisfies Def. 7.2.1:

• Props. (1),(2),(3),(4),(7) hold because A0 is an abstraction;

• Prop. (5) is satisfied because:

– {(ε,c0) | c0 ∈C0} ⊆ γ0(C
]
00

) (since A0 is an abstraction),

– γ0(C
]
00

)⊆ γ0(ρ(C]
00

)) (by definition of ρ),

– γ0 = γρ (by definition of γρ),

– C]
ρ = ρ(C]

0) (by definition of C]
0ρ

),

so {ε}×C o
0 (S)⊆ γ0(C

]
00

)⊆ γ0(ρ(C]
0)) = γρ(C]

0ρ
);

• Prop. (6) is satisfied:
Let a be an element of C

]
ρ , (u,C) be a concrete element which satisfies

(u,C) ∈ γρ(a), λ be a transition label in Σ and C a concrete state such that

C
λ
C, we need to construct an abstract element b ∈ C] such that C] λ

 ρ b

and (u.λ ,C) ∈ γρ(b): we have (u,C) ∈ γ0(a) ⊆ γ0(ρ(a)) and C
λ
C, so

according to Def. 7.2.1.6, we can choose b ∈ C
]
0 such that ρ(a)

λ
 0 b and

(u.λ ,C) ∈ γ(b); then, by definition of
λ
 ρ , we have a

λ
 ρ ρ(b), and, since

γ0(b)⊆ γ0(ρ(b)), we obtain that (u.λ ,C)∈ γ0(ρ(b)); since γρ = γ0, we have
(u.λ ,C) ∈ γρ(ρ(b)); so ρ(b) is a valid candidate.

Furthermore, ρ may also be used to simplify the final result of the abstract
iteration. This way, we refine the abstract semantics of the transition system ac-
cording to Aρ , and choose ρ(JS KAρ) as new abstract semantics. Unfortunately,
because post fixpoint extrapolation is highly non-monotonic, we cannot prove that
ρ(JS KAρ)v0 JS KA0 .

7.4. COMPARING ABSTRACTIONS 163

7.4 Comparing abstractions

Some abstract domains may be related by an approximation: This intuitively
means that, starting from the concrete domain, we perform a first abstraction to
obtain a first domain, and then we compose another abstraction and obtain the
second one. Then, we may be interested in comparing the abstract semantics that
is associated with a program in the first domain with the abstract semantics that
is associated with the same program in the second domain. Unfortunately, such a
comparison is made very difficult because of the use of the widening operator, the
behavior of which is highly non monotonic.

Nevertheless we propose some assumptions about the abstractions, so that we
can compare their abstract semantics.

7.4.1 Monotonic abstraction

The first assumption is that abstraction must be monotonic. This means that when
applying any operator, the more precise the arguments are, the more precise the
result is. This is formalized in the following definition:

Definition 7.4.1 (monotonic abstraction). We say that an abstraction A =

(C],v,t,⊥,γ,C]
0 , ,∇) is monotonic if and only if the following assertions are

satisfied:

1. • ∀A,B ∈℘finite(C
]) such that A⊆ B, we have t(A)v t(B),

• ∀A ∈℘finite(C
]), ∀a,b ∈ C] such that av b, we have:

t(A∪{a})v t(A∪{b});

2. ∀a,b,c ∈ C], such that avb and a
λ
 c, there exists d ∈ C] such that cv d

and b
λ
 d.

3. the widening operator ∇ is monotonic with respect to each of its arguments.

Roughly speaking, the first assertion describes the monotonicity of the join
operator, whereas the second one ensures that the abstract transition relation can
simulate itself up-to to information lost. The last assertion is very strong. In
practice, it is only satisfied in domains that satisfy the finite chain condition, by
using the join operator as widening.

The following properties help in compositionally proving that an abstraction
is monotonic:

Proposition 7.4.2 (monotonicity stability). The following properties are satis-
fied:

164 CHAPTER 7. ABSTRACT INTERPRETATION

1. The Cartesian product (see Sect. 7.3.1 on page 160) of two monotonic ab-
stractions is also monotonic.

2. The reduction (see Def. 7.3.2 on page 161) of a monotonic abstraction by a
monotonic reduction operator is also monotonic.

7.4.2 Local comparison between two abstractions

The second assumption is that we can locally compare the accuracy of the abstrac-
tions. This means that the two abstract domains are related with an abstraction
function (mapping any abstract property in the more precise domain into an ab-
stract property in the less precise domain). Then, we require that, given an abstract
precondition, the abstraction of the result of an abstract computation from this ab-
stract precondition in the more precise domain is always more precise than the
result of the corresponding abstract computation in the less precise domain from
the abstraction of this abstract precondition. This is formalized in the following
definition:

Definition 7.4.3 (local comparison). We consider two abstractions A1 = (C]
1 ,v1

,t1,⊥1,γ1,C
]
01

, 1,∇1) and A2 = (C]
2 ,v2,t2,⊥2,γ2,C

]
02

, 2,∇2). We say that
the abstraction A1 locally approximates the abstraction A2 if there exists a mono-
tonic concretization function α1←2 ∈ C

]
2 → C

]
1 such that:

1. ∀a ∈ C
]
2 , γ2(a)⊆ γ1(α1←2(a));

2. ∀A ∈℘finite(C
]
2), α1←2(t2(A))v1 t1(α1←2(A));

3. α1←2(⊥2)v1 ⊥1;

4. α1←2(C]
02

)v1 C]
01

;

5. ∀a2,b2 ∈ C
]
2 , such that a 2 b, there exists b1 ∈ C

]
1 such that α1←2(a) 1

b1 and α1←2(b2)v1 b1;

6. ∀a2,b2 ∈ C
]
2 , α1←2(a2∇2b2)v1 (α1←2(a2))∇1(α1←2(b2)).

The following properties help in compositionally proving that an abstraction
locally approximates another abstraction:

Proposition 7.4.4 (local comparison composition). The following properties are
satisfied:

7.4. COMPARING ABSTRACTIONS 165

1. If the abstraction A2 locally approximates the abstraction A1 and if the ab-
straction A1 locally approximates the abstraction A0, then the abstraction
A2 locally approximates the abstraction A0.

2. The abstraction A1 locally approximates the Cartesian product (see
Sect. 7.3.1 on page 160) of the abstractions A1 and A2.

3. The abstraction A1 locally approximates any reduction (see Def. 7.3.2 on
page 161) of the abstraction A1 by any anti-extensive operator.

4. If the abstraction A1 locally approximates the abstraction A2, then the
Cartesian product (see Sect. 7.3.1 on page 160) of the abstractions A1 and
A0 locally approximates the Cartesian product of the abstractions A2 and
A0.

7.4.3 Least fixpoint comparison

These two notions are useful to give conditions that ensure that we can compare
abstract semantics.

Theorem 7.4.5 (Abstraction comparison). Let us consider two abstractions A1

and A2 such that:

• the abstraction A1 is monotonic;

• the abstraction A1 is locally approximating the abstraction A2 via the con-
cretization function α1←2;

Then, the abstract semantics of the transition system according to respectively
A1 and A2 are related by the relation:

γ2(JS KA2)⊆ γ1(JS KA1)

The proof of Thm. 7.4.5 uses the following Lemma:

Lemma 7.4.6. Let us consider two abstractions A1 and A2 that satisfy the as-
sumption of Thm. 7.4.5. Then the abstract semantics of the transition system ac-
cording to respectively A1 and A2 are related by the relation:

α1←2(JS KA2)v1 JS KA1 .

Proof.
We denote:

{

A1 = (C]
1 ,v1,t1,⊥1,γ1,C

]
01

, 1,∇1)

A2 = (C]
2 ,v2,t2,⊥2,γ2,C

]
02

, 2,∇2)

166 CHAPTER 7. ABSTRACT INTERPRETATION

1. we first prove that ∀a ∈ C
]
2 , α1←2(F]

A2
(a))v1 F

]
A1

(α1←2(a)):

Since Def. 7.4.3.(2), we have α1←2(F]
A2

(a))v1 A, where:

A = t1({α1←2(b) | ∃b ∈ C
]
2 , ∃λ ∈ Σ, a

λ
 2 b}∪{α1←2(C]

02
)}).

Then, because of Def. 7.4.3.(5), we know that ∀b ∈ C
]
2 such that a

λ
 2 b,

there exists b1 ∈ C
]
1 such that both α1←2(a)

λ
 1 b1 and α1←2(b) v1 b1.

Moreover, thanks to Def. 7.4.3.(4), we have α1←2(C]
02

) v1 C]
01

. So, using
both properties of Def. 7.4.1.(1), we deduce that:

Av1 F
]

A1
(α1←2(a));

And we conclude that:

α1←2(F]
A2

(a))v1 F
]

A1
(α1←2(a)). (7.1)

2. Then, we prove that F
]

A1
is monotonic:

Let a,b be two abstract elements in C
]
1 such that av1 b.

• By Def. 7.4.1.(2), we know that for any c such that a
λ
 1 c there exists

d such that both b
λ
 1 d and cv1 d.

• We also have C]
01

= C]
01

.

So, using Def. 7.4.1.(1), we conclude that:

F
]

A1
(a)v1 F

]
A1

(b).

3. We now prove that for any n ∈ N:

α1←2(F ∇2
n)v1 F

∇1
n

• if n = 0: this is true thanks to Def. 7.4.3.(3).

• we suppose this is true for n = n0 and we prove it for n = n0 +1:
By assumption hypothesis:

α1←2
(

F
∇2
n0

)

v1 F
∇1
n0

.

Then,

α1←2(F ∇2
n0+1)v1 (α1←2(F ∇2

n0
))∇1(α1←2(F]

A2
(F ∇2

n0
))).

7.4. COMPARING ABSTRACTIONS 167

– By induction hypothesis,

α1←2(F ∇2
n0

)v1 F
∇1
n0

. (7.2)

– We now prove that:

(α1←2(F]
A2

(F ∇2
n0

)))v1 F
]

A1
(F ∇1

n0
). (7.3)

Since:
∗ because of the result (7.1):

(α1←2(F]
A2

(F ∇2
n0

)))v1 F
]

A1
(α1←2(F ∇2

n0
)).

∗ and thanks to the monotony of F
]

A1
and to the result (7.2):

F
]

A1
(α1←2(F ∇2

n0
))v1 F

]
A1

(F ∇1
n0

).

Then, because of the results (7.2) and (7.3), and thanks to the
Def. 7.4.1.(3), we can conclude that:

(α1←2(F ∇2
n0

))∇1(α1←2(F]
A2

(F ∇2
n0

)))v1 F
∇1
n0+1.

So:
α1←2(F ∇2

n0+1)v1 F
∇1
n0+1.

Moreover, the two sequences (α1←2(F ∇2
n)) and (F ∇1

n0) are ultimately stationary.
So their limits α1←2(JS KA2) and JS KA1 satisfy:

α1←2(JS KA2)v1 JS KA1 .

We now give the proof of Thm. 7.4.5.

Proof. By Def. 7.4.3.(1), we have γ2(JS KA2) ⊆ γ1(α1←2(JS KA2)). Since γ1
is monotonic and by using Lem. 7.4.6, we obtain that γ1(α1←2(JS KA2)) ⊆
γ1(JS KA1). By transitivity, we conclude that γ2(JS KA2)⊆ γ1(JS KA1).

Thm. 7.4.5 is useful for comparing the result of different abstractions. Nev-
ertheless, it only applies when the coarse abstraction has a strong structure such
as a domain satisfying the ascending chain condition. This restrict the application
range of this proposition to the comparison between a very simple analysis in a
highly structured domain and a more sophisticated analysis. One application is
shown in Chap. 8.

Corollary 7.4.7. If A1 is monotonic and A2 is the reduction of the Cartesian prod-
uct of the abstraction A1 and an other abstraction by an anti-extensive operator,
then γ2(JS KA2)⊆ γ1(JS KA1).

Chapter 8

Environment approximation

We now use our framework to derive an analysis of the control flow for mobile
systems. This analysis requires an abstract domain for describing sets of environ-
ments. In Sect. 8.1, we introduce the generic control flow analysis, independently
of the abstract domain choice. In Sect. 8.2, we propose a first analysis. This anal-
ysis consists in capturing at any program point a relation between the marker of
a thread at this program point and the marker of each value in the environment
of this thread. This way we generalize the analysis we have already proposed
in [32, 36] for the π-calculus and in [37] for the mobile ambients to any calculus
described in our meta language. In Sect. 8.3, we consider a more relational ap-
proximation, that may capture comparison between the markers of the values in
an environment, even in the case when there is no relationship between the thread
marker: this generalizes the framework which is described in [39].

8.1 Generic analysis

8.1.1 Generic domain

8.1.1.1 Thread abstraction

We assume that we are given a family (Atom]
V ,vV ,tV ,⊥V ,∇V)V⊆V of abstract

domains of properties. For each subset V ⊆ V of variables, the abstract domain
Atom]

V is used for globally abstracting some properties about the marker and the
environment of a thread the interface of which is the set of variables V . The
relation vV is a pre-order which describes the relative amount of information
between those properties. For any subset V ⊆ V of variables, we denote by EnvM

V
the set M × (V → (L ×M)) of the pairs that are made of a marker and an
environment over V . Each abstract property a ∈ Atom]

V is related to ℘(EnvM
V) by

a monotonic concretization function γV . The operator tV maps each finite set of

169

170 CHAPTER 8. ENVIRONMENT APPROXIMATION

properties to a weaker property: for each finite set A ⊆℘(Atom]
V) and for each

element a ∈ A, we have a vV (tV A). The element ⊥V is the least element in
Atom]

V with respect tovV . We assume that γV is strict, that is to say, γV (⊥V) = /0.
The operator ∇V is a widening operator. It satisfies tV{a;b} vV a∇V b, and for
any sequence (an) ∈ (Atom]

V)N, the sequence (a∇) ∈ (Atom]
V)N that is defined by

a∇
0 = a0 and a∇

n+1 = a∇
n ∇V an+1 is ultimately stationary.

Then, our main abstract domain C
]
env is defined as follows:

C
]
env = Πp∈Lp

(

Atom]
Ip

)

.

The domain structure (venv,tenv,⊥env,∇env) is defined component-wise from the
family of operator tuples (vV ,tV ,⊥V ,∇V)V⊆V . The abstract domain C

]
env is re-

lated to ℘(Σ∗×C) by the concretization function γenv that maps each abstract
property (fp)p∈Lp ∈ C

]
env to the set of configurations (u,C)∈ Σ∗×C such that for

any thread (q, id,E) ∈C, we have (id,E) ∈ γI(q)(fq). This way, a configuration C
satisfies an abstract properties f if for any thread (q, id,E), the pair (id,E) satisfies
the abstraction (f (q)) of the threads at program point q.

We now introduce some primitives to handle the elements of Atom]
V :

• initial environment abstraction: the abstract element ε]
/0 gives the abstraction

of the pair that is made of the initial marker and of an empty environment.
This way ε]

/0 ∈ Atom]
/0 satisfies:

{(ε, /0)} ⊆ γ /0(ε]
/0);

• abstract restriction: the primitive ν] describes fresh name allocation. Let x
be a variable in V \V , let l be a label in L and A be an abstract element
in Atom]

V . The abstract restriction ν](x, l,A) of x in A is an element in

Atom]
V∪{x} which satisfies:







(id,E) ∈ EnvM
V∪{x}

∣

∣

∣

∣

∣

∣

(id,E|V) ∈ γV (A),
E(x) = (l, id),
∀y ∈V, E(y) 6= (l, id)







⊆ γV∪{x}(ν](x, l,A)).

Intuitively, ν](x, l,A) simulates the binding of the variable x to a fresh value.
This value is given by associating the marker of the thread with the value
label l. The concrete semantics ensures that allocated values are fresh. We
allow for designing accurate transfer functions, the soundness of which re-
lies on this property.

8.1. GENERIC ANALYSIS 171

• abstract garbage collection: the primitive GC] allows the restriction of en-
vironment domains. Let X be a finite subset of V and A be an element
of Atom]

V . The abstract projection, GC](X ,A), of A onto X is an abstract

element in Atom]
V∩X which satisfies:

{(id,E|V∩X) ∈ EnvM
X | (id,E) ∈ γV (A)} ⊆ γV∩X(GC](X ,A)).

8.1.2 Molecule abstraction

During an interaction, we have to describe the relations among the markers and
the environments of several threads. For that purpose, we also assume that we
are given a family (Molecule]

(Vi)i
) of abstract properties1. This family is indexed

over the tuples (Vi)i ∈℘(V)∗ of finite subsets of V . For any n ∈ N and for any
(Vi)1≤i≤n ∈℘(V)n, each property in Molecule]

(Vi)1≤i≤n
is related by a concretiza-

tion function γ(Vi)1≤i≤n
to the elements of ℘(Π1≤i≤n(EnvM

Vi
)) which satisfy this

property.
We now introduce some primitives to handle the elements of Molecule]

(Vi)

for any (Vi) ∈ (℘(V))∗ and to relate the families (Atom]
V)V⊆V and

(Molecule]
(Vi)

)(Vi)∈(℘(V))∗ :

• abstract injection: the primitive INJ] translates an abstract property about
a single thread into an abstract property about an 1-tuple of thread. Let
V ⊆ V be an interface, and let A be an abstract element in Atom]

V . The

abstract injection of A is an element in Molecule]
(V)

that satisfies:

γV (A)⊆ γ(V)(INJ](A)).

• abstract product: the primitive • gathers the description of two tuples of
threads. Let m,n be the size of the two tuples. Let (Ui) ∈ (℘(V))m

and (Vi) ∈ (℘(V))n be two tuples of interfaces. We denote by (Wi) ∈
(℘(V))m+n the tuple of interfaces that is defined by Wi =Ui when 1≤ i≤m
and Wi+m = Vi when 1≤ i≤ n. Let A and B be two abstract elements such
that A ∈Molecule]

(Ui)1≤i≤m
and B ∈Molecule]

(Vi)1≤i≤n
. The abstract concate-

nation A•B is an element of Molecule]
(Wi)1≤i≤m+n

which satisfies:

{

(ei)i∈J1;m+nK

∣

∣

∣

∣

(ei)1≤i≤m ∈ γ(Ui)(A)

(ei+m)1≤i≤n ∈ γ(Vi)(B)

}

⊆ γ(Wi)(A•B).

1The abstract domain Molecule]
(Vi)i

is not assumed to be a pre-order, because it is only used to
make intermediary calculi, and not to make iterations.

172 CHAPTER 8. ENVIRONMENT APPROXIMATION

For the sake of simplicity, we require that the primitive • is associative, so
that we can write a•b• c instead of (a•b)• c.

• abstract projections: the primitive PROJ] extracts the description of a thread
from the description of a tuple of threads. Let n be an integer. Let
(Vi) ∈ (℘(V))n be an n-tuple of interfaces. Let A ∈ Molecule]

(Vi)1≤i≤n
be

an abstract element. Let k be an integer such that k ≤ n. The abstract pro-
jection PROJ](k,A) of the abstract element A onto its k-th component is an
element of Atom]

Vk
that satisfies:

{

(idk,Ek)
∣

∣

∣
∃(idi,Ei)i ∈ γ(Vi)i

(A)
}

⊆ γVk(PROJ](k,A));

• abstract extension: the primitive NEW
]
> extends environment domains:

given a subset of variables, it erases any information about the variables that
already exist and creates the variables that are missing with no information
about their value.

Let n be an integer. Let (Vi)1≤i≤n be an n-tuple of interfaces, let X be a
subset of V × J1;nK and let A be an abstract element in Molecule]

(Vi)
. For

each i ∈ J1;nK, we define the set Ui ⊆ V of variables as Vi \{x | (x, i) ∈ X}
and the set Wi ⊆ V of variables by Vi ∪ {x | (x, i) ∈ X}. For each i such
that 1≤ i≤ n, the set Ui is the set of the variables of the i-th interface that
are kept unchanged whereas the set Wi is the set of the variables of the i-th
interface after the abstract extension. The abstract extension NEW

]
>(X ,A)

of A by X is an element in Molecule]
(Wi)

which satisfies:







(idi,Ei) ∈Π(EnvM
Wi

)

∣

∣

∣

∣

∣

∣

∃(idi,E ′i) ∈ γ(Vi)(A),

∀i ∈ J1;nK,∀x ∈Ui,
E ′i(x) = Ei(x)







⊆ γ(Wi)(NEW
]
>(X ,A)).

• abstract synchronization: the primitive SYNC] enforces synchronization
conditions between both the values of the variables of some threads and
the identities of these threads. In order to compute the identity value of
each thread, this primitive also requires the tuple of the program point la-
bels of the threads (since the identity of a thread is given by a pair which is
made of the program point label and the thread marker).

Let n∈N be an integer. Let A be an abstract element in Molecule]
(Vi)1≤i≤n

, let

(pi) ∈L n
p be a tuple of program point labels and S be a set of constraints2

2We recall that the variable (I,k) denotes the k-th thread identity.

8.1. GENERIC ANALYSIS 173

of the form (x,k) � (y, l) where � ∈ {=; 6=}, k, l ∈ J1;nK, x ∈ Vk ∪{I}, and
y ∈ Vl ∪{I}, the abstract synchronization SYNC](S,(pi),A) of A according
to the set of constraints S is an element of Molecule]

(Vi)
such that:

{(idi,Ei) ∈ γ(Vi)(A) | ∀(a�b) ∈ S, ρ(a)�ρ(b)}⊆ γ(Vi)(SYNC](S,(pi),A)),

where ρ((x, i)) = Ei(x) when x ∈Vi and ρ((I, i)) = (pi, idi).

• abstract marker allocation: the primitive FETCH] updates the marker of
the first thread, according to thread marker allocation scheme. Let n be
an integer. Let (pi) be an n-tuple of program point labels, and A be an
element of Molecule]

(Vi)
, the abstract marker allocation FETCH]((pi),A) is

in Molecule]
(Vi)

such that:







(idi,Ei)

∣

∣

∣

∣

∣

∣

∀i ∈ J1;nK, (idi,Ei) ∈ γ(Vi)(A)

idi 6= id1

∀x ∈Vi,y ∈L , (y, id1) 6= Ei(x)







⊆ γ(Vi)(FETCH]((pi),A))

where idi =

{

N((pi)1≤i≤n, id1, . . . , idn) if i = 1

idi otherwise.

As in the definition of the restriction, we take into account the fact that the
allocated marker is fresh. This helps in designing precise transfer functions
the soundness of which relies on this property.

8.1.3 Abstract operational semantics

We now use these generic primitives to simulate in the abstract the concrete oper-
ational semantics.

8.1.3.1 Exhibited action

In the abstract, each program point label is associated with a property that de-
scribes a set of threads. A guard that constraints one thread may give information
about the other threads via information closure (or transitive closure). Thus it
may not be precise to isolate single threads when matching guards in the abstract.
That is why we delay the checking of guard matching, so that we can consider all
synchronization constraints at once which allows a better closure of information.

Thus given a program point label p and a partial interaction pi. We say that
the partial interaction pi may be performed at a program point labeled with p if
and only if pi ∈ interaction(p).

174 CHAPTER 8. ENVIRONMENT APPROXIMATION

8.1.3.2 Reactive molecule

In the concrete, a reduction step is enabled if each thread satisfies the guard of
the partial interaction that it computes and if the synchronization constraints of
the rule are satisfied. In the abstract, all these constraints are checked at the same
time.

Given an n-tuple of program point labels, an n-tuple of parameter sequences,
an n-tuple of matching constraint sets, a set of synchronization constraints and
an abstract element C ∈ C

]
env, we can compute the abstraction of all the tuples of

threads at the corresponding program points that may synchronize their computa-
tion by satisfying both their matching guards and the synchronization constraints
of the rule. Whenever the result is the bottom element, the synchronization is not
possible in the concrete, so the abstract computation step is disabled, otherwise
we can refine the abstract property by taking into account the synchronization
constraints.

We define a primitive reagents] that takes an n-tuple of program point labels,
an n-tuple of parameter sequences, an n-tuple of matching guard constraint sets,
a set of synchronization constraints and an abstract property in C

]
env. The primi-

tive reagents] returns the abstraction of the set of the n-tuple of the threads such
that each thread satisfies the abstract property and such that these threads may
synchronize their computation to compute the rule.

Definition 8.1.1 (abstract reactive molecule). Let n be an integer. Let
(pk)1≤k≤n be an n-tuple of program point labels. Let (paramk

l)k,l be an
n-tuple of parameter sequences (paramk

l is associated with the l-th param-
eter of the k-th thread). Let (constraintsk)1≤k≤n be an n-tuple of match-
ing guard constraint sets. Let compatibility be a set of global synchroniza-
tion constraints. Let C] ∈ C

]
env be an abstract element. We define the

abstract element reagents]((pk),(paramk
l)k,l,(constraintsk)k,compatibility,C]) ∈

Molecule]
(I(pk))1≤k≤n

as:

SYNC](cons,(pk),mol),

where:

• mol
∆
= INJ](C](p1))• . . .• INJ](C](pn));

• cons
∆
=
⋃

({Rk | 0≤ k ≤ n});

• R0
∆
= {σ(X) = σ(Y) | (X ,Y) ∈ compatibility},

with σ :

{

Ik 7→ (I,k)

X k
l 7→ (paramk

l ,k);

8.1. GENERIC ANALYSIS 175

• ∀k ∈ J1;nK, Rk = {(x,k)� (y,k) | x� y ∈ constraintsk};

In this definition, the set R0 contains the constraints that come from the formal
rule whereas each set Rk with 1≤ k≤ n contains the constraints that are due to the
matching guard of the k-th thread. We use the parameters (paramk

l) so that these
constraints are about the variable of the threads instead of the formal variables that
are used in the description of the rule.

8.1.3.3 Marker computation and value passing

In the abstract, we pass values and we compute thread markers simultaneously.
The reason is that both value passing and marker computation overwrite the old
values and the old markers. These old values and these old markers may allow
a better accuracy thanks to some information closure. Thus performing marker
computation before value passing, or the opposite may lead to information loss.

Value passing and thread marker computation are performed in several steps.
First we declare ghost variables that will be associated with passed values without
overwriting the old values. Then we simulate marker computation. At this point,
we can forget about the former value of the variables. Last, we simulate value
passing by synchronizing each ghost variable with the variable that is actually
bound.

Definition 8.1.2 (abstract value passing and marker computation). Let t be
a partial interaction name type in {replication;computation;migration}, let n be
an integer, let (pk)1≤k≤n be an n-tuple of program point labels, let (bdk

l)k,l be an
n-tuple of sequences of variables (bdk

l is associated with the l-th variable in the
k-th thread by the interaction). We denote by Vrd the set of the pairs (k, l) such
that bdk

l is well-defined. Let (paramk
l)k,l be an n-tuple of sequences of parameters

(paramk
l is associated with the l-th parameter of the k-th thread). Let v-passing be

a partial map from V Y
f into V X

f ∪V I
f . Let molecule] ∈Molecule]

(I(pi))1≤i≤n
be the

abstraction of n interacting threads. Let (Zl)l∈N be a family of fresh distinct ghost
variables in V .

First we declare ghost variables. So we define the molecule C1 as follows:

C1
∆
= NEW

]
>({(Zl,k) | (k, l) ∈ Vrd},molecule]).

Then we simulate value passing, by associating each ghost variables with the value
that will be passed to their real corresponding variable. This way, we define the
molecule C2 as follows:

C2
∆
= SYNC](cons1∪ cons2,(pk),C1),

where:

176 CHAPTER 8. ENVIRONMENT APPROXIMATION

• cons1 = {(Zl,k) = (paramk′
l′ ,k
′) | ∃k,k′, l, l′ ∈ N, v-passing(Y k

l) = X k′
l′ },

• cons2 = {(Zl,k) = (I,k′) | ∃k,k′, l ∈ N, v-passing(Y k
l) = Ik′},

Then we simulate the computation of the thread marker: whenever the first partial
interaction is not a replication, markers are left unchanged; otherwise we use the
primitive FETCH]. We define the molecule C3 as follows:

C3
∆
=

{

FETCH]((pk),C2) if t = replication

C2 otherwise.

The next step consists in removing any information about the real variables that
receive another value. We define the molecule C4 as follows:

C4
∆
= NEW

]
>({(bdk

l ,k) | (k, l) ∈ Vrd},C3).

The last step consists in synchronizing each ghost variable with its cor-
responding real variable. For that purpose, we define the molecule
marker-value(t,(pk)k,molecule],(bdk

l)k,l,(paramk
l)k,l,v-passing) as:

SYNC]({(Zl,k) = (bdk
l ,k) | (k, l) ∈ Vrd},(pk),C4).

8.1.3.4 Launching a continuation

Once value passing and thread marker allocation have been simulated in the ab-
stract, we can split the abstract molecule and launch continuations.

First we introduce a primitive update]. This primitive takes an abstract thread
A ∈ Atom]

V and a static environment Es ∈ Vs →L and extends the environment
of the abstract thread in order to simulate in the abstract the creation of the fresh
values. First this primitive removes any information about the freshly bound vari-
ables, then it uses the primitive ν] to map each variable in the domain of the static
environment Es with a sound abstract value. Since the result may depend on the
order on which variable are declared, we suppose that we are given a total order
≤V over the set of variables.

Definition 8.1.3 (abstract environment updating). Let Es be a static environ-
ment over Vs (i.e. Es ∈ Vs →L). Since (V ,≤V) is a total order, we can write
Dom(Es) = {xi | 1 ≤ i ≤ n} with x1 ≤V . . . ≤V xn. Let A ∈ Atom]

V be an ab-

stract thread. We define the abstract thread update](Es,A) ∈ Atom]
V∪{Dom(Es)}

as
follows:

update](Es,C)
∆
= Cn,

where:

8.1. GENERIC ANALYSIS 177

• C0
∆
= GC](V \{Dom(Es)},C),

• Ck+1
∆
= ν](xk+1,Es(xk+1),Ck), ∀k ∈ J0;nJ.

We can now introduce the primitive launch] which describes the launching
of the continuations of the partial interactions. In the abstract, we consider any
choice of potential continuations at once. The primitive launch] requires the syn-
tactic continuation of the partial interaction and the abstraction of the system state.
It computes the abstraction of the state of the system just after having launched
any of the potential continuations: for any potential continuation, first we extend
the environment in the abstract by using the primitive update], then we restrict
the environment to the new interface by using the abstract garbage collector GC].
Then we gather all the potential results.

Definition 8.1.4 (abstract continuation launching). Let n be an integer. Let (Vi)

be an n-tuple of interfaces. Let mol ∈ Molecule]
(Vi)1≤i≤n

be an abstraction of an

n-tuple of threads. Let (ctk) ∈℘(℘(Lp× (V ⇀ L)))n be an n-tuple of set of
potential continuations. We define the abstract element launch]((pk,ctk),mol) in
C

]
env as:
[

p′ 7→ tI(p′)

{

GC](I(p′),update](Es,PROJ](k′,mol)))
∣

∣

∣
∃k′, (p′,Es) ∈

⋃

ctk′
}]

.

8.1.3.5 Broadcast value passing

Broadcast value passing consists in substituting all the occurrences of a value in
the system by another one. In the abstract, a variable is associated with an ab-
stract set of values. So we carry out this broadcast substitution by partitioning
the threads according to the value that is associated to each variable: we de-
note by broadcast the broadcast substitution (it is a partial map from V I

R
into

V X
R
∪V I

R
). For each program point p, we will partition the abstract threads at

program point p according to which elements of the domain of broadcast match
the values of the variables in the environments of the threads. For each vari-
able in I(p), there are two possibilities: either the value of the variable is not
replaced by the broadcast substitution, or the value of the variable is replaced
with the value of a formal variable broadcast(X) where X ∈ Dom(broadcast).
In order to carry out more relational information, we replace all the variables of
a thread at once. Thus we partition the abstract threads at program point p in
(card(Dom(broadcast))+ 1)card(I(p))) classes. Each class is denoted by a map-
ping ρ ∈ (I(p)→ {0}∪Dom(broadcast)). The association ρ(x) = 0 means that
the substitution does not change the value of the variable x whereas the association
ρ(x) = Ik means that the value of the variable x is equal to the identity the k-th

178 CHAPTER 8. ENVIRONMENT APPROXIMATION

interacting thread. For each class, we compute the substitution in several steps.
First we restrict the abstract thread so that it only describes concrete threads that
satisfy the matching conditions expressed by ρ . Then we simulate the substitution
in the abstract: for that purpose, we associate each modified variable with a ghost
variable, we bind this ghost variable with the new value (this prevents loosing
relational information), we forget any information about modified variables and
then synchronize them with their ghost twin.

Definition 8.1.5. Let C be an abstract element in C
]
env. Let n be an integer. Let (pk)

be an n-tuple of program points. Let molecule] be an element of Molecule]
(I(pk))k

.

Let (paramk
l)k,l be an n-tuple of parameter sequences. Let broadcast be a partial

map from V I
R

into V X
R
∪ V I

R
. Let q be a program point and ρ be a function

from I(q) into Dom(broadcast)∪{0}. We introduce the set Vmod of the variable
that changes their values as {a ∈ I(p) | ρ(a) 6= 0}. We introduce the set of fresh
variables Vghost = {a | a ∈ Vmod}.

We want to compute the abstraction of the threads at program point q obtained
by applying a substitution according to ρ on each thread that satisfies the abstract
property C(q). First we gather the abstraction of the interacting threads molecule
and the abstraction of the threads at program point q. We introduce the abstract
molecule C1 ∈Molecule]

(I(p1),...,I(pn),I(q))
by:

C1
∆
= molecule] • INJ](C(q)).

Then we create the ghost variables. For that purpose, we define the abstract
molecule C2 ∈Molecule]

(I(p1),...,I(pn),(I(q)∪Vghost))
as follows:

C2
∆
= NEW

]
>({(a,n+1) | a ∈ Vghost},C1).

Then we takes into account ρ and restrict the abstract properties so that it ab-
stracts the threads that satisfy the assumptions that are described by ρ only.
For each variable a ∈ I(q), we introduce R(a) as the set of constraints that
are related to a as follows: in the case when ρ(a) = 0, the value associated
with a matches no variable in the domain of broadcast — this way we define

R(a)
∆
= {(a,n+1) 6= (I,k) | ∀Ik ∈ Dom(broadcast)}; in the case when ρ(a) = Ik,

the value associated with a necessarily matches the value associated with the

formal variable Ik, thus we set R(a)
∆
= {(a,n + 1) = (I,k)}. Thus we define

C3 ∈Molecule]
(I(p1),...,I(pn),(I(q)∪Vghost))

as follows:

C3
∆
= SYNC](∪{R(a) | a ∈ I(q)},(p1, . . . , pn,q),C2).

8.1. GENERIC ANALYSIS 179

Then we simulate the broadcast substitution over the ghost variables. We define
C4 ∈Molecule]

(I(p1),...,I(pn),(I(q)∪Vghost))
as follows:

C4
∆
= SYNC](com,(p1, . . . , pn,q),C3),

where com = {(a,n + 1) = σ(ρ(a)) | a ∈ Vmod} and σ :

{

Ik 7→ (I,k)

X k
l 7→ (paramk

l ,k).
We can now forget any information about the variables that change their values.
We define C5 ∈Molecule]

(I(p1),...,I(pn),(I(q)∪Vghost))
as follows:

C5
∆
= NEW

]
>(Vmod,C4).

Then we copy the information about the ghost variables to their twin variables.
We define C6 ∈Molecule]

(I(p1),...,I(pn),(I(q)∪Vghost))
as follows:

C6
∆
= SYNC]({(a,n+1) = (a,n+1) | a ∈ Vmod},(p1, . . . , pn,q),C5).

Then we extract information about threads at program point q and define
aux](C,molecule],(paramk

l),broadcast)(q,ρ) in Atom]
I(q)

as:

GC](I(q),PROJ](n+1,C6))

We now define the primitive glob] that takes a binding between formal vari-
ables and the parameters of the threads that interact, a substitution among formal
variables and a set of threads and applies the substitution in the environment with
all these threads:

Definition 8.1.6 (abstract broadcast value passing). Let n be an integer.
Let (pk) be an n-tuple of program points. Let molecule] be an element of
Molecule]

(I(pk))k
. Let (paramk

l)k,l be an n-tuple of parameter sequences. Let

broadcast be a partial map from V I
R

into V X
R
∪V I

R
. Let C be an abstract element

in C
]
env. We define the element glob](molecule],(paramk

l),broadcast,C) as:

[

q 7→ tI(q){aux](C,molecule],(paramk
l),broadcast)(q,ρ) | ρ ∈ choice(q)}

]

,

where choice(q) = (I(q)→{0}∪Dom(broadcast)).

180 CHAPTER 8. ENVIRONMENT APPROXIMATION

Let C] ∈ C
]
env be an abstract configuration.

Let R = (n,components,compatibility,v-passing,broadcast) be a reduction rule.
Let (pk)1≤k≤n ∈ L n

p be an n-tuple of program point labels and (pik)1≤k≤n =

(sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be an n-tuple of par-
tial interactions.
We introduce:

mol
∆
= reagents]((pk),(parameterk

l)k,l,constraintsk,compatibility,C]).

If:

1. ∀k ∈ J1;nK, pik ∈ interaction(p);

2. mol 6=⊥(I(pk))1≤k≤n
,

then:

C
(R,(pk,pik)k)
→env subs](mol,tenv{C;new}),

where:

• mol′ = marker-value(type(s1),(pk),mol,(bdk
l),(parameterk

l),v-passing);

• new = launch]((pk,continuationk)k,mol′);

• subs](molecule,D) = glob](molecule,
(

parameterk
l

)

k,l ,broadcast,D).

Figure 8.1: Abstract semantics.

8.1. GENERIC ANALYSIS 181

8.1.4 Abstract operational semantics

We use these primitives in order to describe both the abstraction of the initial states
and the abstract computation rule. The abstraction of the initial states is obtained
by applying the primitive launch] with the potential continuations in inits and
the abstract initial environment. Thus the abstraction C0env of the initial states is
defined as:

C0env = launch](inits,ε]
/0).

Computation steps are described by the abstract reduction relation in Fig. 8.1.
We recall the different steps of this computation, as follows:

• interaction enabling:

– first, we must find some threads that exhibit the right partial interac-
tions;

– then we check that their interface are compatible with both formal rule
synchronization constraints and each matching constraint set;

• interaction computation:

– we abstract marker allocation and value passing;

– we launch in parallel any potential continuation;

– we apply broadcast substitution with the whole system in order to
model potential re-addressing.

Theorem 8.1.7. (C]
env,venv,tenv,⊥env,γenv,C0env,→env,∇env) is an abstraction.

The proof of Thm. 8.1.7 is shown in appendix D.1.

Example 8.1.8 (communication in the π-calculus). We describe in Fig. 8.2 the
abstract communication between two threads in the π-calculus. We consider two
partial interactions: an input and an output. We have some information about the
marker and the environment of the threads that compute these partial interactions.
This information is described by an ovoid. Dotted lines describe relational infor-
mation between variable values. Outgoing edges describe information about a
particular variable. First, in Fig. 8.2(a), we check that the communication is pos-
sible by testing whether the two variables on which the input and the output are
performed may be bound to the same value. In such a case, the communication
is enabled. In Fig. 8.2(b), we extend the environment of the threads to take into
account new variables. We take into account some constraints: synchronization
constraints, the fact that the variables in the input are now associated with the
communicated values, and the fact that the marker of a fresh value is the marker

182 CHAPTER 8. ENVIRONMENT APPROXIMATION

of the thread that has declared this value. In Fig. 8.2(c), we describe information
closure: it uses the constraints about the two thread descriptions to collect con-
straints about the marker and the environment of each thread. At this point, the
two descriptions may be separated.

Example 8.1.9 (migration in the ambient calculus). We describe in Fig. 8.3 the
abstract migration inside an ambient. We consider three partial interactions: two
moving ambients and a capability to enter inside an ambient. We have some in-
formation about the marker and the environment of the threads that compute these
partial interaction. This information is described by an ovoid. Dotted lines de-
scribe relational information between variable values. Outgoing edges describe
information about a particular variable, the outgoing edges at the top left of each
partial interaction denote information about the location of the thread that com-
putes this partial interaction, the outgoing edges that comes from ambient bound-
aries denote information about the identity of the ambients. First, in Fig. 8.3(a),
we check that the migration is possible by testing whether the three constraints
— the first ambient may be inside the second, the capability to enter is inside the
first ambient, and the capability provides capability to enter in the second ambi-
ent — are simultaneously satisfiable. In such a case, the migration is enabled.
In Fig. 8.3(b), we extend the environment of the capability thread to take into
account new variables. The location of the migrating ambient is redefined (it is
unplugged from the relational ovoid), the old location is described by a pending
edge: it is still useful to describe relational information. We take into account
some constraints: the preconditions constraints, the fact that the first ambient lo-
cation is now synchronized with the second ambient identity and the fact that the
marker of a fresh value is the marker of the thread that has declared this value.
We also describe information closure: it uses the constraints about the two thread
descriptions to collect constraints about the marker and the environment of each
thread. At this point, the two descriptions may be separated. Then we perform
information closure, by following relational information dotted path and separate
the description of the pair marker/environment of each thread.

8.2 Control flow analyses

Control flow analyses consists in detecting the origin of all the values that may
be associated to each variable of each thread. Thus each variable is dealt with
separately, which means that we do not carry out relational information about
the values that are associated with distinct variables of the same thread instances.
More relational abstraction are designed in Sect. 8.3. We relate each variable of
each syntactic component to the set of the labels of the values that they may be

8.2. CONTROL FLOW ANALYSES 183

?

y?[y].(ν p)P x![x].(νq)Q

(a) Enabling the interaction

y?[y].(ν p)P x![x].(νq)Q

(b) Synchronization

y?[y].(ν p)P x![x].(νq)Q

(c) Information closure

Figure 8.2: Abstract communication.

184 CHAPTER 8. ENVIRONMENT APPROXIMATION

?

mi[•] inko.Pnj[•]

(a) Enabling the interaction

mi[•] inko.Pnj[•]

(b) Synchronization

Figure 8.3: Abstract migration.

associated with. However, our framework allows the description of non-uniform
properties. This means that we can distinguish each instance of the same thread
and each instance of the same value. To achieve this goal, we also compute a
comparison between the markers of the threads which declare the values and the
markers of the threads that receive these values. Due to the approximation, some
of the discovered interactions may be ineffective. But the analyzer detects all
the interactions. So, if the analyzer does not detect any interaction between two
components, there cannot be any interaction between them.

8.2.1 Generic marker abstraction

8.2.1.1 Abstract marker and abstract marker pair

We introduce here several generic domains for describing both markers and re-
lations among markers. We suppose that the abstract pre-order (M]

1 ,vM
1) de-

scribes sets of markers: it is related to the concrete domain ℘(M) by a mono-
tonic concretization function γM

1 . Furthermore, the abstract pre-order (M]
2 ,vM

2)
describes sets of marker pairs. This domain is used for describing relations be-
tween markers. It especially abstracts the relations between thread markers and
value markers. The domain M

]
2 is related to the concrete domain ℘(M 2) by a

monotonic concretization function γM
2 .

8.2. CONTROL FLOW ANALYSES 185

We introduce some primitive to handle these domains: the representations of
the empty set ⊥M

1 ∈M
]

1 and ⊥M
2 ∈M

]
2 ; a representation of the set of all the

markers >M
1 ; a representation of the initial marker εM

1 ∈M
]

1 ; abstract unions
tM

1 and tM
2 ; abstract intersections uM

1 and uM
2 ; widening operators ∇M

i and
∇M

2 . We also introduce the abstract counterpart to the pair constructor PAIR ∈

(M]
1)2→M

]
2 . Then a primitive primitive DIAG removes all the marker pair the

two components of which are not the same.
These primitives shall satisfy the following properties:

1. γM
i (⊥M

i) = /0, for any i ∈ {1;2};

2. M ⊆ γM
1 (>M

1);

3. ε ∈ γM
1 (εM

1);

4. ∀i ∈ {1;2}, ∀A ∈℘finite(M
]

i), tM
i (A) ∈M

]
i and ∀a ∈ A, avM

i t
M
i (A);

5. ∀i ∈ {1;2}, ∀A ∈℘finite(M
]

i), uM
i (A) ∈M

]
i and

∩({γM
i (a) | a ∈ A})⊆ γM

i (uM
i (A));

6. ∀i ∈ {1;2}, ∇M
i : (M]

i)2→M
]

i is a widening operator;

7. ∀a,b ∈M
]

1 , PAIR(a,b) ∈M
]

2 and γM
1 (a)× γM

1 (b)⊆ γM
2 (PAIR(a,b));

8. ∀a∈M
]

2 , DIAG(a)∈M
]

2 and γM
2 (a)∩{(id, id) | id∈M }⊆ γM

2 (DIAG(a)).

8.2.1.2 Abstract marker function

Since we want to describe an interaction between several threads, we need to
take into account the relations between much more markers. For that purpose we
introduce a domain that encodes functions the co-domain of which is the set of the
markers. For each finite set X , the abstract domain M

]
X is related to the concrete

domain ℘(X →M) by a concretization map γM
X . The domain M

]
X is not fitted

with any structure: it is only use in intermediary step and it is never involved in a
post-fixpoint extrapolation. Thus, each domain M

]
X is related to ℘(X →M) by

a monotonic concretization function γM
X .

For each finite set X , we introduce some abstract primitives to handle these
domains: the representation of the empty set⊥M

X , the representation of the empty
function /0]

M
(that abstracts the function /0M ∈ /0→M the domain of which is

empty), an abstract union tM
X , an abstract quotient to enforce synchronization

186 CHAPTER 8. ENVIRONMENT APPROXIMATION

conditions3 and an abstract push operator push which is used to compute the ab-
straction of the set of the new markers when replicating a resource.

1. γM
X (⊥M

X) = /0;

2. γM
X (/0]

M
) = { /0M };

3. ∀A ∈℘finite(M
]

X), tM
X (A) ∈M

]
X and ∀a ∈ A, avM

X t
M
X (A);

4. ∀q ∈ X →Y, ∀a ∈M
]

X , QUOTIENT(q,a) ∈M
]

Y and

{ f ∈ Y →M | (f ◦q) ∈ γM
X (a)} ⊆ γM

Y (QUOTIENT(q,a))

5. Let n be an integer. Let (pk)1≤k≤n be an n-tuple of program point labels. We
suppose that {(I, i) | 1 ≤ i ≤ n} ⊆ X , then ∀a ∈M

]
X , PUSH

(pk)
(a) ∈M

]
X and

{ f [(I,1) 7→ N((pk), f (I,1), . . ., f (I,k))] | f ∈ γM
X (a)} ⊆ γM

X (PUSH
(pk)

(a)).

The abstract quotient has two distinct purposes. The first one is re-indexing (when
it is applied with an injective function) and the second is merging some variables
while synchronizing their values (when it is applied with a non-injective function).

We also introduce an associative abstract join operator ⊗ and an abstract pro-
jection PROJ that are correct counterparts to the concrete join operator 4 and to the
concrete projection operator. These primitives shall satisfy the following proper-
ties:

1. ∀X ,Y , ∀a ∈M
]

X , b ∈M
]

Y , (a⊗b) ∈M
]

X∪Y and
{

(f ∈ (X ∪Y →M) | f|X ∈ γM
X (a), f|Y ∈ γM

Y (b)
}

⊆ γM
X∪Y (a⊗b);

2. ∀a ∈M
]

X , ∀Y ⊆ X ,

PROJ(Y,a) ∈M
]

Y and { f|Y | f ∈ γM
X (a)} ⊆ γM

Y (PROJ(Y,a));

We assume that the join operator ⊗ is associative and commutative. Thus we can
define the operator

⊗

that takes a set of abstract molecules and fold the⊗ operator
onto the elements of this set, starting from the /0]

M
elements.

3The abstract quotient of an abstract element a ∈M
]

X by a function q ∈ X → Y extracts all the
functions f that satisfies both the property a and the assertion [q(x) = q(y) =⇒ f (x) = f (y)] and
then replaces the domain X of f with the co-domain Y of q.

4The join of two functions sets A ∈℘(X → I) and B ∈℘(Y → I) is obtained by merging each
function pair (f ,g) ∈ A×B that f and g coincide on X ∩Y

8.2. CONTROL FLOW ANALYSES 187

8.2.1.3 Conversion primitive

Last we introduce some primitives to relate the domain M
]

1 to the domain M
]

s

for any singleton s and the domain M
]

2 to the domain M
]
p for any pair p. Let X

be a set of elements. Let x and y be two distinct elements in X . We introduce the
primitives BUILD-SG , EXTRACT-SG , BUILD-PR and EXTRACT-PR as follows:

• ∀a ∈M
]

1 , BUILD-SGx(a) ∈M
]
{x} and

γM
1 (a)⊆ { f (x) | f ∈ γM

{x}(BUILD-SGx(a)};

• ∀a ∈M
]

X , EXTRACT-SGx(a) ∈M
]

1 and

{ f (x) | f ∈ γM
X (a)} ⊆ γM

1 (EXTRACT-SGx(a));

• ∀a ∈M
]

2 , BUILD-PRx,y(a) ∈M
]
{x;y} and

γM
2 (a)⊆ {(f (x), f (y)) | f ∈ γM

{x;y}(BUILD-PRx,y(a));

• ∀a ∈M
]

X , EXTRACT-PRx,y(a) ∈M
]

2 and

{(f (x), f (y)) | f ∈ γM

{x;y}(a)} ⊆ γM
2 (EXTRACT-PRx,y(a)).

8.2.2 Atom abstraction

We abstract separately the environment of each thread: for each program point, we
approximate the values that may be associated with each variable of the interface
of a thread at this program point. We will also capture pair-wise comparisons
between the marker of the thread, and the marker of the values of each of its
variables.

Thus for each subset V ⊆ V , we introduce the domain Atom]
V = M

]
1 × (V ×

L →M
]

2). Each pair (a,b) ∈ Atom]
V is related to the set γV ((a,b)) of the pair

(id,E) ∈M × (V → (L ×M)) such that:

1. id ∈ γM
1 (a);

2. E(x) = (y, idy) =⇒ (id, idy) ∈ γM
2 (b(x,y)).

This way, the first component a describes the thread marker whereas the second
component b maps each pair (x,y) ∈ V ×L into an abstraction of the pair of
markers (id, idx), such that the thread may be associated with the marker id while
the variable x is associated in its environment with the value (y, idy).

The structure of these domains is the component-wise extension of the struc-
ture of the domains M

]
1 and M

]
2 . Other primitives are defined as follows:

188 CHAPTER 8. ENVIRONMENT APPROXIMATION

• the empty environment abstraction is defined as follows:

ε]
/0 = (εM

1 , /0)

where /0 denotes the function the domain of which is the empty set.

• the abstract restriction is defined as follows:

ν](x, l,(a,b)) = (a,b′)

where b′ =











(y,k) 7→ b(y,k) if x 6= y,

(x,k) 7→ ⊥M
2 if k 6= l,

(x, l) 7→ DIAG(PAIR(a,a)) otherwise.

This way, information about variables y 6= x remains unchanged. We also
encode that the label of the value of x is necessarily l. We use the primitive
DIAG to encode the fact that the marker of the value of x is the marker of
the thread.

• the abstract garbage collection is defined as follows:

GC](X ,(a,b)) = (a,b|(V∩X)×L),

by removing any information about garbage collected variables.

Theorem 8.2.1. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.2.3 Molecule abstraction

The main difficulty is to synthesize comparisons between markers throughout
computation steps. We use the marker of the thread instance as a pivot to syn-
thesize the comparison between the markers of the values. Furthermore, we use
synchronization conditions on the values to establish a comparison between the
markers of all the involved thread instances. Our main strategy is easy: first we
gather all the information we have about involved markers (this means we will
abstract sets of marker functions). Then, synchronization conditions give equality
relations. If these equality relations are satisfiable, the abstract computation step
is enabled and we compute, for each new thread instance, the comparison between
the marker of the new instance and the markers of the values.

8.2. CONTROL FLOW ANALYSES 189

8.2.3.1 Domain intuition

To achieve this goal, we will store abstract relations about the markers which are
involved in the synchronization constraints of the computation step. In order to
get a better accuracy, we partition this abstraction according to the label of the
values that are associated to the synchronized variables.

Thus an abstract molecule is described by five components:

• The first component is a tuple of abstract atoms: it gives a description of
each interacting thread separately.

• The second component is a set of variables. This set contains all the vari-
ables that are synchronized during the computation step.

• The third component approximates some equality relations about the vari-
ables that are constrained by the synchronization. It is given by an equiva-
lence relationship among the variables that are involved in the synchroniza-
tion.

• The fourth component approximates some disequality relations about the
variables that are constrained by the synchronization: some equivalence
classes are related with an edge that encodes the fact that the variables that
they contain are associated with distinct values.

• The fifth component describes the binding of constrained variables. This
description is partitioned according to the syntactic labels of the values: it
is given by a partial function that maps any function that associates equiva-
lence classes into a syntactic label to an abstraction of the markers that are
associated with the synchronized variables whenever they are associated
with these labels.

8.2.3.2 Domain definition

More formally, the domain Molecule]
(Vi)i∈J1;nK

is the set of all the 5-tuples

(f ,S,C,E,r) where:

• the element f ∈ J1;nK→ Atom]
Vi

is a map;

• the set S ⊆ {(a,k) | 1 ≤ k ≤ n, a ∈ Vk ∪ {I}} is the set of the synchro-
nized variables (the variable (I,k) denotes the identity of the k-th interacting
thread while the variable (a,k) with a ∈Vk denotes the variable a of the k-th
interacting component;

190 CHAPTER 8. ENVIRONMENT APPROXIMATION

• the set P ∈℘(℘(S)) is a partition of V . It means that two variables of the
same partition class in P are necessarily associated with the same value;

• the set E ∈ P×P denotes disequality relations among the elements of the
partition classes: it means that the variables of two related classes are nec-
essarily associated with distinct values;

• the map r ∈ (P→ L)→M
]

P describes information about the values as-
sociated with the synchronized variables. This information is partitioned
according to the labels of the values that are associated with the variables of
each partition class. For each valuation function t ∈ P→L , the abstract el-
ement r(t) ∈M

]
P describes relational information about the markers of the

threads and about the markers of the synchronized variable values when-
ever in each class C, the variables in the class C are associated with a value
tagged with the label t(C).

The concretization of an element (f ,S,P,E,r) ∈ Molecule]
(Vi)i∈J1;nK

is defined

as the set of the n-tuples (pi, idi,Ei)i∈J1;nK of threads that satisfy:

1. For any i ∈ J1;nK, we have (idi,Ei) ∈ γVi(f (i)).

2. We introduce the map σ that interprets the variables as follows:

σ :

{

(I,k)→ (pk, idk)

(a,k)→ Ek(a).

Then

• for any C ∈ P, we have:

∀x,y ∈C, σ(x) = σ(y);

• for any (C1,C2) ∈ E, we have:

∀x ∈C1,y ∈C2, σ(x) 6= σ(y).

3. Let us introduce the function t ∈ P→L that associates each equivalence
class C ∈ P with the label of the value which is associated with any variable
of the class C. This is defined5 by t(C) = l when there exists X ∈ C and a
marker id such that σ(X) = (l, id). The same way, let us introduce denote
by fM ∈ P→M that associates each equivalence class C ∈ P with the
marker of the value which is associated with any variable of the class C.
The function fM is defined by fM (C) = id when there exists X ∈ C and a
label l ∈L such that σ(X) = (l, id). Then we have fM ∈ γM

P (r(t)).

5The definition is well-formed due to the definition of the equivalence relation.

8.2. CONTROL FLOW ANALYSES 191

8.2.3.3 Abstract primitives

We now define the primitives for our domain:

• abstract injection: The abstract injection just consists in letting the atom
abstraction unchanged, there is no synchronized variables yet, the graph is
empty, and no information are stored about the values that are associated
with the elements of equivalence classes. Thus we define:

INJ](a) = ([1 7→ a], /0, /0, /0, [/0L → /0]
M

]).

• abstract product: When gathering some abstract molecules, we just re-
name the index that occur in the right argument. Let (f ,S,P,E,r) ∈
Molecule]

(Vi)i∈J1;nK
and (f ′,S′,P′,E ′,r′) ∈ Molecule]

(V ′i)i∈J1;n′K
. We set n′′ =

n + n′ and (V ′′i)i∈J1;n′′K that is defined as V ′′i = Vi for any i ∈ J1;nK, and as
V ′′i+n = V ′i for any i ∈ J1;n′K. The variables that occur in (f ′,S′,P′,E ′,r′′)
must be re-indexed before gathering the two abstract elements. For that
purpose, we introduce several re-indexing functions as follows:

1. for each variable (x,k)∈ S′, we define the variable σv(x,k) as (x,k+n);

2. for any subset A⊆ S′, we define the set σ℘(A) as {σv(x) | x ∈ A};

3. for any relation R ∈℘(S′)×℘(S′), we define the relation σR(R) as
{(σ℘(C1),σ℘(C2)) | (C1,C2) ∈ R}.

Then we define the abstract concatenation (f ,S,P,E,r)• (f ′,S′,P′,E ′,r′) as
(f ′′,S′′,P′′,E ′′,r′′) ∈Molecule]

(V ′′i)
where:

– f ′′ :

{

i 7→ f (i) when i≤ n

i 7→ f ′(i−n) when i > n;

– S′′ = S∪σ℘(S′):

– P′′ = P∪{σ℘(C) |C ∈ P′};

– E ′′ = E ∪σR(E ′);

– r′′(t) = r(t|P)⊗ QUOTIENT
(

σv,r′
(

[C ∈ P′ 7→ t(σ℘(C))]
))

, where the
primitive QUOTIENT is used only for re-indexing purposes.

• abstract projections: Let (f ,S,P,E,r) ∈ Molecule]
(Vi)

be an abstract ele-

ments. For any X ∈ S, we denote by C(X) the element in P such that
X ∈C(X). Before performing the abstract projection, we use the informa-
tion collected about the variables in S to refine the atom abstraction f (k).

192 CHAPTER 8. ENVIRONMENT APPROXIMATION

Let us denote by (a0,b0) the abstract atom f (k). We define the abstract pro-
jection PROJ](k,(f ,S,P,E,r)) as the abstract atom (a,b) where the abstract
thread marker a ∈M

]
1 is given by:

{

uM
1 ({a0;tM

1 ({EXTRACT-SGC((I,k))(r(ρ)) | ρ ∈ P→L })}) if (I,k) ∈ S

a0 otherwise,

and for any (x,y) ∈ V ×L , the abstract marker pair b(x,y) ∈M
]

2 is given
by uM

2 {b0(x,y);A} where the marker pair abstraction A denotes the new
constraints that may be collected by merging all the cases of the partition.
The marker pair abstraction A is defined as follows:

1. in the case when (I,k) ∈ S and (x,k) ∈ S:

A
∆
= tM

2

({

EXTRACT-PRC((I,k)),C((x,k))(r(ρ))

∣

∣

∣

∣

ρ ∈ P→L ,
ρ(C((x,k))) = y

})

;

2. in the case when (I,k) ∈ S and (x,k) 6∈ S:

A
∆
= PAIR(a,>M

1);

3. in the case when (I,k) 6∈ S and (x,k) ∈ S:

A
∆
= PAIR

(

a,tM
1

{

EXTRACT-SGC((x,k))(r(ρ))

∣

∣

∣

∣

ρ ∈ P→L ,
ρ(C((x,k))) = y

})

;

4. in the case when (I,k) 6∈ S and (x,k) 6∈ S:

A
∆
= PAIR(>M

1 ,>M
1).

• abstract extension: Let (Vi) be a family of n interfaces, let X be a subset of
V × J1;nK, and let (f ,S,P,E,r) be an abstract element in Molecule]

(Vi)
. Ab-

stract extension consists in associating new variables with no information in
their abstract atoms and in removing any constraints about the variable in X
in the abstraction of the thread relations. For each i ∈ J1;nK, we define the
set Wi ⊆ V of variables as Vi ∪{x | (x, i) ∈ X}. We define the abstract ex-
tension, NEW

]
>(X ,A) ∈Molecule]

(Wi)
, of A by X , as (f ′,S′,P′,E ′,r′) where:

1. f ′(i) =

(

id],

{

(x,y) 7→ PAIR(id],>M
1) if (x, i) ∈ X

(x,y) 7→ g](x,y) otherwise

)

where (id],g]) = f (i);

8.2. CONTROL FLOW ANALYSES 193

2. S′ = S \X ;

3. P′ = {C1 \X |C1 ∈ P, C1 6⊆ X};

4. E ′ = {(C1 \X ,C2 \X) | (C1,C2) ∈ E, C1 6⊆ X , C2 6⊆ X};

5. r′(ρ) = tM
P′ {ψ(r(θ)) | ∀C ∈ P, C 6⊆ X =⇒ θ(C) = ρ(C \X)},

where ψ(a) is defined as:

QUOTIENT([C 7→C \X],PROJ({C ∈ P |C 6⊆ X},a)).

• abstract synchronization: Let n ∈ N be an integer. Let (Vi) be a family of n
interfaces. Let (f ,S,P,E,r) be an abstract in Molecule]

(Vi)1≤i≤n
, let (pi)∈L n

p

be a tuple of program point labels and A be a set of constraints of the form
(x,k) � (y, l) where k, l ∈ J1;nK, x ∈ Vk ∪{I} and y ∈ Vl ∪ {I}, the abstract
synchronization SYNC](A,(pi),(f ,S,P,E,r)) of (f ,D,P,E,r) according to
the set of constraints A is computed in several steps:

1. First we compute the set of the variables that are constrained. We in-
troduce the set Vs of variables that occurs in the synchronization con-
straints: we set Vs = {a ∈ V ×N | ∃b,�, (a � b) ∈ A or (b � a) ∈ A}.
Constraining a variable also provide information about the identity of
the thread. We define the set of the constrained variables Vn as the set
Vs∪{(I,k) | ∃a ∈ V , (a,k) ∈Vs}.

2. Then we update the set of the constrained variables: We define S1 =
S∪Vn. At first, we associate no information with these variables. So
we set P1 = P∪{{x} | x ∈ S1 \S} and E1 = E.

3. We now take into account equality synchronization constraints. We
update equivalence classes. We define a binary equivalence ∼ over
P1 as the smaller (as a subset of (P1)

2) equivalence such that for any
classes C1,C2 ∈ P1 such that there exist two variables a ∈C1 and b ∈
C2 that satisfy (a = b) ∈ A, we have C1 ∼ C2. Then we merge the
equivalence classes: we define P2 as:

{

⋃

{Y ∈ P1 | X ∼ Y} | X ∈ P1

}

.

4. Disequality edges collect previous disequality relations and the new
ones. We define E2 as old∪new where:

{

old = {(X ,Y) ∈ (P2)
2 | ∃(Z,T) ∈ E1,Z ⊆ X and T ⊆ Y},

new = {(X ,Y) ∈ (P2)
2 | ∃(x,y) ∈ X×Y, a 6= b ∈ A}.

194 CHAPTER 8. ENVIRONMENT APPROXIMATION

5. The fourth step update the definition of r. First we introduce a quotient
function q that maps any class C ∈ P into the unique class q(C) ∈ P2

such that C ⊆ q(C). Moreover, for each element x ∈V1, we denote by
[x] the unique class [x] ∈ P2 such that x ∈ [x]. Then we define r1 as
follows:

r1(ρ) =

{

⊗

(A1(ρ)∪A2(ρ)∪A3(ρ)), if ρ([(I,k)]) = pk, ∀k ∈ J1;nK,

⊥M
P2

, otherwise,

where:

– A1(ρ) = {QUOTIENT(q,r([A ∈ S 7→ ρ(q(A))]))},

– A2(ρ) = {BUILD-PR [(I,k)],[(a,k)](snd(f (k))(a,ρ([(a,k)]))) |
(a,k) ∈Vs},

– A3(ρ) = {BUILD-SG [(I,k)](fst(f (k))) | ∃a ∈ V , (a,k) ∈Vs},

Intuitively, the computation of r1(ρ) consists in taking the join of three sets
of constraints: the first one A1(ρ) contains the constraints that are given by
quotienting the old ones; the second one A2(ρ) collects the constraints about
marker pair from the abstraction of atoms; the third one A3(ρ) collects the
constraints about marker identities from the abstraction of atoms. Moreover,
if ρ does not map the identity of each thread to its program point label, the
r1(ρ) is not satisfiable.

Either in the case when there exists X ∈ P2 such that (X ,X) ∈ E2

or in the case when we have r1(ρ) = ⊥M
P2

for any ρ ∈ P2 → L ,
the synchronization is not possible in the concrete level. In such
cases, we set SYNC](A,(pi),(f ,S,P,E,r)) = ⊥M

(Vi)
, otherwise we set

SYNC](A,(pi),(f ,S,P,E,r)) = (f ,S1,P2,E2,r1). We notice that the first
component is left unchanged, reduction will be performed later when do-
ing projections.

• abstract marker allocation: To simulate marker allocation in the abstract,
we need to update the relational information between the values that are
associated with each variable of the replicated threads and the marker of
these threads. This is performed in several steps.

Let n ∈ N be an integer. Let (Vi) be a family of n interfaces. Let (pk) be
an n-tuple of program points. Let (f ,S,P,E,r) be an abstract molecule in
Molecule]

(Vi)
.

1. Since the new thread marker is built from all markers of the threads
that are interacting, we add any variable of the form (I,k) to the set

8.2. CONTROL FLOW ANALYSES 195

of the constrained variables: we set S1 = S∪{(I,k) | 1 ≤ k ≤ n} and
P1 = P∪{{(I,k) | 1 ≤ k ≤ n,(I,k) 6∈ S}}. Then we update the map
r by joining previous constraints with marker abstraction that may be
collected from the abstract atoms: for any ρ ∈ S1→L , we set r1(ρ) =
⊗

{r(ρ|S)}∪{[(I,k) 7→ fst(f (k))] | 1 ≤ k ≤ n, (I,k) 6∈ S} if for any k
such that 1 ≤ k ≤ n and (I,k) 6∈ S, we have ρ({(I,k)}) = pk, and we
set r1(ρ) =⊥M

P1
otherwise.

2. The operator PUSH requires that its argument is an abstraction
of marker functions the domain of which contains the variables
{(I,k) | 1≤ k ≤ n}. But, for any valuation ρ ∈ P1→L , the element
r1(ρ) abstracts marker functions the domain of which is class of vari-
ables. Thus, we extend function domains by duplicating information
about each class that contains a variable of the form (I,k). For any k
such that 1 ≤ k ≤ n, we define φk as φk(X) = (I,k) when (I,k) ∈ X ,
and φk(X) = X otherwise. Then, for any element a ∈ P1, we define
ψ(a) ∈M

]
P1∪{(I,k) | 1≤k≤n} as

⊗

{QUOTIENT(φk,a) | 1≤ k ≤ n}.

3. Thus the molecule (f ,S1,P1,E,r1) contains all the relational informa-
tion we need about the markers of the threads that are interacting. Then
we compute the abstraction of the marker that is allocated to the new
replicated threads: each valuation ρ ∈ P1→L gives a thread marker
id](ρ) that is defined as:

EXTRACT-SG(I,1)(PUSH
(pk)

(ψ(r1(ρ)))).

Then we consider all the cases for the partition and define id
]

as:

tM
1 {id

](ρ) | ρ ∈ P1→L }.

4. The next step consists in computing for each variable v in the interface
I(p1) and each label l ∈L , the abstraction of the marker pairs (id, idv)
such that v may be associated with the value (l, idv) in a thread at
program point p1 with a marker id. Only the first thread changed. We
fix (v, l) ∈ (I(p1)×L). We consider all potential valuation ρ ∈ P1→

L . For any ρ ∈P1→L , we define id]
2(v, l,ρ) as⊥M

2 in the case when
ρ(v) 6= l or as EXTRACT-PR (I,1),(v,1)(PUSH

(pk)
(ψ(r1(ρ)))) otherwise.

Then we consider all the cases for the partition and define id
]
2(v, l) as:

tM
2 {id

]
2(v, l,ρ) | ρ ∈ P1→L }.

196 CHAPTER 8. ENVIRONMENT APPROXIMATION

Thus we update the definition of f . We define f1 as follows:

f1(k)
∆
=

{

(id
]
, [(v, l) 7→ id

]
2(v, l)]) if k = 1

f (k) otherwise.

5. The last step updates the information about the variable (I,1): we
remove the variable (I,1) from any partition class and enforce the fact
that its value is fresh. Then we compute relational information. We
set:


























P2 = ({C \{(I,1)} |C ∈ P1}\{ /0})∪{{(I,1)}},

E2 = ({(C1 \{(I,1)},C2 \{(I,1)}) | (C1,C2) ∈ E1}∩ (P2)
2)

∪({{(I,1)}}× (P2 \{{(I,1)}})),

r2(ρ) = QUOTIENT(g,GC](Y,PUSH
(pk)

(ψ(r1(ρ))))).

where g((I,1)) = {(I,1)} and g(X) = X otherwise,
and Y = (P2 \{{(I,1)}})∪{(I,1)}.

Thus we define FETCH]((pk),(f ,S,P,E,r)) as (f1,S1,P2,E2,r2).

Theorem 8.2.2. These primitives satisfy the soundness assumptions of Sect. 8.1.2.

8.2.4 Combining marker abstractions

In this section, we show how we may combine marker abstractions and how we
may refine marker abstractions.

8.2.4.1 Cartesian product

Proposition 8.2.3 (marker cartesian product). Let
(

M
]

1 ,M]
2 ,(M]

X)X

)

and
(

M
]
1,M

]
2,(M

]
X)
)

be two marker abstractions and their respective abstract

primitives. The tuple
(

M
]

1 ×M
]
1,M

]
2 ×M

]
2,(M

]
X ×M

]
X)X

)

is also a marker

abstraction, where each abstract primitive is defined pairwise and each con-
cretization function is the intersection of the concretization functions. This
marker abstraction is called the Cartesian product of the marker abstractions
(

M
]

1 ,M]
2 ,(M]

X)X

)

and
(

M
]
1,M

]
2,(M

]
X)X

)

.

8.2. CONTROL FLOW ANALYSES 197

8.2.4.2 Reduced domain

Proposition 8.2.4 (marker reduced abstration). Let (M]
1 ,M]

2 ,(M]
X)X) be a

marker abstraction and its abstract primitives. Let (ρ1,ρ2,(ρ)X) be a collection
of reduction operators such that:

• ∀a ∈M
]

1 , γM
1 (a)⊆ γM

1 (ρ1(a));

• ∀a ∈M
]

2 , γM
2 (a)⊆ γM

2 (ρ2(a));

• for any finite set X, ∀a ∈M
]

X , γM
X (a)⊆ γM

X (ρX(a));

Then the tuple (M]
1 ,M]

2 ,(M]
X)X) fitted with the following primitives:

1. for any i ∈ {1;2}:

(a) ⊥
M

i =⊥M
i ;

(b) >
M

i = ρi(>
M
i);

(c) εM
1 = ρ1(εM

1);

(d) ∀A ∈℘finite(M
]

i), tM
i A = ρi(t

M
i ({ρi(a) | a ∈ A});

(e) ∀A ∈℘finite(M
]

i), uM
i A = ρi(u

M
i ({ρi(a) | a ∈ A});

(f) ∀a,b ∈M
]

i , (a∇M

i b) = (a∇M
i ρi(b));

(g) ∀a,b ∈M
]

1 , PAIR(a,b) = ρ2(PAIR(ρ1(a),ρ1(b)));

(h) ∀a ∈M
]

2 , DIAG(a)) = ρ2(DIAG(ρ2(a)));

2. for any finite set X and Y :

(a) /0]
M

= /0]
M

;

(b) ⊥
M

X =⊥M
X ;

(c) ∀A ∈℘finite(M
]

X),

tM
X A = ρX(tM

X ({ρX(a) | a ∈ A});

(d) ∀q ∈ X →Y , ∀a ∈M
]

X ,

QUOTIENT(q,a) = ρY (QUOTIENT(q,ρX(a))).

(e) let n ≥ 2 be an integer such that {(I, i) | 1 ≤ i ≤ n} ⊆ X, for
any tuple (pi)1≤i≤n of program point labels, ∀a ∈M

]
X , PUSH

(pk)
(a) =

ρX(PUSH
(pk)

(ρX(a)));

198 CHAPTER 8. ENVIRONMENT APPROXIMATION

(f) ∀a ∈M
]

X , b ∈M
]

Y , (a⊗b) = ρX∪Y (ρX(a)⊗ρY (a));

(g) ∀a ∈M
]

X , PROJ(X ∩Y,a) = ρX∩Y (PROJ(X ∩Y,ρX(a)));

3. let X be a set of elements, let x and y be two distinct elements in X,

(a) ∀a ∈M
]

1 , BUILD-SGx(a) = ρ{x}(BUILD-SGx(ρ1(a)));

(b) ∀a ∈M
]

X , EXTRACT-SGx(a) = ρ1(EXTRACT-SGx(ρX(a)));

(c) ∀a ∈M
]

2 , BUILD-PRx,y(a) = ρ{x;y}(BUILD-PRx,y(ρ2(a)));

(d) ∀a ∈M
]

X , EXTRACT-PRx,y(a) = ρ2(EXTRACT-PRx,y(ρX(a)));

is also a marker abstraction. We call it the reduction of the marker abstraction
(M]

1 ,M]
2 ,(M]

X)X) by the reduction operators (ρ1,ρ2,(ρ)X).

8.2.5 Three control flow analyses

Various domains can be used to instantiate the parametric domains M
]

1 , M
]

2 and

M
]

X depending on the trade-off between complexity and accuracy. We propose
three particular instantiations. The first one abstracts away the information about
markers. The result is a uniform control flow analysis. The second one keeps
only the equality relations among markers which gives an analysis which may
express the same kind of properties than group creation type system [16,15]. The
third one allows for algebraic comparisons of markers which is, to the best of our
knowledge, beyond the scope of the analyses previously presented in the literature.

8.2.5.1 Uniform control flow analysis

Uniform control flow analysis consists in detecting the potential interactions be-
tween syntactic components, without keeping any information about markers. For
each variable, it will capture an upper-approximation of the set of the labels of the
values that may be associated with this variable. We introduce the total order
(T,vT) = {⊥;>} with⊥vT >. For any set X , the domain T is related to the do-
main℘(X) by the monotonic concretization function γT

X that associates⊥with the
empty set /0 and > with X . We also introduce an abstract union tT ∈℘(T)→ T
and an abstract intersection uT ∈℘(T)→ T as follows:

1. ∀A ∈℘(T), tT (A) =

{

⊥ if A⊆ {⊥}

> otherwise;

2. ∀A ∈℘(T), uT (A) =

{

⊥ if ⊥ ∈ A

> otherwise.

8.2. CONTROL FLOW ANALYSES 199

We instantiate the domains M
]

1 , M
]

2 and M
]

X for each finite set X with the
domain T . We take γM

1 = γT
M

, γM
2 = γT

M 2 and γM
X = γT

X→M
.

Then the abstract primitives are defined as follows:

1. ⊥M
i =⊥, for any i ∈ {1;2};⊥M

X =⊥, for any finite set X ;

2. /0]
M

=>;

3. >M
1 =>;

4. εM
1 =>;

5. ∀i ∈ {1;2}, tM
i = tT and uM

i = uT ; moreover, tM
X = tT for any finite

set X ;

6. since the domain T is height bounded, we define a∇M
i b = tM

i {a;b}, for
any i ∈ {1;2};

7. PAIR = [(a,b) 7→ uT{a;b}];

8. DIAG = [a 7→ a];

9. QUOTIENT = [(q,a)→ a];

10. PUSH
(pk)

(a) = a;

11. a⊗b = uT{a;b};6

12. PROJ(Y,a) = a;

13. BUILD-SGx(a) = a, EXTRACT-SGx(a) = a, BUILD-PR x,y(a) = a and
EXTRACT-PRx,y(a) = a.

The analysis that we get is always at least as precise as the following classical
0-CFA:

• the analysis proposed in [11, 9] for the π-calculus ;

• the analysis proposed in [59] for the ambient calculus ;

• the analysis proposed in [61] for the spi-calculus ;

• the analysis proposed in [60] for the BIO-ambients.

6For the sake of simplicity, we ignore the case when a or b is the abstraction of the empty
function.

200 CHAPTER 8. ENVIRONMENT APPROXIMATION

These analyses computes the least element of a Moore family defined as the so-
lution set of a constraint system. Since our abstract union is exact and because
we do not use widening operators, the result of our abstract semantics is the least
fixpoint of the abstract endomorphism induced by C0env and→env. This least fix-
point is also the least element of a Moore family defined as the solution set of
a constraint system. Then, comparing the constraints involved in both analyses,
it turns out that our constraint system is implied by the 0-CFA system. So, any
solution of the 0-CFA is also a solution of our system and the least solution of
ours is more precise than the one obtained by using the 0-CFA. Roughly speak-
ing, 0-CFA does not take into account action sequentiality: the constructed system
only depends on the syntactic partial interaction set. Furthermore, it may not infer
distinct abstractions for two distinct occurrences of the same channel name.

Moreover the analysis described in [60] is refined by an analysis of the threads
that may not occur simultaneously. Such refinements are also possible in our
framework. Mutual exclusions are dealt in the next chapter.

8.2.5.2 Confinement

We now focus on the equality relations between markers. We use this analysis in
order to prove that a value may only be passed to the thread instances with the
same marker. It is especially useful in case of recursion or in case of replication
to ensure that the values that are declared by some instances may not be passed to
others instances of the same thread.

For that purpose, we use a graph-based domain to represent equality relations
between markers. Each vertex describes a component; a path between two vertice
expresses the fact that the two related components are always equal. Then we lift
that domain with an extra element in order to represent a non-satisfiable property.
Let X be a finite set. We define the set GX = (℘(X2)) of all the graphs y the set
of the vertice of which is X . The reflexive, symmetric, and transitive closure of a
graph (y) is denoted by (y∗). The pre-order vG

X , the concretization function γG
X

and some abstract primitives are defined on GX as follows:

• ∀y1,y2∈℘(X2),y1v
G
X y2⇐⇒y2⊆y1,

• ∀y∈℘(X2), γG
X (y) = { f ∈ X →M | x y y =⇒ f (x) = f (y)};

• ∀A∈℘(X2)\ /0, we define tX(A)∈℘(X2) as x[tX (A)]y if and only if ∀y∈
A,x y∗ y;

• εG = /0 ∈℘({1}2);

8.2. CONTROL FLOW ANALYSES 201

• for any set X , Y , ∀yX∈ GX , yY∈ GY , we define yX ⊗G yY∈ GX ,Y as
a[yX ⊗G yY]b if and only if either (a,b) ∈ X 2 and a yX b, or (a,b) ∈ Y 2

and a yY b.

• for any set X , Y , ∀yX∈ GX , we define ΠY
G
(yX) ∈ GY as a[ΠY

G
(yX)]b if

and only if (a,b) ∈ Y 2 and a y∗X b.

Roughly speaking, the partial order is the opposite of the constraint set in-
clusion because, the more constraints, the fewer solutions. The concretization of
a graph is the set of all the tuples the components of which satisfy the equality
relations described by the edges of this graph. The representation of the empty
word is just a graph with one vertex. Gathering some abstract elements consists in
intersecting the constraint sets they are described with. Abstract join just makes
the union of several graphs. Projection consists in restricting the set of the vertice,
keeping equality relations on the remaining vertice. Before applying union and
projection, we must close graphs, if not we may lose information.

Then we lift each domain GX by adding an extra element ⊥G
X . We denote

GX the set GX ∪⊥
G
X . The element ⊥G

X is the least element of the domain GX .
Moreover, the concretization of ⊥G

X is the empty set. Abstract union is lifted as
follows:

tG
X (A) =

{

⊥G
X if A⊆ {⊥G

X }

tG
X A\{⊥G

X } otherwise.

Abstract intersection is lifted as follows:

uG
X (A) =

{

⊥G
n if ⊥G

X ∈ A

uG
X A otherwise.

All other abstract primitives are lifted to be strict, which means that they return
the well-typed good element of the form ⊥G

X as soon as one of their arguments is
of the form ⊥G

X .
We instantiate our abstract domains. We set M

]
1 = G {1}, M

]
2 = G {1;2} and

M
]

X = G X for each finite set X . We take γM
1 = γG

{1}, γM
2 = γG

{1;2}, γM
X = γG

X .
Then the abstract primitives are defined as follows:

1. ⊥M
1 =⊥G

{1}, ⊥
M
2 =⊥G

{2}, ⊥
M
X =⊥G

X , for any finite set X ;

2. /0]
M

= /0;

3. >M
1 = /0;

4. εM
1 = /0;

202 CHAPTER 8. ENVIRONMENT APPROXIMATION

5. tM
1 = tG

{1}, t
M
2 = tG

{1;2}, t
M
X = tG

X , for any finite set X ,

6. uM
1 = uG

{1}, and uM
2 = uG

{1;2};

7. since domains are height bounded, we define a∇M
i b = tM

i {a;b}, for any
i ∈ {1;2};

8. PAIR(a,b) =

{

⊥G
{1;2} if ⊥G

{1} ∈ {a;b},

/0 otherwise;

9. DIAG(a) =

{

⊥G

{1;2} if ⊥G

{1;2} ∈ {a;b},

{(1;2)} otherwise;

10. for any set X , Y , any q∈X→Y , and any a∈G X , we define QUOTIENT(q,a)

as:

{

⊥G
Y if a =⊥G

X ,

{(q(x),q(y)) | (x,y) ∈ a, q(x) 6= q(y)} otherwise;

11. PUSH
(pk)

(a) = a∩ (X \{(I,1)})2;

12. a⊗b = a⊗G b;

13. PROJ(Y,a) = ΠY
G
(a);

14. BUILD-SGx(a) =

{

⊥G
{x} if a =⊥G

{1},

/0 otherwise;

15. EXTRACT-SGx(a) =

{

⊥G
{1} if a =⊥G

X ,

/0 otherwise;

16. BUILD-PRx,y(a) =











⊥G

{x;y} if a =⊥G

{1;2},

{(x,y)} if (1,2) ∈ a or (2,1) ∈ a,

/0 otherwise;

17. EXTRACT-PRx,y(a) =











⊥G

{1;2} if a =⊥G

{x;y},

{(1,2)} if (x,y) ∈ a or (y,x) ∈ a,

/0 otherwise;

8.2. CONTROL FLOW ANALYSES 203

The type system that is proposed in [16, 15] uses the notion of group. Groups
gather some values that have been declared by the same recursive instance of a
thread. Then, the type system ensures that the values of one group may not be
communicated to the variables of the other groups. This ensures information con-
finement even inside recursive instances. However, the type system may not vali-
date a system where a given value first exits the scope of the thread instance which
has declared it and then enters again the recursive instance which has declared it.
The same way, we cannot deal precisely with values that first exits the scope of
the thread that has declared them, then enter again this scope with our abstract do-
main. The main problem is that we can only propagate equality relations. When
the value is communicated to a thread with a distinct marker, we loose all infor-
mation. Then, if the value is returned to the thread that has previously declared
this value, we cannot infer the equality relation. To achieve this goal we need an
algebraic comparison between markers. That is the purpose of Sect. 8.2.5.3.

8.2.5.3 Non-uniform analysis with algebraic comparisons

We now propose an abstract domain which deals with abstract algebraic compar-
isons between markers. Following Prop. 4.5.18 on page 69, we only abstract each
tree by the word that is obtained by following the second child of each node. We
choose m ∈ {1;2}, according to the chosen simplification function φ1 or φ2

7. We
define the alphabet Σm as L ∗ when m = 1 and by L when m = 2. The function
σm maps each tuple of at least two program points into a letter of σm. It is de-
fined by σm((ai)) = (ai) when m = 1 and σm((ai)) = a2 when m = 2. We use a
reduced product between two abstractions. The reduction operators are given in
Sect. 8.2.5.3.3. Our first abstraction consists in abstracting component-wise the
shape of the markers associated to threads. The second one infers a comparison
between the Parikh’s vectors of the markers.

8.2.5.3.1 Regular approximation. We approximate the marker shape in
regular languages. For the sake of efficiency, we only use the regular languages
which may be described by a set of initial letters, a set of last letters and a suc-
cession relation between letters. The result is an efficient abstract domain of lan-
guages, the height of which is quadratic in the cardinal of the alphabet Σm. More-
over, abstract primitives may be computed with a O(|Σm|

2) worst-case time cost.
We introduce the set RegΣm

of tuples (i, f , t,b) such that i, f ∈℘(Σm), t ∈
(Σm →℘(Σm)) and b ∈ {0;1}. Each element (i, f , t,b) ∈ RegΣm

is related to a

7Both functions have been introduced in Prop. 4.5.18.

204 CHAPTER 8. ENVIRONMENT APPROXIMATION

language on Σm via a concretization function γReg
Σm

defined as follows:

u ∈ γReg
Σm

(i, f , t,b)⇐⇒



















|u|> 0 =⇒ u1 ∈ i

|u|> 0 =⇒ u|u| ∈ f

∀i ∈ J1; |u|J, |u|i+1 ∈ t(ui)

|u|= 0 =⇒ b = 1.

Roughly speaking, i is the set of the initial letters of the language words, f is the
set of the final letters. The set t(a) is the set of letters which may immediately
follow an occurrence of the letter a. The boolean b is equal to 1 if the empty word
belongs to the language.

It is worth noting that only letters that are both reachable from an initial letter
and co-reachable from a final letter are insightful. We define a reduction operator
ρReg ∈ RegΣm

→ RegΣm
that removes useless letter. Let (i, f , t,b) ∈ RegΣm

be an
abstract element. Let X ⊆ Σm be the set of the letters λ that may occur in a word
u ∈ γReg

Σm
((i, f , t,b)) (i.e. such that state corresponding to λ is both reachable and

co-reachable). The element ρReg((i, f , t,b)) is defined as (i∩X , f ∩X , [λ→ t(λ)∩
X],b). A constructive definition of ρReg is easily deduced by using Dijkstra’s
shortest path closure algorithm.

Proposition 8.2.5. The reduction operator satisfies the soundness property
γReg

Σm
(a)⊆ γReg

Σm
(ρReg(a)).

Then the abstract domain RegΣm
is fitted with a complete lattice structure

(RegΣm
,v

Reg
Σm

,u
Reg
Σm

,t
Reg
Σm

,⊥
Reg
Σm

,>
Reg
Σm

) as follows:

• v
Reg
Σm

and tReg
Σm

are defined component-wise from the usual set operations⊆
and ∪;

• We compute the reduction operator ρReg after each abstract intersection.
Let A = {(ik, fk, tk,bk) | k ∈ K} be set of elements in RegΣm

, we define the

element (u
Reg
Σm

A) ∈ RegΣm
as ρReg(i′, f ′, t ′,b′), where:

1. i′ = ∩{ik | k ∈ K},

2. f ′ = ∩{ fk | k ∈ K},

3. t ′ = [λ →∩{tk(λ) | k ∈ K}],

4. b′ = min{bk | k ∈ K};

• ⊥
Reg
Σm

= (/0, /0, [λ 7→ /0],0);

• >
Reg
Σm

= (Σm,Σm, [λ 7→ Σm],1).

8.2. CONTROL FLOW ANALYSES 205

Furthermore, the language that contains only the empty word is described by
the tuple (/0, /0, [λ 7→ /0],1) and is denoted by εReg

Σm
. At last, we can define the

primitive PUSH
Reg
Σm

: RegΣm
×Σm → RegΣm

which adds a letter at the end of all

the words of a language by PUSH
Reg
Σm

((i, f , t,b),λ) = (i′, f ′, t ′,b′) where:



















































i′ =

{

i∪{λ} if b = 1

i otherwise;

f ′ =

{

{λ} if b = 1 or i 6= /0

/0 otherwise;

t ′ =

[

a 7→

{

t(a)∪{λ} if a ∈ f

t(a) otherwise

]

;

b′ = 0.

We instantiate our abstract domains. We set M
]

1 = RegΣm
, M

]
2 = (RegΣm

)2

and M
]

X = X → RegΣm
, for any finite set X . We take γM

1 = γReg
Σm

. The concretiza-

tion function γM
2 applies the function γReg

Σm
pair-wise. For any finite set X the

concretization function γM
X applies the function γReg

Σm
component-wise.

Then the abstract primitives are defined as follows:

1. ⊥M
1 =⊥

Reg
Σm

; ⊥M
2 = (⊥

Reg
Σm

,⊥
Reg
Σm

); ⊥M
X = [x 7→ ⊥Reg

Σm
];

2. /0]
M

is the function /0RegΣm
;

3. >M
1 =>

Reg
Σm

;

4. εM
1 = εReg

Σm
;

5. tM
1 = t

Reg
Σm

, tM
2 applies tReg

Σm
pair-wise, and for any finite set X , tM

X ap-

plies tReg
Σm

component-wise;

6. uM
1 = u

Reg
Σm

, and uM
2 applies uReg

Σm
pair-wise;

7. since domains are height bounded, we set a∇M
i b = tM

i {a;b}, for any i ∈
{1;2};

8. PAIR(a,b) = (a,b);

9. DIAG((a,b)) = (uM
1 {a;b},uM

1 {a;b});

206 CHAPTER 8. ENVIRONMENT APPROXIMATION

10. for any set X , Y , for any q ∈ X → Y , and for any a ∈ RegΣm
, we define

QUOTIENT(q,a) as:










⊥M
Y if a =⊥M

X

⊥M
Y if ∃y ∈ Y, u

Reg
Σm
{a(x) | q(x) = y}=⊥

Reg
Σm

[y 7→ uReg
Σm
{a(x) | q(x) = y}] otherwise;

11. PUSH
(pk)

(a) maps the variable (I,1) to the abstract element

pushReg(a((I,2)),σm((pk))) and any other variables X to the element
a(X);

12. • in the case when there exists x ∈ Dom(a) ∩ Dom(b) such that
⋂Reg{a(x),b(x)}=⊥Reg, we set:

a⊗b =⊥M

Dom(a)∪Dom(b),

• otherwise, we set:

a⊗b =





x 7→ a(x) if x ∈ Dom(a)\Dom(b)
x 7→ b(x) if x ∈ Dom(b)\Dom(a)

x 7→ uReg
Σm
{a(x),b(x)} if x ∈ Dom(a)∩Dom(b)



 ;

13. PROJ(Y,a) = a|Y ;

14. BUILD-SGx(a) = [x 7→ a], EXTRACT-SGx(a) = a(x),

BUILD-PRx,y((a,b)) = [x 7→ a,y 7→ b], and

EXTRACT-PRx,y(a) = (a(x),a(y)).

8.2.5.3.2 Numerical approximation. Our second abstraction captures re-
lational comparisons between the occurrence number of each pattern inside sets
of marker maps. For each finite set X , we introduce a set VX of distinct variables
{vλ

x | x ∈ X , λ ∈ Σm}. The abstract domain ℘(VX → N) is related to ℘(X →M)
by the monotonic map γRel

X :

γRel
X (A) =

{

f ∈ X →M

∣

∣

∣∃w ∈ A, ∀vλ
x ∈ VX , w(vλ

x) = |φm(f (x))|λ
}

.

Then the power set ℘(VX → N) is related to a numerical domain. Many rela-
tional numerical domains have been introduced in the literature [47, 26, 42, 55].
We propose two choices according to the expected trade-off between complex-
ity and accuracy. They both use the complete lattice of affine equality systems

8.2. CONTROL FLOW ANALYSES 207

among a set of variables. This domain is described with its lattice operations
(vK

V
,tK

V
,⊥K

V
,uK

V
,>K

V
) in [47]. Given a set of variables V , we denote by KV

the domain of the affine equality systems among the elements of V . This domain
is related to the power set ℘(V →N) by a concretization function that we denote
γK
V

.

8.2.5.3.2.1 Component-wise affine comparison The first abstrac-
tion choice consists in relating each letter λ in the alphabet Σm with affine rela-
tionships between the occurrence number of λ in each marker. For any set X of
variables (each variable is associated with a marker), we introduce Id Rel

X as the
complete lattice (Σm→K{vx | x∈X}) defined point-wise.

We instantiate our abstract domains. We set M
]

1 = IdRel
{1}, M

]
2 = IdRel

{1,2} and

M
]

X = IdRel
X , for any finite set X . Concretizations are defined as follows:

• γM
1 (f) = γRel

{1}

({

g ∈ V{1}→ N
∣

∣

∣
∀λ ∈ Σm, [v1→ g(vλ

1)] ∈ γK
{v1}

(f (λ))
})

,

• γM
2 (f) = γRel

{1;2}

({

g
∣

∣

∣
∀λ ∈ Σm, [vi→ g(vλ

i),∀i ∈ {1;2}] ∈ γK
{v1,v2}

(f (λ))
})

,

• and γM
X (f) = γRel

X

({

g
∣

∣

∣
∀λ ∈ Σm, [vx→ g(vλ

x),∀x ∈ X] ∈ γK
X (f (λ))

})

,

for any finite set X .

Then the abstract primitives are defined as follows:

1. the function ⊥M
1 maps each letter λ ∈ Σm into the affine system ⊥K

{v1}
; the

function ⊥M
2 maps each letter λ ∈ Σm into the affine system ⊥K

{v1;v2}
; the

function ⊥M
X maps each letter λ ∈ Σm into the affine system⊥K

{vx | x∈X};

2. the function /0]
M

maps each letter λ ∈ Σm into the affine system>K
/0 ;

3. the function >M
1 maps each letter λ ∈ Σm into the affine system >K

{v1}
;

4. εM
1 maps each letter λ ∈ Σm into the affine system {v1 = 0 in K{v1};

5. tM
1 , tM

2 , and tM
X applies tK

{v1}
, tK

{v1;v2}
, and tK

{vx | x∈X} component-wise.

6. uM
1 and uM

2 applies uK
{v1}

and uK
{v1;v2}

component-wise. Then, if all com-

ponents are distinct from ⊥K

{v1}
(resp. ⊥K

{v1;v2}
), the result is kept like this,

otherwise it is replaced with ⊥M
1 (resp. ⊥M

2). It is the usual so called coa-
lescent product.

208 CHAPTER 8. ENVIRONMENT APPROXIMATION

7. since domains are height bounded, we set a∇M
i b = tM

i {a;b}, for any i ∈
{1;2};

8. PAIR(a,b) maps each letter λ ∈ Σm to the system composed of the con-
straints in a(λ) and the constraints in b(λ), where each occurrence of the
variable v1 in a constraint of b(λ) is replaced with the variable v2;

9. DIAG(a) maps each letter λ ∈ Σm to the system that contains both the con-
straints in the system a(λ) and the constraint v1 = v2;

10. for any set X , Y , for any q∈ X→Y , the function QUOTIENT(q,a) associates
each letter λ ∈ Σm to the system that is obtained by replacing each occur-
rence of the variable vx (where x ∈ X) with the variable vq(x) in the system
a(λ).

11. the function PUSH
(pk)

(a) maps each letter λ ∈ Σm to the system that is ob-

tained by first removing any constraint about the variable v(I,1) in the system
a(λ) (by using Gaussian elimination), and by then inserting the constraint
v(I,1) = v(I,2) +δ λ

σm((pk))
(where δ x

y is either equal to 1 if x=y, or equal to 0
otherwise);

12. for any set X and Y , for any a ∈ IdRel
X and any b ∈ IdRel

Y , the function a⊗ b
maps each letter λ ∈ Σm to the system that is obtained by first collecting all
the constraints in a(λ) and all the constraints in b(λ), and then performing
Gaussian elimination8. Moreover, if there exists one letter such that the
obtained system is ⊥K

{vx | x∈X∪Y}not satisfiable, we associate each letter λ ∈
Σm with the system ⊥K

{vx | x∈X∪Y}.

13. PROJ(Y,a) maps each letter λ ∈ Σm to the system a(λ) in where we have
used Gaussian elimination to collect all the constraints involving only vari-
ables in {vy | y ∈ Y};

14. For any letter λ ∈ Σm,

(a) the affine system BUILD-SGx(a)(λ) is obtained by replacing any oc-
currence of the variable v1 with the variable vx in the affine system
a(λ);

(b) the affine system EXTRACT-SGx(a)(λ) is obtained by first collecting
(via Gaussian elimination) all the constraints in a(λ) that only con-
strain the variable vx, and then by replacing vx with v1 in those con-
straints;

8It is worth noting that this is not an affine intersection since the system a(λ) does not tie the
variables vx with x ∈ Y \X and since the system b(λ) does not tie the variables vx with x ∈ X \Y .

8.2. CONTROL FLOW ANALYSES 209

(c) the affine system BUILD-PRx,y(a)(λ) is obtained by replacing any oc-
currence of the variable v1 with the variable vx and any occurrence of
the variable v2 with the variable vy in the affine system a(λ);

(d) the affine system EXTRACT-PR x,y(a)(λ) is obtained by first collecting
(via Gaussian elimination) all the constraint in a(λ) that only con-
strains the variables vx and vy, and then by replacing the variable vx

with the variable v1 and the variable vy with the variable v2 in those
constraints;

8.2.5.3.2.2 Global affine comparison The second choice consists in
abstracting globally all constraints. Roughly speaking, the variable vλ

x denotes
the occurrence number of λ in the image of x. For any set X of variables (each
variable is associated with a marker), We introduce IdRel

X as the complete lattice
K{vλ

x | x∈X , λ∈Σm}
.

We instantiate our abstract domains. We set M
]

1 = IdRel
{1}, M

]
2 = IdRel

{1,2} and

M
]

X = IdRel
X , for any finite set X . Concretizations are defined as follows:

• γM
1 = γRel

{1} ◦ γK

{vλ
1 | λ∈Σm}

,

• γM
2 = γRel

{1;2} ◦ γK

{vλ
i | λ∈Σm, i∈{1;2}}

,

• and γM
X = γRel

X ◦ γK

{vλ
x | λ∈Σm, x∈X}

,

Then the abstract primitives are defined as follows:

1. we define the bottom element⊥M
1 as the affine system⊥K

{vλ
1 | λ∈Σm}

, the bot-

tom element ⊥M
2 by the affine system ⊥K

{vλ
i | λ∈Σm, i∈{1;2}}

, and the bottom

element ⊥M
X by the affine system⊥K

{vλ
x | λ∈Σm, x∈X}

;

2. we define the empty function abstraction /0]
M

as the affine system >K
/0 ;

3. we define the top element >M
1 as the affine system>K

{vλ
1 | λ∈Σm}

;

4. the abstraction of the empty marker εM
1 is defined as the affine system

(

{vλ
1 = 0, ∀λ ∈ Σm

)

in K{vλ
1 | λ∈Σm}

;

5. the operators tM
1 , tM

2 , and tM
X are respectively defined as tK

{vλ
1 | λ∈Σm}

,

tK

{vλ
i | λ∈Σm, i∈{1;2}}

, and tK

{vλ
x | λ∈Σm, x∈X}

.

210 CHAPTER 8. ENVIRONMENT APPROXIMATION

6. uM
1 and uM

2 applies uK

{vλ
1 | λ∈Σm}

and uK

{vλ
i | λ∈Σm, i∈{1;2}}

.

7. since domains are height bounded, we set a∇M
i b as tM

i {a;b}, for any i ∈
{1;2};

8. the affine system PAIR(a,b) is computed by collecting all the constraints
that are either in the system a, or in the system b, after having replaced each
occurrence of a variable that matches vλ

1 in the system b with the variable
vλ

2 ;

9. the affine system DIAG(a) contains both the constraints in the affine system
a and each constraint vλ

1 = vλ
2 , for any λ ∈ Σm;

10. for any set X , Y , for any q ∈ X → Y , the affine system QUOTIENT(q,a) is
obtained by replacing each occurrence of a variable vλ

x (where x ∈ X) with
the variable vλ

q(x) in the system a.

11. the affine system PUSH
(pk)

(a) is obtained by first removing any constraint about

the variables vλ
(I,1) in the system a by using Gaussian elimination, and then

by inserting the constraint vλ
(I,1) = vλ

(I,2) + δ λ
σm((pk))

for any λ in Σm (where

δ x
y is either equal to 1 if x=y, or equal to 0 otherwise);

12. for any set X and Y , for any a ∈ IdRel
X and any b ∈ IdRel

Y , the system a⊗b is
obtained by first collecting all the constraints in a and all the constraints in
b, and by using Gaussian elimination. It is worth noting that this is not an
affine intersection since the system a does not tie the variables of the form
vλ

x with x ∈ Y \X and since the system b does not tie the variables vλ
x with

x ∈ X \Y .

13. the affine system PROJ(Y,a) is given by the system a in where we have used
Gaussian elimination to collect all the constraints that only involve variables
in {vλ

y | λ ∈ Σm, y ∈ Y};

14. (a) the affine system BUILD-SGx(a) is obtained by replacing, for each λ ∈
Σm, any occurrence of the variable vλ

1 with the variable vλ
x in the affine

system a;

(b) the affine system EXTRACT-SGx(a) is obtained by first collecting (via
Gaussian elimination) all the constraints in a that only constrain the
variables of the form vλ

x , and then by replacing, for each λ ∈ Σm, the
variable vλ

x with the variable vλ
1 in those constraints;

8.2. CONTROL FLOW ANALYSES 211

(c) the affine system BUILD-PR x,y(a) is obtained by replacing, for each
λ ∈ Σm, any occurrence of the variable vλ

1 with the variable vλ
x and

any occurrence of the variable vλ
2 with the variable vλ

y in the affine
system a;

(d) the affine system EXTRACT-PR x,y(a) is obtained first by collecting (via
Gaussian elimination) all the constraints in a that only constrain the
variables of the form vλ

x and vλ
y , and then by replacing, for each λ ∈

Σm, each occurrence of the variable vλ
x with the variable vλ

1 and each
occurrence of the variable vλ

y with the variable vλ
2 in those constraints.

8.2.5.3.3 Reduced product We use a reduced product between the regular
abstraction and one of the two relational abstractions to propagate the fact that a
given letter does not occur inside a given marker:

1. We use the regular approximation to detect an upper-set of the letters that
occur in each marker (we know that occurring letters are both reachable
from an initial letter and co-reachable from a final letter). Then this upper-
set is used to insert new affine constraints which encodes that these letters
do not occur.

2. We use affine constraints to detect which variables are equal to 0. We re-
move the corresponding vertice in graphs.

Iterating these reduction steps define a lower closure operator ρ (i.e. ρ is
monotonic, anti-extensive, and idempotent) over the product of the two marker
abstractions. Moreover, the operator ρ is sound (i.e. γ SHAPE(a) ∩ γRel(b) ⊆
γ SHAPE(fst(ρ(a,b))∩ γRel(snd(ρ(a,b)))). So it can be used as a reduction op-
erator.

8.2.6 Prototypes and analysis examples

8.2.6.1 Two prototypes

We now present some examples of analysis result. These results have been au-
tomatically computed by using the π-s.a prototype [34] for the systems that are
written in the π-calculus, and the amb-s.a. prototype [33] for the systems that
are written in the ambient calculus. These two prototypes belong to preliminary
works, since they do not work at the meta language level.

They propose the choice between three analyses: the uniform one, the non-
uniform one with the marker abstraction φ2, and the non-uniform one with the
marker abstraction φ1. Non-uniform analysis consists in the product between the

212 CHAPTER 8. ENVIRONMENT APPROXIMATION

regular and the relational analyses. Confinement analysis has not been imple-
mented yet. Relational analysis used the component-wise abstraction. Global
comparison that was first used in previous version turns out to be too costly to
scale up. Complexity results are provided in [32]. These two prototypes can be
used on line.

8.2.6.2 Examples

We now describe results obtained on our examples. All these results are obtained
by using the marker abstraction φ2. In the description of these results, we make
no distinction between a marker and its abstraction by φ2.

Example 8.2.6. In the ftp-server (Cf. Ex. 2.1.1 on page 18), the analyzer proves
that the name of a channel opened by the restriction (ν address) may only be
communicated to the variable email or to the variable address, and that the name
of a channel opened by the restriction (ν request) may only be communicated to
the variable request, to the variable data or to the variable rep. More specifically,
it discovers that each time a thread email ![rep] is spawned, there exist p,q in N
such that the thread marker is (1,16).(1,5)p.((2,4).(6,3).(2,12))q.(2,4).(6,3);
the variable email is linked to the name of a channel opened by the restriction
(ν address) of the instance the marker of which was (1,16).(1,5)p; and the vari-
able rep is linked to the name of a channel opened by the restriction (ν request)
of the instance the marker of which was (1,16).(1,5)p. This is enough to prove
that both variables email and data are linked to names of channels opened by the
same instance of the client resource and so the answer to a query may only be sent
back to the correct client.

Example 8.2.7. In the token-ring (Cf. Ex. 2.1.2 in page 18), the analyzer discovers
that in each instance of a thread mon![left,right], the variable left is either bound
to the name of a channel opened by an instance of the (ν right) restriction or to the
name of a channel opened by an instance of the (ν left0) restriction, and the vari-
able right is always bound to the name of a channel opened by an instance of the
(ν right) restriction. More specifically, in the case where the variable left is bound
to the name of a channel opened by an instance of the (ν right) restriction, it dis-
covers that there exists n ∈ N such that the instance marker of mon![left,right]
is (1,6).(1,3)n+1; the variable left is linked to the name of a channel opened by
the restriction (ν right) of the instance the marker of which was (1,6).(1,3)n;
and the variable right is linked to the name of a channel opened by the restriction
(ν right) of the instance the marker of which was (1,6).(1,3)n+1. This is enough
to prove that each process may only be linked to either the next one or to the first
one.

8.2. CONTROL FLOW ANALYSES 213

Example 8.2.8. We also run our analysis on the ftp-server written in the mobile
ambients (Cf. Ex. 3.1.1 on page 38). The analyzer proves that an ambient name
created by the binder (ν q) may only be communicated either to a thread at pro-
gram point 16 in an ambient named request surrounded by an ambient named
p, or to a thread at program point 9 in an ambient named answer surrounded
by an ambient named p. More specifically, in the second case, we also capture
that there exists an integer integer n ∈ N such that the marker of the thread at
program point 9 is (13,24).(13,23)n.(3,22); the marker of the value that is asso-
ciated to the variable rep is (13,24).(13,23)n in the thread at program point 9;
the thread at program point 9 is enclosed in an ambient the marker of which is
(13,24).(13,23)n.(3,22); the enclosing ambient is itself enclosed in an ambient
the thread marker of which is (13,24).(13,23)n and the name of which is tagged
with the marker (13,24).(13,23)n. This is enough to prove that the name commu-
nicated inside the answer ambient and the name of the packet which surrounds
this answer ambient have been both declared by the same recursive instance of
the client resource.

Remark 8.2.9. Our confinement analysis is not simply an abstraction of our non-
uniform analysis since two distinct markers may be recognized by the same au-
tomaton while containing the same occurrence number of each pattern (i.e having
the same Parikh’s vector [64]). The equality of the Parikh’s vectors implies the
equality of the markers if they are recognized by an automaton that contains only
one acyclic path between an initial and a final state, without embedded cycle, and
such that the set of the Parikh’s vectors of the cycles of this automaton are linearly
independent. Nevertheless, we may use a reduced product of both our confinement
analysis and our non-uniform control flow analysis to solve this problem.

Remark 8.2.10. The uniform analysis is not complete with respect to the non-
uniform one, this means, that computing the non-uniform analysis and then ab-
stracting the result in order to ignore marker information may give more accurate
results than directly computing the result of the uniform analysis. This is illus-
trated in example 8.2.11.

Example 8.2.11. We consider the following mobile system:

(ν a)(ν b)(ν x)
(∗x?1[z]((ν t)z!2[t]t!3[z])
| ∗ repli?4[]x!5[a]
| ∗ repli?6[]x!7[b]
| ∗ a?8[i]i?9[j]trace!10[j]
)

214 CHAPTER 8. ENVIRONMENT APPROXIMATION

This system is composed of four resources. The second and the third ones allow
the spawning of an unbounded number of threads either of the form x!5[a] or of
the form x!7[b]. The first resource may be replicated by a thread either of the form
x!5[a] or of the form x!7[b], nevertheless the behavior of the spawned instance is
deeply bound to which kind of thread has replicated the resource:

• when the resource is replicated with a thread of the form x!5[a]: a channel
is opened; its name t is sent via the channel named a, so that t may be send
to an instance of the fourth resource; this instance may then receive the
name a via the channel denoted by t; then the instance of the first resource
may send the name a via the channel named t, so that the instance of the
fourth resource may receive the name a via the channel named t and send it
through the channel named trace; then an intruder may get the name a, by
spying the channel named trace;

• when the resource is replicated with a thread of the form x!7[b]: a channel is
opened, its name t is sent via the channel named b, but may not be received,
so the instance is stuck, and no intruder may get the name b.

The non-uniform analysis captures the fact that the name b may not be spied by
an intruder, while the uniform does not. Roughly speaking, the main reason is
that the non-uniform analysis relates the names communicated to a thread with
the history of the replications which have led to the creation of this thread, while
the uniform analysis abstracts this information away.

8.2.7 Comparing these analyses

In this section, we propose sufficient conditions over a marker abstraction that en-
sure that the obtained abstraction is monotonic and sufficient conditions over two
marker abstractions that ensure that the first corresponding abstraction locally ap-
proximates the second corresponding abstraction. This allows for the comparison
of the accuracy of our analyses. It is worth noting that we compare not only the
local accuracy of the transfer functions, but also the accuracy of the whole analy-
ses.

8.2.7.1 Monotonicity and approximation of marker abstraction

We consider two abstract domains M
]

1 and M
]
1 that describe markers, two ab-

stract domains M
]

2 and M
]
2 that describe marker pairs, and two abstract do-

mains M
]

X and M
]
X for each finite set X to describe marker functions over the

domain X . We suppose that we are given all the primitives that are required in

8.2. CONTROL FLOW ANALYSES 215

Sect. 8.2.1. The abstraction that we obtain when we instantiate the generic frame-
work in Sect. 8.2.1 with the marker domains M

]
1 , M

]
2 , and (M]

X)) is denoted
by A . The same way, the abstraction that we obtain when we instantiate the

generic framework in Sect. 8.2.1 with the marker domains M
]
1, M

]
2, and (M

]
X))

is denoted by A .

8.2.7.1.1 Monotonicity In this section, we introduce the notion of mono-
tonic marker abstraction. Then we relate this notion to the notion of monotonic
abstraction (Cf. 7.4.1 on page 163).

Definition 8.2.12 (monotonic marker abstraction). We say that the marker ab-
straction (M]

1 ,M]
2 ,(M]

X)X) is monotonic if the following properties are satisfied:

1. ∀i ∈ {1;2},

• ∀A,B ∈℘finite(M
]

i), A⊆ B =⇒ tM
i (A)vM

i t
M
i (B);

• ∀A ∈℘finite(M
]

i), ∀X ,Y ∈M
]

i ,

XvM
i Y =⇒ tM

i (A∪{X})vM
i t

M
i (A∪{Y});

2. ∀i ∈ {1;2},

• ∀A,B ∈℘finite(M
]

i), A⊆ B =⇒ uM
i (B)vM

i u
M
i (A);

• ∀A ∈℘finite(M
]

i), ∀X ,Y ∈M
]

i ,

XvM
i Y =⇒ uM

i (A∪{X})vM
i u

M
i (A∪{Y});

3. ∀i ∈ {1;2}, the operator ∇M
i is monotonic with respect to each of its argu-

ments;

4. the operator PAIR is monotonic with respect to each of its arguments;

5. the operator DIAG is monotonic;

6. for any finite set X ,

• ∀A,B ∈℘finite(M
]

X), A⊆ B =⇒ tM
X (A)vM

X t
M
X (B);

• ∀A ∈℘finite(M
]

X), ∀x,y ∈M
]

X ,

xvM
i y =⇒ tM

i (A∪{x})vM
i t

M
i (A∪{y});

7. ∀q ∈ X → Y , the operator [a→ QUOTIENT(q,a)] is monotonic;

216 CHAPTER 8. ENVIRONMENT APPROXIMATION

8. for any integer n≥ 2, for any variable set X such that {(I, i) | 1≤ k ≤ n} ⊆
X , for any tuple (pk) of program point labels, the operator [a ∈M

]
X →

PUSH
(pk)

(a)] is monotonic;

9. the join operator is monotonic with respect to each of its arguments;

10. for any finite sets X and Y , the operator [a ∈M
]

X → PROJ(Y,a)] is mono-
tonic;

11. let X be a set of elements such that X ⊆ Y , let x and y be two distinct
elements in X , the operators [a→ BUILD-SG x(a)], [a→ EXTRACT-SGx(a)],
[a→ BUILD-PRx,y(a)], and [a→ EXTRACT-PR x,y(a)] are monotonic.

Proposition 8.2.13. If the marker abstraction (M]
1 ,M]

2 ,(M]
X)X) is monotonic,

then the analysis A is monotonic.

The following properties help in compositionally proving that a marker ab-
straction is monotonic:

Proposition 8.2.14 (monotonicity stability). The following properties are satis-
fied:

1. The Cartesian product (see Sect. 8.2.3 on page 196) of two monotonic
marker abstractions is also monotonic.

2. The reduction (see Def. 8.2.4 on page 197) of a monotonic marker abstrac-
tion by some monotonic reduction operator is also monotonic.

8.2.7.1.2 Local comparison In this section, we introduce the notion of lo-
cal comparison among marker abstractions. Then we relate this notion to the
notion of local comparison among abstractions (Cf. 7.4.3 on page 164).

Definition 8.2.15 (local comparison of marker abstractions). We say that the
marker abstraction (M]

1 ,M]
2 ,(M]

X)X) locally approximates the marker abstrac-

tion (M
]
1,M

]
2,(M

]
X)X) if there exists some monotonic abstraction functions

αM
]

1←M
]
1 ∈M

]
1→M

]
1 , αM

]
2←M

]
2 ∈M

]
2→M

]
2 , and αM

]
X←M

]
X ∈M

]
X →M

]
X

for any finite set X , such that:

1. for any i ∈ {1;2}:

(a) ∀a ∈M
]
i , γM

i (a)⊆ γM
i (αM

]
i ←M

]
i (a));

(b) αM
]

i ←M
]
i (⊥

M

i)vM
i ⊥

M
i ;

8.2. CONTROL FLOW ANALYSES 217

(c) αM
]

i ←M
]
i (>

M

i)vM
i >

M
i ;

(d) αM
]

1←M
]
1(εM

1)vM
i εM

1 ;

(e) ∀A ∈℘finite(M
]
i),

αM
]

i ←M
]
i (tM

i (A))vM
i t

M
i ({αM

]
i ←M

]
i (a) | a ∈ A});

(f) ∀A ∈℘finite(M
]
i),

αM
]

i ←M
]
i (uM

i (A))vM
i u

M
i ({αM

]
i ←M

]
i (a) | a ∈ A});

(g) ∀a,b ∈M
]
i ,

αM
]

i ←M
]
i (a∇M

i b)vM
i (αM

]
i ←M

]
i (a))∇M

i (αM
]

i ←M
]
i (b));

(h) ∀a,b ∈M
]
1,

αM
]

2←M
]
2(PAIR(a,b))vM

2 PAIR(αM
]

1←M
]
1(a),αM

]
1←M

]
1(b));

(i) ∀a ∈M
]
2, αM

]
2←M

]
2(DIAG(a))vM

2 DIAG(αM
]

2←M
]
2(a));

2. for any finite set X and Y :

(a) ∀a ∈M
]
X , γM

X (a)⊆ γM
X (αM

]
X←M

]
X (a));

(b) αM
]

X←M
]
X (⊥

M

X)vM
X ⊥

M
X ;

(c) αM
]
/0←M

]
/0(/0]

M
)vM

/0 /0]
M

;

(d) ∀A ∈℘finite(M
]
X),

αM
]

X←M
]
X (tM

X A)vM
X t

M
X ({αM

]
X←M

]
X (a) | a ∈ A});

(e) ∀q ∈ X →Y , ∀a ∈M
]
X ,

αM
]

Y←M
]
Y (QUOTIENT(q,a))vM

Y QUOTIENT(q,αM
]

X←M
]
X (a));

(f) let n ≥ 2 be an integer such that {(I, i) | 1 ≤ i ≤ n} ⊆ X ,

for any tuple (pi)1≤i≤n of program point labels, ∀a ∈ M
]
X ,

αM
]

X←M
]
X (PUSH

(pi)
(a))vM

X PUSH
(pi)

(αM
]

X←M
]
X (a));

(g) ∀a ∈M
]
X , b ∈M

]
Y ,

αM
]

X∪Y←M
]
X∪Y (a⊗b)vM

X∪Y αM
]

X←M
]
X (a)⊗αM

]
Y←M

]
Y (b);

(h) ∀a ∈M
]
X ,

αM
]

X∩Y←M
]
X∩Y (PROJ(X ∩Y,a))vM

X∩Y PROJ(X ∩Y,αM
]

X←M
]
X (a));

3. let X be a set of elements, let x and y be two distinct elements in X ,

218 CHAPTER 8. ENVIRONMENT APPROXIMATION

(a) ∀a ∈M
]
1,

αM
]
{x}←M

]
{x}(BUILD-SGx(a))vM

{x}BUILD-SGx(αM
]

1←M
]
1(a));

(b) ∀a ∈M
]
X ,

αM
]

1←M
]
1(EXTRACT-SGx(a))vM

1 EXTRACT-SGx(αM
]

X←M
]
X (a));

(c) ∀a ∈M
]
2,

αM
]
{x;y}←M

]
{x;y}(BUILD-PRx,y(a))vM

{x;y}BUILD-PRx,y(αM
]

2←M
]
2(a));

(d) ∀a ∈M
]
X ,

αM
]

2←M
]
2(EXTRACT-PRx,y(a))vM

2 EXTRACT-PRx,y(αM
]

X←M
]
X (a)).

Proposition 8.2.16. If the marker abstraction (M]
1 ,M]

2 ,(M]
X)X) is locally ap-

proximating the marker abstraction (M
]
1,M

]
2,(M

]
X)X), then the abstraction A

is locally approximating the abstraction A .

The following properties help in compositionally proving that a marker ab-
straction locally approximates an other marker abstraction:

Proposition 8.2.17 (local comparison composition). The following properties
are satisfied:

1. If the marker abstraction O locally approximates the marker abstraction N

and if the marker abstraction N locally approximates the marker abstrac-
tion M , then the marker abstraction O locally approximates the marker
abstraction M .

2. The marker abstraction M locally approximates the Cartesian product (see
Sect. 8.2.3 on page 196) of the marker abstraction M and of the marker
abstraction N .

3. The marker abstraction M locally approximates any reduction (see
Def. 8.2.4 on page 197) of the abstraction M by some anti-extensive op-
erators.

4. If the marker abstraction N locally approximates the abstraction O , then
the Cartesian product (see Sect. 8.2.3 on page 196) of the marker abstrac-
tions N and M locally approximates the Cartesian product of the marker
abstractions O and M .

5. If:

8.2. CONTROL FLOW ANALYSES 219

(a) the marker abstraction M locally approximates the marker abstrac-

tion M , by using the abstraction functions αM
]

1←M
]
1 , αM

]
2←M

]
2 , and

(αM
]

X←M
]
X),

(b) the marker abstractions M and M are monotonic,

(c) (ρ1,ρ2,(ρX)) and (ρ1,ρ2,(ρX)) are monotonic reduction operators
such that:

• for any x ∈M 1, αM
]

1←M
]
1(ρ1(x))v

M
1 ρ1(αM

]
1←M

]
1(x)),

• for any x ∈M 2, αM
]

2←M
]
2(ρ2(x))v

M
2 ρ2(αM

]
2←M

]
2(x)),

• for any finite set X, for any x ∈ M X ,

αM
]

X←M
]
X (ρX(x))vM

X ρX(αM
]

X←M
]
X (x));

then: the reduction of M by (ρ1,ρ2,(ρX)) locally approximates the reduc-
tion of M by (ρ1,ρ2,(ρX)).

8.2.7.2 Application

1. We denote by 0-CFA the uniform marker abstraction that is defined in
Sect. 8.2.5.1 on page 198.

2. We denote by CONF the confinement marker abstraction that is defined in
Sect. 8.2.5.2 on page 200.

3. We denote by LOCi the marker abstraction that is defined as the reduced
product of:

• the regular marker abstraction that is given in Sect. 8.2.5.3.1 on page
203

• and the component-wise relational marker abstraction that is given in
Sect. 8.2.5.3.2.1 on page 207,

when each marker id is replaced with φi(id). We use the reduction operators
that are defined in Sect. 8.2.5.3.3 on page 211.

4. We denote by GLOBi the marker abstraction that is defined as the reduced
product of:

• the regular marker abstraction that is given in Sect. 8.2.5.3.1 on page
203

• and the global relational marker abstraction that is given in
Sect. 8.2.5.3.2.2 on page 209,

220 CHAPTER 8. ENVIRONMENT APPROXIMATION

when each marker id is replaced with φi(id). We use the reduction operators
that are defined in Sect. 8.2.5.3.3 on page 211.

5. We denote by LOC=
i the marker abstraction that is defined as the reduced9

product of LOCi and CONF.

6. We denote by GLOB=
i the marker abstraction that is defined as the reduced

product of GLOBi and CONF.

We give in Fig. 8.4 a hierarchy of abstraction. All these abstractions are mono-
tonic. Moreover, any edge from a marker abstraction M onto an other marker ab-
straction N means that the marker abstraction N locally approximates M . Thus,
the respective abstractions AM and AN satisfy γM (JS KAM

)⊆ γN (JS KAN
).

Proof. We prove the graph in Fig. 8.4.

1. The marker abstraction 0-CFA locally approximates the marker abstraction
CONF (resp. LOC2) by using the abstraction functions that maps any bottom
element in graph (resp. non uniform) domains into the bottom element ⊥
of the uniform domain and any other elements into the top element> of the
uniform domain.

2. For any i ∈ {1;2}, the marker abstraction LOCi locally approximates the
marker abstraction GLOBi:

• First, the component-wise relational abstraction locally approximates
the global relational abstraction by using the abstraction functions that
project each affine system K over VX for any finite set X onto systems
function f that maps each letter λ ∈ Σi to the projection of K onto
the set of variables {vλ

x | x ∈ X}. This projection uses the Gaussian
elimination.

• Then, we use Prop. 8.2.17.(4) and Prop. 8.2.17.(5).

3. The marker abstraction LOC2 locally approximates the marker abstraction
LOC1:

• First, we prove that the regular abstraction that uses φ2 locally ap-
proximates the regular abstraction that uses φ1. The abstraction func-
tions consists in quotienting graphs by the equivalence relation∼ over
L ≥2, where u∼ v if and only if u2 = v2.

9We use a monotonic and anti-extensive reduction that deduces equalities among markers
from both equality among Parikh’s vectors and assumptions about the shape of markers (see
Sect. 8.3.3.2)

8.3. MORE PRECISE ABSTRACTIONS 221

• Then, we prove that the component-wise relational abstraction that
uses φ2 locally approximates the component-wise relational abstrac-
tion that uses φ1. The abstraction functions maps each λ ∈L to the
system that is obtained by:

– gathering each system associated to any variable λ ′ ∈L n≥2 such
that λ ′2 = λ where each occurrence of variable vx is replaced by
the variable vλ ′

x ;

– inserting the constraints vx = ∑{vλ ′
x | λ ′2 = λ} for any x;

– keeping only the constraints that involves the variables vx (by us-
ing Gaussian Elimination).

• We can conclude by applying Prop. 8.2.17.(4) twice and
Prop. 8.2.17.(5).

4. The marker abstraction GLOB2 locally approximates the marker abstraction
GLOB1: it is enough to prove that the global relational abstraction that uses
φ2 locally approximates the global relational abstraction that uses φ1. The
abstraction functions transforms each affine system K over VX as follows:

(a) we introduce some extra variables wλ
x for any x ∈ X and any λ ∈L ;

(b) we insert the constraint wλ
x = ∑u∈L ≥2, u2=λ vu

x ;

(c) we project the system to keep the constraints that only involve the
variables wλ

x

(d) we replace each occurrence of a variable wλ
x with the variable xλ

x .

5. All other edges are proved by using Prop. 8.2.17.

8.3 More precise abstractions

The analyses proposed in Sect. 8.2 may only capture comparisons between thread
markers and the values that are associated with the variables of its interface. In
some cases, it turns out that there are no such relations whereas some relations
between the values that are associated with several variables are useful.

Example 8.3.1. We give in Fig. 8.5 a system written in the π-calculus. This system
creates a communication ring between several monitors. The names of the chan-
nels opened by name restrictions (ν left0) and (ν right) denote the processes of
the ring. The first part of the system describes the ring creation. The first process

222 CHAPTER 8. ENVIRONMENT APPROXIMATION

GLOB2

LOC2

GLOB=
2

0-CFA

CONF

GLOB1

GLOB=
1

LOC1

LOC=
2

LOC=
1

Figure 8.4: Abstraction hierarchy.

8.3. MORE PRECISE ABSTRACTIONS 223

(ν ok)(ν make)(ν mon)(ν left0)
(

(∗make?1[left](ν right)(mon!2[left,right] |make!3[right]))
| (∗make?4[left](mon!5[left, left0]))
|make!6[left0]
|mon?7[x,y](test!8[] | [x,y][x = y][x 6= first]test?9[]ok!10[])

)

Figure 8.5: A ring of processes with a test.

is created by the restriction (ν left0). A thread mon![v1;v2] denotes a connection
between two processes. Then, each time the first resource is replicated, a new
process is created and linked to the previous process, which has been passed as
an argument of the replication. The second resource replication closes the ring
by linking the last created process to the first created process. The thread at pro-
gram point 7 picks a connection between two monitors and checks whether the
two monitors may be the same and whether the first argument is not the address
of the first monitor of the ring. In such a case, it reaches the program point 10.

The analyses that we have described in Sect. 8.2 may not help in proving
that the program point 10 is unreachable. The reason is that there is no relation
at program point 9 between the marker of the thread (that is ε) and the value
associated with the variable x. This makes us miss the constraint between the
values that are associated with the variables x and y. 2

We propose in this section a wider class of abstract domains. These domains
may especially express some relations between values, even if there is no relation
between their markers and the marker of the thread instance they are communi-
cated to. Nevertheless, this raises some complexity problems we propose to solve
by designing several domains: there is a trade-off between information partition-
ing, and the accuracy of information propagation. Reduced product makes these
domains collaborate. We also propose two particular domains that aim at discov-
ering and propagating explicit equality and disequality relations among channel
names and among markers.

8.3.1 Dependencies among thread names

8.3.1.1 Abstract domain of equality and disequality relations

We introduce an abstract domain for describing equality and disequality relations
among a finite set of variables. We introduce for all finite set X the abstract domain

224 CHAPTER 8. ENVIRONMENT APPROXIMATION

TX of all the graphs (P,E) such that P is a partition of X and E is a part of P×P.
Given abstract element G = (P,E) ∈ TX , we introduce two binary relations

over X as follows:

• a =G b
∆
⇐⇒∃C ∈ P,{a,b} ⊆C,

• a 6=G b
∆
⇐⇒∃C1,C2 ∈ P, a ∈C1, b ∈C2,(C1,C2) ∈ E;

we also define the function [_]G ∈ X → P that maps each element of X into its
equivalence class as [x]G = {y | x =G y}.

The domain TX is partially ordered by the 6T
X relation defined as follows:

∀G1,G2 ∈ TX , G1 6
T
X G2

∆
⇐⇒

{

∀x,y ∈ X , x =G2 y⇒ x =G1 y

∀x,y ∈ X , x 6=G2 y⇒ x 6=G1 y.

Roughly speaking, the partial order is the opposite of the constraint set inclusion
because, the more constraints, the fewer solutions.

For every set I, each element G in TX is related to the set of functions γ I
TX

,
defined as follows:

γ I
TX

(G) =

{

f ∈ X → I

∣

∣

∣

∣

∣

∀x, y ∈ X ,

{

x =G y =⇒ f (x) = f (y)

x 6=G y =⇒ f (x) 6= f (y)

}

.

The concretization of a graph is the set of all the maps the image of which satisfy
the equality and disequality relations that are described by this graph.

We also define some primitives over our abstract domain as follows:
Let X and Y be two finite sets:

1. we define an abstract union: gathering some abstract elements consists in
intersecting the constraint sets they are described with: For any finite subset
A ∈℘(TX) \ /0, we define tT

X A = (P′,E ′) where the set of class P′ and the
set of edges E ′ are well-defined as follows:

{

P′ = {
⋂

G∈A[x]G | x ∈ X}

E ′ = {(
⋂

G∈A[x]G,
⋂

G∈A[y]G) ∈ P′2 | ∀G ∈ A, x 6=G y};

The soundness of the abstract union is established by Prop. 8.3.2.

Proposition 8.3.2. For any set I and for any finite set A ∈℘(TX) and for
any graph G ∈ A, we have γ I

TX
(G)⊆ γ I

TX
(tT

X A).

Proof. Let X and I be two sets. Let A ∈℘(TX). Let G = (P,E) ∈ A. We
denote Gt = tT

X A = (Pt,Et). Let f ∈ X → I be a function such that f ∈
γ I

TX
(G).

Let x, y be two elements in X .

8.3. MORE PRECISE ABSTRACTIONS 225

(a) In the case when x =Gt y: we have y ∈ [x]Gt, so y ∈ [x]G′ for any
G′ ∈ A. Since G ∈ A, we have y ∈ [x]G. We conclude that x =G y. By
definition of γ I

TX
(G), we get that f (x) = f (y).

(b) In the case when x 6=Gt y: we have ([x]Gt, [y]Gt) ∈ E ′, there exists two
elements x′ ∈ [x]Gt and y′ ∈ [y]Gt such that x′ 6=G′ y′ for any G′ ∈ A.
By applying the previous case, we have f (x) = f (x′) and f (y) = f (y′).
Since G ∈ A, we have x′ 6=G y′. By definition of γ I

TX
(G), we get that

f (x′) 6= f (y′). We conclude that f (x) 6= f (y).

By definition, we have f ∈ γ I
TX

Gt.

2. we define an abstract join operator: for any graph GX ∈ TX , GY ∈ TY , we
define GX ⊗

T GY ∈ TX∪Y as (P′,E ′) where the set of classes P′ and the set
of edges E ′ are defined as follows:

• P′ = {lfp[A→ f (v,A)] | v ∈ X ∪Y}, where f (v,A) is given by

{v}∪







t ∈ X ∪Y

∣

∣

∣

∣

∣

∣

∃u ∈ A, [(t,u) ∈ X2 \Y 2 and t =X u]
or [(t,u)∈ Y 2 \X2 and t =Y u]
or [(t,u)∈ X2∩Y 2, t =X u, and t =Y u]







.

• E ′ =















(C1,C2) ∈ (P′)2

∣

∣

∣

∣

∣

∣

∣

∣

∃(t,u) ∈ (C1,C2),
[(t,u)∈ X2 \Y 2 and t 6=X u]
or [(t,u)∈ Y 2 \X2 and t 6=Y u]
or [(t,u)∈ X2∩Y 2, t 6=X u, and t 6=Y u















.

Roughly speaking, we partition the set X ∪Y into three parts X \Y , Y \X
and X ∩Y . A relation that constrains an element in X \Y (resp. in Y \
X) is always kept, while a relation between two elements in X ∩Y is only
kept providing that it occurs both in GX and in GY . Then the abstract join
operator computes the closure of these constraints. The soundness of the
abstract join operator is established by Prop. 8.3.3.

Proposition 8.3.3. For any set I and for any graph GX ∈ TX , GY ∈ TY , we
have:

{

f ∈ (X ∪Y)→ I

∣

∣

∣

∣

∣

{

f|X ∈ γ I
TX

(GX)

f|Y ∈ γ I
TX

(GY)

}

⊆ γ I
TX∪Y

(GX ⊗
T GY).

3. we define an abstract projection: It just consists in restricting the set of
vertice, keeping equality and disequality relations on the remaining vertice.

226 CHAPTER 8. ENVIRONMENT APPROXIMATION

for any G = (P,E) ∈ TX , we define PROJT
Y (G) ∈ TY as (P′,E ′) where the set

of classes P′ and the set of edges E ′ are defined as follows:
{

P′ = {C∩Y |C ∈ P, C∩Y 6= /0},

E ′ = {(C1∩Y,C2∩Y) | (C1,C2) ∈ E ∩ (P′)2}.

The soundness of the abstract projection is established by Prop. 8.3.4.

Proposition 8.3.4. For any set I and for any graph G ∈ TX , we have:
{

f|X∩Y

∣

∣ f ∈ γ I
TX

(G)
}

⊆ γ I
TX∩Y

(PROJT
Y G).

4. renaming: for any bijection g ∈ X → Y and any G = (P,E) ∈ TX we define
the renaming of G by g, RENAMEg(G), as (P′,E ′) where:

{

P′ = {g(C) |C ∈ P},

E ′ = {(g(C1),g(C2)) | (C1,C2) ∈ E}.

The soundness of the abstract renaming is established by Prop. 8.3.5.

Proposition 8.3.5. For any set I, for any graph GX ∈ TX and for any bijec-
tion g ∈ X → Y , we have:

{ f | f ◦g ∈ γ I
TX

(GX)} ⊆ γ I
TY

(RENAMEg(GX)).

Then we define an emptiness test EMPTYX ∈℘(TX) as G = (P,E)∈ EMPTYX ⇐⇒
∃C ∈ P, (C,C) ∈ E. This emptiness test satisfies the following soundness proper-
ties:

Proposition 8.3.6. For any finite set I and for any G∈ EMPTYX , we have γ I
TX

(G)=
/0.

8.3.1.2 Equality and disequality relations among channel names

First we abstract the equality and the disequality relations between the values of
each thread.

8.3.1.2.1 Atom abstraction For each interface V , we define the domain
Atome=1

V = TV . Each abstract element G ∈ Atome=1
V is related to the set γ=1

V (G) =

M × γL×M
TV

(G). The structure of the domains Atome=1
V is given as follows: we

set v=1
V =6T

V , t=1
V = tT

V , ⊥=1
V = (V,V ×V). Since there is no infinite increasing

sequences in TV , we define a∇=1
V b = t=1

V {a,b}. Other primitives are defined as
follows:

8.3. MORE PRECISE ABSTRACTIONS 227

• the empty environment abstraction is defined as follows:

ε=1 = (/0, /0).

• the abstract restriction is defined as follows:

ν=1(x, l,(P,E)) = (P∪{x},E ∪ ({x}×E)).

• the abstract garbage collection is defined as follows:

GC=1(X ,G) = PROJT
X(G).

Theorem 8.3.7. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.3.1.2.2 Molecule abstraction For any finite n-tuple (Vi)1≤i≤n of in-
terfaces. we define the domain Molecule=1

(Vi)1≤i≤n
as the domain T{(X ,k) | X∈Vk}.

Each abstract element G ∈ Molecule=1
(Vi)

is related to the set γ=1
(Vi)

(G) of fami-

lies (idi,Ei) ∈ Π1≤i≤nEnvM
Vi

of pair marker/environment such that the function
g ∈ {(X ,k) | X ∈ Vk} → M that is defined by g(X ,k) = Ek(X) is in the set

γ{(X ,k) | X∈Vk}
TM

(G).
Abstract primitives are defined as follows:

• the abstract injection just renames variables: we define INJ=1(A) =
RENAME [X 7→(X ,1)](A).

• the abstract concatenation is computed by re-indexing the variables of
the right arguments and by joining the two graphs. Let m,n be two
integers. Let (Ui)1≤i≤m and (Vi)1≤i≤n be two families of interfaces.
Let G1 ∈ Molecule=1

(Ui)
and G2 ∈ Molecule=1

(Vi)
be two abstract molecules.

We define the abstract product G1 •
=1 G2 of G1 and G2 as G1 ⊗

T

RENAME [(X ,k)7→(X ,k+m)](G2).

• first the abstract projection isolates the information about one thread, and
then renames the related variables. Let n be an integer and (Vi)1≤i≤n be
a family of interfaces. Let k be an integer such that 1 ≤ k ≤ n. We set
PROJ=1(k,G) = RENAME [(X ,k)7→X](PROJT

{(X ,k) | X∈Vk}
(G)).

• first the abstract extension projects the constraints to keep only informa-
tion about the variables that are not redefined and then by inserting re-
defined variables without any constraint about them. Let n be an in-
teger and (Vi)1≤i≤n be a family of interfaces. Let X be a subset of
V × J1;nK. Let G be an element of Molecule=1

(Vi)
. First we compute

(P′,E ′) = PROJT
{(x,i) | x∈Vi}\X

(G). We then set NEW
=1
> (X ,G) = (P′∪X ,E ′).

228 CHAPTER 8. ENVIRONMENT APPROXIMATION

• the abstract synchronization of an abstract element G = (P,E) with respect
to a constraint set S is given by first quotienting the partition P according to
the equality constraints in S and by then updating the set of edges according
to the disequality constraints in S.

Let n be an integer. Let (pi) be an n-tuple of program points. Let (Vi)1≤i≤n

be an n-tuple of interfaces. Let G = (P,E) ∈ Molecule=1
(Vi)

be an abstract

molecule. Let S be a set of constraints (x,k) � (y, l) with 1 ≤ k ≤ n, x ∈
Vk ∪{I}, 1≤ l ≤ n, and y ∈ Vl ∪{I}. We introduce the binary equivalence
=S over P that is defined by C =S C′ if there exist two variables a ∈ C
and a′ ∈ C′, an integer m ∈ N, and a sequence a0,. . . ,am of variables in
{(x,k) | 1≤ k≤ n, x∈Vk∪{I}} such that (ai = ai+1)∈ S or (ai+1 = ai)∈ S,
for any i such that 0 ≤ i < m, and such that a = a0 and a′ = am. For any
class C ∈ P, we denote C=S the set

⋃

{D ∈ P | C =S D}. Then we define
(P′,E ′) as:

– P′ = {C=S |C ∈ P};

– E ′ = {(X=S,Y=S) | (X ,Y) ∈ E}∪{(X ,Y) ∈ (P′)2 | ∃x ∈ X ,y ∈ Y, (x 6=
y) ∈ S}.

Then we distinguish two cases when defining the abstract synchronization:

1. in the case when (P′,E ′) ∈ EMPTY{(X ,k) | 1≤k≤n, X∈Vk}, we set
SYNC=1(S,(pi),G) = (U,U×U) where U = {(X ,k) | 1≤ k ≤ n, X ∈
Vk}.

2. otherwise, we set SYNC=1(S,G) = (P′,E ′).

• marker allocation does not change values, so we set FETCH=1((pi),G) = G.

Theorem 8.3.8. These primitives satisfy the soundness assumptions of Sect. 8.1.2.

8.3.1.3 Equality and disequality relations among markers

Then we abstract the equality and the disequality relations between the marker of
a thread and the markers of its names.

8.3.1.3.1 Atom abstraction For each interface V , we define the domain
Atome=2

V = TV∪{I}. Each abstract element G ∈ Atome=2
V is related to the set

γ=2
V (G) = {(id,E) | [I 7→ id,X → snd(E(X))] ∈ γM

TV∪{I}
(G). The structure of the

domains Atome=2
V is given as follows: we set v=2

V =6T
V∪{I}, t

=2
V = tT

V∪{I},

⊥=2
V = (V ∪ {I},(V ∪{I})2). Since there is no infinite increasing sequences in

TV∪{I}, we define a∇=2
V b = t=2

V {a,b}. Other primitives are defined as follows:

8.3. MORE PRECISE ABSTRACTIONS 229

• the empty environment abstraction is defined as follows:

ε=2 = ({I}, /0).

• the abstract restriction uses the fact that the marker of fresh values is nec-
essarily the marker of the threads that declare these values. Let V ⊆ V be
a finite set of variables. Let x ∈ V be a variable. Let l ∈L be a label. Let
(P,E) ∈ Atome=2

V be an abstract element. First we define the function σ :

σ(C) =

{

C if I 6∈C

C∪{x} otherwise

which inserts the variable x into the equivalence class of the identity I of the
thread. Then the abstract restriction is defined as follows:

ν=2(x, l,(P,E)) = ({σ(C) |C ∈ P},{(σ(C1),σ(C2)) | (C1,C2) ∈ E})

by applying the function σ to each equivalence class.

• the abstract garbage collection is defined as follows:

GC=2(X ,G) = PROJT
X∪{I}(G).

Theorem 8.3.9. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.3.1.3.2 Molecule abstraction For any finite n-tuple (Vi)1≤i≤n of inter-
faces. we define the domain Molecule=2

(Vi)1≤i≤n
as the domain T{(X ,k) | X∈Vk∪{I}}.

Each abstract element G ∈ Molecule=2
(Vi)

is related to the set γ=2
(Vi)

(G) of fami-

lies (idi,Ei) ∈ Π1≤i≤nEnvM
Vi

of pairs marker/environment such that the function
g ∈ {(X ,k) | X ∈Vk∪{I}}→M that is defined by g(X ,k) = Ek(X) when X ∈Vk

and by g(I,k) = idk is in the concretization γ{(X ,k) | X∈Vk}
TM

(G).
Abstract primitives are defined as follows:

• the abstract injection just renames variables: we define INJ=2(A) =
RENAME [X 7→(X ,1)](A).

• the abstract concatenation is computed by re-indexing the variables of
the right arguments and by joining the two graphs. Let m,n be two
integers. Let (Ui)1≤i≤m and (Vi)1≤i≤n be two families of interfaces.
Let G1 ∈ Molecule=2

(Ui)
and G2 ∈ Molecule=2

(Vi)
be two abstract molecules.

We define the abstract product G1 •
=2 G2 of G1 and G2 as G1 ⊗

T

RENAME [(X ,k)7→(X ,k+m)](G2).

230 CHAPTER 8. ENVIRONMENT APPROXIMATION

• first the abstract projection isolates the information about one thread, and
then it renames the related variables. Let n be an integer and (Vi)1≤i≤n be
a family of interfaces. Let k be an integer such that 1 ≤ k ≤ n. We set
PROJ=2(k,G) = RENAME [(X ,k)7→X](PROJT

{(X ,k) | X∈Vk∪{I}}
(G)).

• first the abstract extension projects the constraints to keep only information
about the variables that are not redefined and then it adds redefined variables
without any constraint about them. Let n be an integer and (Vi)1≤i≤n be a
family of interfaces. Let X be a subset of V ×J1;nK. Let G be an element of
Molecule=2

(Vi)
. First we compute (P′,E ′) = PROJT

{(x,i) | x∈Vi∪{I}}\X
(G). Then

we set NEW
=2
> (X ,G) = (P′∪X ,E ′).

• the abstract synchronization of an abstract element G = (P,E) with respect
to a constraint set S is given by first quotienting the partition P according to
the equality constraints in S; disequality constraints do not give any infor-
mation.

Let n be an integer. Let (pi) be an n-tuple of program point. Let (Vi)1≤i≤n

be an n-tuple of interfaces. Let G = (P,E) ∈ Molecule=1
(Vi)

of (P,E). Let S

be a set of constraints (x,k) � (y, l) with 1≤ k ≤ n, x ∈ Vk ∪{I}, 1 ≤ l ≤ n,
and y ∈ Vl ∪ {I}. We introduce the binary equivalence =S over P that is
defined by C =S C′ if there exist two variables a ∈C and a′ ∈C′, an integer
m ∈ N, and a sequence a0,. . . ,am of variables in {(x,k) | x ∈Vk ∪{I}} such
that ai = ai+1 ∈ S or ai+1 = ai ∈ S, for any k such that 0 ≤ i < m, and
such that a0 = a and am = a′. For any class C ∈ P, we denote C=S the set
⋃

{D ∈ P |C =S D}. Then we define SYNC=2(S,(pi),G) as (P′,E ′) where:

– P′ = {C=S |C ∈ P};

– E ′ = {(X=S,Y=S) | (X ,Y) ∈ E}.

• the abstract marker allocation consists in taking into account the fact the the
allocated marker is fresh. First we forget any constraints about the identity
of the first thread; then we insert the constraints that the new marker is
distinct from any other marker. We first define the function σ that removes
the variable (I,1) from any equivalence class:

σ(C) = C \{(I,1)}.

Then, we define FETCH=2((pi),G) as (P′,E ′) where:










P′ = {(I,1)}∪ ({σ(C) |C ∈ P}\{ /0}),

E ′ =

{

(σ(C1),σ(C2))

∣

∣

∣

∣

∣

(C1,C2) ∈ E,

C1,C2 ∈ P\{(I,1)}

}

∪{({(I,1)},C) |C ∈ P′}.

8.3. MORE PRECISE ABSTRACTIONS 231

Theorem 8.3.10. These primitives satisfy the soundness assumptions of
Sect. 8.1.2.

8.3.2 Marker analysis

In this section we abstract the shape of the markers that occur in the system during
any computation sequences. We are both interested in the markers that may be
associated with each thread and in the markers that may be associated with each
variable in a thread interface. For the sake of simplicity, we use Prop. 4.5.18 on
page 69 and approximate every tree marker id by the word φ2(id) of (L)∗.

First we describe the general shape of markers, and then we infer some rela-
tional algebraic properties on them. By reduction, we will use this information to
synthesize equality and disequality relations between variable values and between
markers.

8.3.2.1 Shape analysis

Shape analysis consists in distinctly abstracting, for each program point p, the
set of markers which may be associated to a thread at program point p and the
set of values that may be associated with each variable v in the interface I(p) of
threads at program point p. For the sake of efficiency, we do not partition abstract
information according to the label l of each potential value (l, id): we abstract
each value (l, id) by the word l.φ2(id) in the language (L)∗.

8.3.2.1.1 Domain We are left to abstract sets of words. For that purpose we
will use the abstract domain RegL that we have defined in Sect. 8.2.5.3.1 on page
203. In order to build the abstraction of a value when knowing both the label l and
the marker abstraction (i, f , t,b) ∈ RegL , we use another primitive PREFIX

Reg
L

.

Then the abstract element PREFIX
Reg
L

(l,(i, f , t,b)) is defined as:

({l}, f ∪{l | b = 1}, t[l 7→ t(l)∪ i],0).

Moreover we have:

{l.id | id ∈ γReg
L

((i, f , t,b))}⊆ γReg
L

(PREFIX
Reg
L

(l,(i, f , t,b))).

Conversely we introduce the primitive TAIL
Reg
L

that removes the first letter of a

word. We set TAIL
Reg
L

((i, f , t,b)) = (i′, f ′, t ′,b′) where:

• i′ =
⋃

a∈i t(a);

• f ′ = f ;

232 CHAPTER 8. ENVIRONMENT APPROXIMATION

• t ′ = t;

• b′ =

{

1 if i∩ f 6= /0,

0 otherwise.

We have:

{id | ∃a ∈L , a.id ∈ γReg
L

((i, f , t,b))}⊆ γReg
L

(TAIL
Reg
L

((i, f , t,b))).

8.3.2.1.2 Atom abstraction For each interface V , we define the domain
AtomeSHAPE

V = (V ∪{I} → RegL). Each abstract element f ∈ AtomeSHAPE
V is re-

lated to the set:

γ SHAPE
V (f) = γReg

L
(f (I))×Πv∈V{(l, id) | l.id ∈ γReg

L
(f (v))}.

The structure (vSHAPE
V ,tSHAPE

V ,⊥SHAPE
V) of the domain AtomeSHAPE

V is defined
component-wise from the domain structure (v

Reg
L

,t
Reg
L

,⊥
Reg
L

). Since there is no
infinite increasing sequences in AtomeSHAPE

V , we define a∇SHAPE
V b = tSHAPE

V {a,b}.
Other primitives are defined as follows:

• the empty environment abstraction is defined as follows:

ε SHAPE = [I 7→ EMPTY
Reg
L

].

• the abstract restriction is defined as follows:

ν SHAPE(x, l, f) = f [x 7→ PREFIX
Reg
L

(l, f (I))].

• the abstract garbage collection is defined as follows:

GCSHAPE(X , f) = f|(V∩X)∪{I}.

Theorem 8.3.11. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.3.2.1.3 Molecule abstraction For any finite n-tuple (Vi)1≤i≤n of inter-
faces, we define the domain MoleculeSHAPE

(Vi)1≤i≤n
as the domain {(X , i) | 1≤ i≤ n, X ∈

Vi ∪ {I}} → RegL . Each abstract element f ∈ MoleculeSHAPE
(Vi)

is related to the

set γ SHAPE
(Vi)

(f) of the families (idi,Ei) ∈Π1≤i≤nEnvM
Vi

of pair marker/environment

such that for any integer i such that 1 ≤ i ≤ n, we have idi ∈ γReg
L

(f ((I, i))) and

[Ei(v) = (l, idl) =⇒ l.idl ∈ γReg
L

(f ((v, i))) for any v ∈Vi.
Abstract primitives are defined as follows:

8.3. MORE PRECISE ABSTRACTIONS 233

• the abstract injection just renames variables: we define INJSHAPE(f) =
[(X ,1) 7→ f (X)].

• the abstract concatenation is computed by re-indexing the variables of
the right arguments and by joining the two maps. Let m,n be two in-
tegers. Let (Ui)1≤i≤m and (Vi)1≤i≤n be two families of interfaces. Let
f1 ∈MoleculeSHAPE

(Ui)
and f2 ∈MoleculeSHAPE

(Vi)
be two abstract molecules. We

define the abstract product f1 •
SHAPE f2 of f1 and f2 as the following func-

tion:
{

(X , i) 7→ f1(X , i) if 1≤ i≤ m

(X , i) 7→ f2(X , i−m) if m+1≤ i≤ n.

• the abstract projection just keeps information about a given thread and re-
names the corresponding variables. Let n be an integer and (Vi)1≤i≤n be
a family of interfaces. Let k be an integer such that 1 ≤ k ≤ n. We set
PROJSHAPE(k, f) = [v ∈Vk∪{I} 7→ f ((v,k))].

• the abstract extension removes any constraint about the redefined variables.
Let n be an integer and (Vi)1≤i≤n be a family of interfaces. Let X be a
subset of V × J1;nK. Let f be an element of MoleculeSHAPE

(Vi)
. Then we set

NEWSHAPE
> (X , f) = f [v ∈ X 7→ >Reg

L
].

• the abstract synchronization of an abstract element f with respect to a con-
straint set S consists in taking the meet of the information about equal mark-
ers (we make the transitive closure of equality constraints to get more in-
formation). Let n be an integer. Let (pi) be an n-tuple of program point.
Let (Vi)1≤i≤n be an n-tuple of interfaces. Let S be a set of constraints
(x,k)� (y, l) with 1≤ k≤ n, x ∈Vk∪{I}, 1≤ l ≤ n, and y ∈Vl∪{I}. We in-
troduce the binary equivalence =S over V that is defined by (x,k) =S (y, l)
if there exists an integer m ∈ N and a sequence a0,. . . ,am of variables in
{(x,k) | x ∈Vk∪{I}} such that ai = ai+1 ∈ S or ai+1 = ai ∈ S, for any i such
that 0 ≤ i < m and such that (x,k) = a0 and (y, l) = am. For any variable
X = (x,k), we denote X=S the set

⋃

{Y | X =S Y}. The value abstraction of
a variable (x,k) (where 1≤ k≤ n and x ∈Vk∪{I}) before having taken into
account synchronization constraints is denoted by g((pi),x,k). It is defined
as follows:

g((pi),x,k)
∆
=

{

PREFIX
Reg
L

(pk, f (x,k)) if x = I,

f (x,k) otherwise.

The value abstraction of a variable (x,k) (where 1≤ k≤ n and x ∈Vk∪{I})
after having taking into account synchronization constraints S is denoted by

234 CHAPTER 8. ENVIRONMENT APPROXIMATION

h((pi),S,x,k). It is defined as follows:

h((pi),S,x,k)
∆
= u

Reg
L
{g((pi),y, l) | (y, l) ∈ (x,k)=S}.

We can now define SYNCSHAPE(S,(pi), f) as follows:

SYNCSHAPE(S,(pi), f)(x,k)
∆
=

{

⊥
Reg
L

if ∃(y, l), g(y, l) =⊥
Reg
L

,

h((pi),S,x,k) otherwise.

• marker allocation updates the abstraction of the first thread marker, by using
the abstraction of the second thread marker. We set:

FETCHSHAPE((pi), f)
∆
= f [(I,1) 7→ PUSH

Reg
L

(p2, f (I,2))].

Theorem 8.3.12. These primitives satisfy the soundness assumptions of
Sect. 8.1.2.

8.3.2.2 Global numerical abstraction

Numerical abstraction captures the relations between the markers which are asso-
ciated to each thread and to their values. This abstraction is built upon the lattice
of affine relations among a set of numerical variables [47]. First each word is
approximated by its Parikh’s vector [64], then we abstract the relations between
occurrence numbers of letters in markers.

Unlike the domains that we have described in Sect. 8.2.5.3.2, we abstract sets
of pairs marker/environment globally, without partitioning the abstraction accord-
ing to the label of the values. This way, a pair marker/environment is seen as a
huge vector. Then the set of such vectors are approximated by its affine hull. We
take into the fact that a label l is the label of the value of a variable v by encoding
it in some extra variables, instead of using partitioning.

8.3.2.2.1 Atom abstraction For each V ⊆ V , we denote by XV the set of
variables {Pλ | λ ∈L }∪{V(λ ,v) | λ ∈L , v ∈V}∪{B(l,v) | l ∈L , v ∈V}. The
variable Pλ describes the number of occurrences of λ in the thread marker (or
in the abstraction of the marker), while the variable V(λ ,v) is used to count the
number of occurrences of λ in the marker of the value of the variable v. The
variable B(l,v) encodes whether the label l is the label of the value of the variable
v, or not. The domain AtomeGLOB

V is the set of affine equality relations among the
variables of XV . For all affine system K in AtomeGLOB

V , γ GLOB
V (K)⊆ EnvM

V is the

8.3. MORE PRECISE ABSTRACTIONS 235

set of the elements (id,E) such that the assignment10:





Pλ → |φ2(id)|λ ,
V(λ ,v) → |φ2(idv)|λ where (l′, idv) = E(v)],
B(l,v) → δ l′

l where (l′, idv) = E(v)]





is a solution of K.
The structure (vGLOB

V ,tGLOB
V ,⊥GLOB

V) is defined using affine operators de-
scribed in [47]. Since there is no increasing infinite sequences in AtomeGLOB

V ,
we define a∇GLOB

V b = tGLOB
V {a,b}. Other primitives are defined as follows:

• the empty environment abstraction is defined as follows:

ε GLOB = {Pλ = 0, ∀λ ∈L .

• the abstract restriction ν GLOB(x, l,K) is obtained in inserting in the affine
system K, for each label λ ∈L , both the affine constraint V(λ ,x) = Pλ and

the affine constraint B(λ ,x) = δ λ
l where δ l′

l = 1 if l = l′, and δ l′
l = 0 other-

wise.

• the abstract garbage collection is defined by using the projection operator
that is defined in [47] to keep the constraints about the variable XV∩X .

Theorem 8.3.13. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.3.2.2.2 Molecule abstraction In the same way, for any finite n-tuple
(Vi)1≤i≤n of interfaces, we denote by X(Vi) the set of variables {Pi

λ | λ ∈L , 1≤
i ≤ n}∪{Vi

(λ ,v) | λ ∈L , 1 ≤ i ≤ n, v ∈ Vi}∪{Bi
(l,v) l ∈L , 1 ≤ i ≤ n, v ∈ Vi}.

We also define MoleculeGLOB
(Vi)

as the set of affine equality relations among the

variables of X(Vi). For all affine system K in MoleculeGLOB
(Vi)

, we define the con-

cretization γ GLOB
(Vi)

(K) ⊆ Π1≤1≤nEnvM
Vi

as the set of the marker/environment pair
families (idi,Ei)1≤i≤n such that the assignment:







Pi
λ → |idi|λ ,

Vi
(λ ,v) → |idv|λ where (l′, idv) = Ei(v)],

Bi
(l,v) → δ l′

l where (l′, idv) = Ei(v)]







is a solution of K.
Abstract primitives are defined as follows:

10δ l′
l = 1 if l = l′, and δ l′

l = 0 otherwise.

236 CHAPTER 8. ENVIRONMENT APPROXIMATION

• To compute the affine system INJGLOB(K), we just replace each variable of
the form Pλ into the variable P1

λ , each variable of the form V(λ ,v) with the
variable V1

(λ ,v) in the affine system K, and each variable of the form B(l,v)

with the variable B1
(l,v) in the affine system K.

• the abstract concatenation is computed by first renaming each variable in
the second system, and then gathering the constraints. More precisely, let
m, n be two integers. Let (Ui)1≤i≤m, (Vi)1≤i≤n be two tuples of interfaces.
Let K1 ∈MoleculeGLOB

(Ui)
,K2 ∈MoleculeGLOB

(Vi)
be two affine equality systems.

The system K1 •
GLOB K2 is defined as the affine system that contains all the

constraints in K1 and all the constraints in the system K ′2, where the affine
system K ′2 is given by replacing each occurrence of variable Pi

λ with the
variable Pi+m

λ , each occurrence of variable Vi
(λ ,v) with the variable Vi+m

(λ ,v),

and each occurrence of variable Bi
(l,v) with the variable Bi+m

(l,v).

• the abstract projection just keeps information about a given thread and re-
names the corresponding variables. Let n be an integer and (Vi)1≤i≤n be a
family of interfaces. Let k be an integer such that 1 ≤ k ≤ n. The system
PROJGLOB(k,K) is obtained by applying the affine projection to keep infor-
mation only about the variables of the form Pk

λ (for any label λ ∈L), of the
form Vk

(λ ,v) (for any label λ ∈L , any variable v ∈Vk), or of the form Bk
(l,v)

(for any label l ∈L , any variable v ∈Vk), and then by replacing each vari-
able Pk

λ with the variable Pλ , each variable Vk
(λ ,v) with the variable V(λ ,v),

and each variable Bk
(l,v) with the variable B(l,v).

• the abstract extension is the system that is obtained by keeping only in-
formation about the variables that are not redefined and then by insert-
ing redefined variables without any constraint about them. Let n be an
integer and (Vi)1≤i≤n be a family of interfaces. Let X be a subset of
V × J1;nK. Let K be an element of MoleculeGLOB

(Vi)
. We define the sys-

tem NEWGLOB
> (X ,K) ∈ MoleculeGLOB

(Vi∪{v | (v,i)∈X}) as the affine system that is
obtained by collecting all the constraints that only involve variables in
X(Vi) \X . (We use Gaussian elimination). Variables Vi

(λ ,v) and Bi
(l,v) when

(v, i) ∈ X are tied with no constraint in the affine system NEWGLOB
> (X ,K).

• the abstract synchronization of an affine equality constraint system K with
respect to a constraint set S consists in inserting some equality constraints.
Let n be an integer. Let (pi) be an n-tuple of program point labels. Let
(Vi)1≤i≤n be an n-tuple of interfaces. Let S be a set of constraints (x,k) �
(y, l) with 1 ≤ k ≤ n, x ∈ Vk ∪{I}, 1 ≤ l ≤ n, and y ∈ Vl ∪{I}. Let K be

8.3. MORE PRECISE ABSTRACTIONS 237

an affine system in MoleculeGLOB
(Vi)

. We associate each formal variable X and
each label λ ∈L with the affine combination pair aff(X ,λ) where:

aff(X ,λ) =

{

(δ pk

λ ,Pk
λ) if X matches (I,k),

(Bk
(λ ,v),Vk

(λ ,v)) if X matches (v,k) with v ∈Vk,

where δ l′
l = 1 if l = l′ and δ l′

l = 0 otherwise.

We define SYNCGLOB(S,(pi),K) as the affine system K where we have in-
serted the constraints aff(X ,λ) = aff(Y,λ) for any label λ ∈ L and any
equality constraint (X = Y) ∈ S. Gaussian elimination allows for the nor-
malization of the result.

• marker allocation FETCH GLOB((pi),K) is obtained by first using affine pro-
jection to keep only constraints not involving variables of the form P1

λ , and
then by inserting the constraints P1

λ = P2
λ +δ λ

p2 for any λ in L (where δ x
y is

either equal to 1 if x=y, or equal to 0 otherwise).

Theorem 8.3.14. These primitives satisfy the soundness assumptions of
Sect. 8.1.2.

8.3.2.2.3 Invariant example

Example 8.3.15. We analyze the mobile system that is given in Fig. 8.5 on page
223. The global numerical abstraction detects that:

• in each thread labeled 2, the variable right is linked to a name created by
the (ν right) restriction, while the variable left is linked to a name, either
created by an instance of the (ν right) restriction, or by an instance of the
(ν left0) restriction. We also detect that, in the case where the variable
left is linked to a name created by the (ν right) restriction, this variable
is linked to the name created by the previous recursive instance of the one
which has created the name communicated to the variable right;

• in each thread labeled 5, the variable left0 is linked to a name created by
the (ν left0) restriction, while the variable left is linked to a name either
created by an instance of the (ν right) restriction or by an instance of the
(ν left0) restriction.

238 CHAPTER 8. ENVIRONMENT APPROXIMATION

These properties are deduced from the following invariants:































f (2) satisfies











B(right,right) = 1

B(left0,left) + B(right,left) = 1

V(3,right) = V(3,left) + B(right,left)

f (5) satisfies

{

B(right,left) + B(left0,left) = 1

B(left0,left0) = 1

where f denotes the result of the analysis.
Nevertheless, our abstract domain is not expressive enough to merge these two

environments, and detects no insightful information for the thread labeled 9. That
is why we introduce a partitioned domain. 2

8.3.2.3 Partitioned numerical abstraction

We propose to partition the set of interactions between values and threads in order
to get more accurate results. To avoid complexity explosion, we do not globally
abstract environments, we only compare pair-wisely the right comb of the mark-
ers. Let ψ11 be a linear form defined on QΣ. The choice of ψ depends on the
cycles that are encountered in the graphs that are computed during the shape anal-
ysis. Counting the occurrence of each letter is almost the most costly choice, but
it always lead to the best accuracy. When graphs only contains a single cycle,
considering the length words is enough to get good results.

8.3.2.3.1 Atom abstraction Let V ⊆ V be a finite set of variables. We
introduce the abstract domain AtomePART

V of the functions which map the set (V ×
L)] ((V ×L)2) onto the set of affine subspaces of Q2. For all f ∈ AtomePART

V ,
the concretization γ PART

V (f) ∈℘(EnvM
V) is the set of pairs marker/environment

(id,E) such that:

• ∀x ∈V , such that E(x) = (cx, idx),

(ψ([λ → |φ2(id)|λ]),ψ([λ → |φ2(idx)|λ])) ∈ f (x,cx);

• ∀x ∈V,∀y ∈V , such that E(x) = (cx, idx) and E(y) = (cy, idy),

(ψ([λ → |φ2(idx)|λ]),ψ([λ → |φ2(idy)|λ])) ∈ f ((x,cx),(y,cy)).

Because of the cost of the partitioning, we cannot afford much calculi in this do-
main. This domain will be used to locally refine (by partitioning) the information

11This abstraction must be done with several linear forms chosen according to a pre-analysis
and Thm. 8.3.22.

8.3. MORE PRECISE ABSTRACTIONS 239

we got from the global numerical abstraction GLOB before testing both matching
guards and synchronization constraints.

The structure (vPART
V ,tPART

V ,⊥PART
V) is defined applying affine operators de-

scribed in [47] component-wise. Since there is no infinite increasing sequences
in AtomePART

V , we define a∇PART
V b = tPART

V {a,b}. Other primitives are defined as
follows:

• the empty environment abstraction is defined as follows:

ε PART = /0.

• when computing an abstract restriction, we take into account the fact that
the marker of the new value is also the marker of the thread that creates this
value. We ignore any relation between the other variables. These relations
will be computed by reduction (Cf. Sect. 8.3.2.3.3). The abstract restriction
is defined as follows:

ν PART(x, l, f) = f





















(x, l) 7→ {(n,n) ∈Q},
(x, l′) 7→ /0, if l 6= l′,

(x, l),(x, l) 7→ {(n,n) ∈Q},
(x, l),(y,_) 7→ Q2, if x 6= y,
(y,_),(x, l) 7→ Q2, if x 6= y,
(x, l′),(_,_) 7→ /0, if l 6= l′,
(_,_),(x, l′) 7→ /0, if l 6= l′





















• the abstract garbage collection consists in throwing away all the constraints
that tie some variables that are garbage collected. Thus we define:

GCPART(X , f) = f|(X×L)](X×L)2.

Theorem 8.3.16. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

8.3.2.3.2 Molecule abstraction For any finite n-tuple (Vi)1≤i≤n of inter-
faces, we define the abstract domain MoleculePART

(Vi)
as the Cartesian product

Π(AtomePART
Vi

). For all tuple (ti) in MoleculePART
(Vi)

, we define the concretiza-

tion γ PART
(Vi)

((ti)) ⊆ Π1≤1≤nEnvM
Vi

as the set of marker/environment pair families

Πγ PART
Vi

(ti).
Abstract primitives are defined as follows:

• the abstract injection of an abstract atom f ∈ AtomePART
V is the 1-tuple (f) ∈

MoleculePART
(V) .

240 CHAPTER 8. ENVIRONMENT APPROXIMATION

• the abstract concatenation is the usual tuple concatenation. Let m, n be
two integers. Let (Ui)1≤i≤m, (Vi)1≤i≤n be two tuples of interfaces. Let
f ∈MoleculePART

(Ui)
,g∈MoleculePART

(Vi)
be two abstract molecules. The abstract

molecule f •PART g is defined as follows:

(f •g)i =

{

fi if 1≤ i≤ m

gi−m if m+1≤ i≤ m+n.

• the abstract projection is the usual component extraction. Let n be an integer
and (Vi)1≤i≤n be a family of interfaces. Let k be an integer such that 1 ≤
k ≤ n. The system PROJ PART(k,(fi)) is given by fk.

• the abstract extension is the system that is obtained by keeping only in-
formation about the variables that are not redefined and then by insert-
ing redefined variables without any constraint about them. Let n be an
integer and (Vi)1≤i≤n be a family of interfaces. Let X be a subset of
V × J1;nK. Let (fi) be an element of MoleculePART

(Vi)
. We define the tuple

NEWPART
> (X ,(fi)) ∈MoleculePART

(Vi∪{v | (v,i)∈X}) as the abstract element:


 fi





(v,_) 7→ Q2,
((v,_),(_)) 7→ Q2,
((_),(v,_)) 7→ Q2

∣

∣

∣

∣

∣

∣

v ∈Vi, such that (v, i) ∈ X









1≤i≤n

• we now define the abstract synchronization. We want to pass any rela-
tion among the values of two variables to any pair of variables that are
simultaneously synchronized with these two variables. Let n be an in-
teger. Let (pi) be an n-tuple of program point labels. Let (Vi)1≤i≤n be
an n-tuple of interfaces. Let S be a set of constraints (x,k) � (y, l) with
1 ≤ k ≤ n, x ∈ Vk ∪ {I}, 1 ≤ l ≤ n, and y ∈ Vl ∪ {I}. For any variable
X ∈ {(x,k) | 1 ≤ k ≤ n, x ∈ Vk ∪ {I}}, we denote by [X] the equivalence
class of X in the set {(x,k) | 1 ≤ k ≤ n, x ∈ Vk ∪{I}} with respect to the
reflexive, symmetric, and transitive closure of the relation R that is defined
by XRY if and only if (X = Y) ∈ S. Moreover, we say that two formal
variables (x,k) and (y, l) constrain the same thread if and only if k = l. In
such a case, we write (x,k)≡ (y, l). We define SYNC PART(S,(pi),(fi)) as the
tuple (gi) where for any i such that 1≤ i≤ n, the affine space gi is defined
as follows:



















(v, l) 7→ fi(v, l)∩ (
⋂

{h((X , pi),(Y, l)) | XR(I, i), YR(v, i), X ≡ Y})

(v, l),(v′, l′) 7→ fi((v, l),(v′, l′))∩







⋂











h((X , l),(Y, l′))

∣

∣

∣

∣

∣

∣

∣

XR(v, i),

YR(v′, i),

X ≡ Y

















8.3. MORE PRECISE ABSTRACTIONS 241

where the function h associates each pair of formal variable/label pair
((X1, l1),(X2, l2)) with the abstraction of the marker pair (id1, id2) such that
(l1, id1) may be the value of X1 while (l2, id2) is the value of X2.The function
h is defined as follows:

h :



















































(((I, i), l),_) 7→ /0 if l 6= pi,

(_,((I, i), l)) 7→ /0 if l 6= pi,

((X , l),(X , l)) 7→ {(n,n) | n ∈Q},

(((I, i), pi),((v, i), l)) 7→ fi(v, l),

(((v, i), l),((I, i), pi)) 7→ {(n,m) | (m,n) ∈ (fi(x, l))},

(((v, i), l),((v′, i), l′)) 7→ fi((v, l),(v′, l′)),

_ 7→ Q2.

Special care is to be taken in order to deal with the formal variables of the
form (I, i) (which denotes a thread identity).

• marker allocation FETCH PART((pi),(fi)) is given by replacing the first com-
ponent by the function that maps any argument to Q2.

8.3.2.3.3 Reduction We shall notice that no information is computed by ab-
stract restriction and abstract marker allocation. Nevertheless, during synchro-
nization, the description of the communicated names is copied to the description
of the receiver environment. We use a reduction operator to restore missing con-
straints. A complete reduction of properties would lead to a time complexity
explosion. We use a partial reduction. On the first hand, we use thread markers as
pivots and replace each abstract atom f with the following element:

f

[

((x,c),(y,d))→ f ((x,c),(y,d))∩

{

(x,y)

∣

∣

∣

∣

∣

∃z,

{

(z,y) ∈ f (y,d),

(z,x) ∈ f (x,c)

}]

,

and on the other hand, we always perform reductions between global numerical
abstraction and partitioned numerical abstraction: global numerical analysis is
used to collect all the information, which is then projected onto each case of the
partition (Cf. Sect. 8.3.3).

The reduction over abstract molecules is defined component-wise.

8.3.2.3.4 Invariant example

Example 8.3.17. For ψ , we choose the linear form which maps each vector to
the sum of its components. Our analysis succeeds in proving that the second

242 CHAPTER 8. ENVIRONMENT APPROXIMATION

pattern matching, in the example, is not satisfiable. Along the abstract iteration,
the analyzer proves that in thread 9, the names linked to the variables x and y
have been respectively declared:

1. by the action (ν left0) of a thread with a 0 marker length and the action
(ν left0) of a thread with a 0 marker length;

2. or by the action (ν left0) of a thread with a 0 marker length and by the
action (ν right) with a 1 marker length;

3. or by the action (ν right) of a thread t1 and by the action (ν right) of a
thread t2 such that the length of the marker of t2 is equal to the length of the
marker of t1 plus 1;

4. or by the action (ν right) of a thread of arbitrary marker length and by the
action (ν left0) of a thread the length of the marker of which was 0.

Then it detects that the matching pattern ([x = y]) may only be satisfied for the
case 1 and it discovers that in thread 7, all the syntactic channel names x, y and
left0 are bound to a channel created by the action (ν left0) the thread marker of
which is ε and concludes that the second pattern matching ([x 6= left0]) may not
be satisfied. 2

8.3.3 Approximated reduced product

These five domains collaborate in order to refine abstract constraints. We build
our main abstraction as the product (Cf. Sect. 7.3.1 on page 7.3.1) of the five ab-
straction =1, =2, SHAPE, GLOB, and PART. We use a reduction operator ρ to
refine the constraints of each others. As explained in Sect. 7.3.2 on page 161, this
reduction operator will be applied both at the beginning of an abstract computa-
tion step (to refine preconditions) and at the end of an abstract computation step
(to refine newly computed abstract values). Moreover, in order to get more ac-
curacy, we will apply this reduction after any synchronization, in order to disable
as many interactions as possible. All abstract primitives are defined component-
wise, except the abstract synchronization that first consists in computing abstract
synchronization component-wise and then in applying the reduction on the result.

8.3.3.1 Reduction steps

We define the reduction by using a set of rules. Each rule describes how a domain
reduces the information of another domain. A graphical summary of all these
reductions is given in Fig. 8.6. We now display the set of reduction rules:

8.3. MORE PRECISE ABSTRACTIONS 243

1. we use the information about equality of values and equality of markers
to refine marker analysis; conversely, we use the information obtained in
marker analysis to infer information about disequalities of values and dise-
qualities of markers;

2. we make reductions between the global and partitioned numerical abstrac-
tions: for the sake of simplicity, we take the case of abstract atoms over
the interface V . Let K be a global approximation and f be a partitioned
approximation.

• We want to refine the image f ((v, l),(v′, l′)): First we compute a new
affine system K ′ by inserting in K for each λ ∈ L , the two con-
straints B(λ ,v) = δ λ

l and B(λ ,v′) = δ λ
l′ , and by collecting (via Gaus-

sian elimination) all the equations that constrain only the variables
V(x,λ) for each x ∈ {v;v′} and each λ ∈ L . We can soundly re-
place f ((v, l),(v′, l′)) with f ((v, l),(v′, l′))∩{(ψ(u),ψ(v)) | [V(v,λ) 7→
|u|λ , V(v′,λ) 7→ |v|λ] satisfies K}.

• Conversely, we can refine the affine system K: Let v and v′ be two
variables in V ∪ {I}. For the sake of simplicity, we suppose that
v 6= I and v′ 6= I. We define the affine system K ′(v,v′) as the affine
hull tK

XV
{J(v, l,v′, l′) | (l, l′) ∈ L 2} where for each label l, l′ ∈ L ,

the affine system J(v, l,v′, l′) is given by the constraints B(λ ,v) = δ λ
l ,

B(λ ,v′) = δ λ
l′ , and (ψ([λ 7→ V(λ ,v)]),ψ([λ 7→ V(λ ,v′)]))∈ f ((v, l),(v, l′))

for any λ ∈L . We can soundly replace the system K with the system
that collects all the constraints in the system K and all the constraints
in any system K ′(v,v′).

3. We use the results obtained in marker analysis to prove equality relations
between name markers. This reduction step is the more complex. It is the
goal of Sect. 8.3.3.2.

8.3.3.2 Parikh’s vector equality and word equality

We now give some details about the last kind of reductions. Marker analysis may
discover that two markers are recognized by the same automaton A and have
the same Parikh’s vector, but these two conditions do not ensure that these two
markers are the same. We give in Thm. 8.3.22 a decidable sufficient condition on
the automaton A to ensure the equality of such markers.

Let Σ be a finite alphabet, φ be a linear function from the vector space RΣ into
the vector space Rm, and A be an automaton (Q,→, i, f) such that the set Q is
finite, the relation→ is a part of Q×Σ×Q and i and f are parts of Q.

244 CHAPTER 8. ENVIRONMENT APPROXIMATION

 PI
=

=
=

=
6=

6= 6=

PART

GLOB

=1 +=2

SHAPE

Figure 8.6: Reduction graph.

8.3. MORE PRECISE ABSTRACTIONS 245

Definition 8.3.18. We define the set Path(A) of acyclic derivation sequences in

A as the set of sequences q0
λ1→ . . .

λn→ qn such that q0 ∈ i, qn ∈ f , for all i, j∈ J0;nK,
i 6= j =⇒ qi 6= q j, and for all i ∈ J1;nK,(qi−1,λi,qi) ∈→.

Definition 8.3.19. Let q be a state in Q. We define the set Cycle(A ,q) of
elementary cycles of A stemming from the state q, as the set of sequences

q = q0
λ0→ q1 . . .qn

λn→ qn+1 = q such that for all i ∈ J1;nK, qi 6= q, and for all
i ∈ J0;nK, (qi,λi,qi+1) ∈→.

Definition 8.3.20. Let q0
λ1→ . . .

λn→ qn be a sequence in A , we define its affine

description P(q0
λ1→ . . .

λn→ qn) as the vector φ([λ → |λ1 . . .λn|λ]).

Definition 8.3.21. Let a = q0
λ1→ . . .

λn→ qn be an acyclic derivation sequence in
Path(A), we define the family F (a) of affine descriptions of the cycles of the
derivation a as the family (P(c))c∈

⋃

{Cycle(qi) | i∈J0;nK}.

Theorem 8.3.22. If

1. for all q ∈ Q, Card(Cycle(A ,q))6 1,

2. for all a ∈ Path(A), F (a) is linearly independent in Rm,

3. for all distinct acyclic derivations a,a′ ∈ Path(A), the two affine sets
P(a)+Vect(F (a)) and P(a′)+Vect(F (a′)) are disjoint,

then:

∀u,v ∈ Σ∗, [u,v recognized by A and φ [λ → |u|λ] = φ [λ → |v|λ]] =⇒ u = v.

Roughly speaking, the first condition ensures that the automaton A contains
no embedded cycle. Then, from the description of a word Parikh’s vector, we
can deduce which main acyclic derivation is to be used to recognize a word (third
condition), and how many times each cycles are to be used (second condition).

Chapter 9

Occurrence number
approximation

We now propose to count the occurrence number of threads during computation
sequences. It is especially useful to detect mutual exclusion. It also helps in dis-
covering sound bounds for the number of threads during computation sequences,
so that we can verify that some part of the system will not exceed the physical
limits imposed by the implementation of the system. In the case of the ftp-server,
we can automatically infer the maximum number of simultaneous client sessions.

We first abstract away any information about markers and environments. This
way, a configuration is just seen as a multi-set of syntactic threads. Our approach
relies on the use of a reduced product between a non-relational and a relational do-
main. Complexity issues are solved by using approximate algorithms for comput-
ing a reduction between these two domains. Moreover, there may be no relation
among the occurrence number of some syntactic threads, whereas the occurrence
number of these threads may be related to the number of the performed transi-
tions. For instance, the occurrence number of a given syntactic thread is usually
related with the occurrence number of the syntactic threads in its potential contin-
uations. But in the case of an asynchronous computation, all continuations for the
syntactic thread are empty. Nevertheless, we can infer a relationship between the
occurrence number of the thread and the number of computations of a given tran-
sition; then a bound for this transition number gives a bound for the occurrence
number of the computed thread (cf Remark 9.4.3 on page 260).

Our abstraction requires an abstract domain to describe families of natural
numbers. In Sect. 9.2, we introduce a generic analysis, independently of this
domain. In Sect. 9.3, we propose a well-suited abstract domain. In Sect. 9.4, we
give experimental results. This chapter extends the framework [38] to our meta
language.

247

248 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

9.1 Related works

Several existing analyses use properties about the occurrence number of threads
in order to refine control flow properties. In [51, 50], Levi and Maffeis propose
a uniform control flow analysis for mobile ambients, where a counter is associ-
ated to each program point. This counter describes whether several instances of
threads at the same program point may occur simultaneously, or not. At the con-
crete level, an ambient may not migrate into itself. If the counter associated to the
program point p indicates that there may be at most one simultaneous instance
of thread at program point p, then we can discard at the abstract level the migra-
tion of ambients created at program p into ambients created at program point p.
Nevertheless, this analysis is not relational and it captures no property about the
program points that are bellow a bang operator in the initial state. This way, it
gives no information about systems of the form !P.

In [60], Nielson et al. refine a control flow analysis for BIO-ambients, by
detecting some mutual exclusion. They take care about recursion and internal
choices. Their mutual exclusion analysis detects the pairs (p,q) of program points
such that no instance of thread at program point p may interact with an instance of
tread at program point q because such two instances are separated by an internal
choice in any recursion unfolding of the syntactic description of the initial state.
Here again it is only a syntactic criterion (up to recursion unfolding). It gives no
information about systems of the form letp Aα〈〉= P | Aq〈〉 in P. This analysis is
not control-flow sensitive, whereas ours considers only the interactions that are
detected by the control flow analysis.

Finite-control system characterizations have been made, because model
checking finite-control systems are quite easy. A finite-control π-calculus [27] is
obtained by disallowing parallel composition through bang or recursion. Chara-
tonik et. al have proposed a type system [19] for the mobile ambients with recur-
sion to ensure that mobile systems have a finite control. This type system counts
the number of threads that must be consumed to unfold recursions, in order to
prove that the system never grows up between two unfolding of the same recur-
sion. Finite-control systems are very restrictive. Our analysis detects some parts
of the system that may launch only a bounded number of simultaneous threads and
captures an approximation of the part of the system that may launch an unbounded
number of simultaneous threads, whereas finite-control type systems reject any
system that contains an unbounded part. Since finite-control characterizations are
defined by induction over the syntax, they are control-flow insensitive, whereas
our analysis interacts with our environment analysis.

Very few relational analyses for counting occurrences of threads have been
published. Nevertheless, this problem is very close to the problem of approximat-
ing the behavior of a Petri net, and of occurrence counting in mobile ambients.

9.2. GENERIC ANALYSIS 249

In [43], Nielson et al. propose an exponential analysis for counting occurrences
of threads inside ambients. In [63], they use context-dependent counts for infer-
ring a more accurate description of the internal structure of threads, at the expense
of a higher time complexity (an exponential number of threads are distinguished).
These analyses rely on the use of a non-relational domain to abstract the content
of an ambient. Then, they use disjunctive completion, and abstract any potential
content of a syntactic ambient in the power set of this abstract domain. These
two analyses encounter the same problem: in case several instances of the same
thread may coexist, when one instance of this thread performs a computation step,
these analyses may not decide whether only one or several instances remain after
this computation step, so they have to consider both cases, which leads to both
a loss of precision and an exponential explosion in complexity. The use of an
approximated reduced product between a relational domain and a non-relational
domain to globally abstract sets of multi-sets of threads allows us to solve this
problem efficiently. Thus, we obtain a very accurate analysis which is polynomial
in the number of program points (i.e. polynomial in the size of the initial system
configuration).

9.2 Generic analysis

We recall that the set Lp is the set of the labels of the program points of system
S . We choose a set Σsub of variables in order to count the transitions that are
performed. Since the number of transition labels may be huge (for instance, it
is quadratic with respect to the number of program points in the case of the π-
calculus), we may want to quotient this set into equivalence classes, in order to
deal with fewer variables. For that purpose, we relate the set Σ to the smaller set
Σsub by an onto map ψ .

Example 9.2.1. In the case of the π-calculus, we propose three natural choices for
Σsub and ψ according to the expected trade-off between accuracy and efficiency:
let φ be the function that associates each label of transition (R,((t?,pi?),(t!,pi!)))
onto the pair (t?, t!) that gives the labels of the program points of the computing
threads. We describe as follows the choice for Σsub and ψ:

1. we can use one extra variable by setting Σsub = {0} and ψ(λ) = 0,

2. we can use a linear number of extra variables by assigning Σsub = Lp and
ψ(λ) = snd(φ(λ)),

3. we can use a quadratic number of extra variables by assigning Σsub = (Lp)
2

and ∀i, j ∈Lp, ψ(λ) = φ(λ).

250 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

Let Vc be the set Lp ∪Σsub. We introduce an abstraction ΠNVc which maps
each concrete configuration (u,C) in Σ∗×C (we recall that C is the set of all
the non standard configurations that satisfy marker unambiguity) to a family of
natural numbers indexed by the set Vc, as follows:

(ΠNVc (u,C))v =

{

Card({(p, id,E) ∈C | p = v}) if v ∈Lp

∑{|u|λ | λ ∈ ψ−1(v)} if v ∈ Σsub.

Proposition 9.2.2. Let (u1,C1) and (u2,C2) be two configurations such that C1∩
C2 = /0, then for any v ∈ Vc, we have ΠNVc (u1.u2,C1∪C2)v = (ΠNVc (u1,C1))v +
(ΠNVc(u2,C2))v.

Then, we consider℘(NVc), the complete lattice of sets of natural number fam-
ilies indexed by Vc. The power set ℘(NVc) is related to our concrete domain
℘(Σ∗×C) via a concretization function γNVc , where for any A in ℘(NVc), the
concretization γNVc (A]) is defined as follows:

{

(u,C) ∈ Σ∗×C

∣

∣

∣
ΠNVc (u,C) ∈ A]

}

.

We then introduce a generic pre-order (NVc,vNVc
) to represent sets of natural

number families indexed by Vc. It is related to ℘(NVc) via a monotonic con-
cretization γNVc

. Furthermore, we introduce several generic primitives: a rep-
resentation ⊥NVc

of the empty set, an abstract union tNVc
, a widening operator

∇NVc
, an abstract counterpart +] to the binary addition, an abstract counterpart

−] to the subtraction, an abstract synchronization SYNCNVc
. We also require the

abstraction of some elementary families: an abstract element 0NVc
to represent

the singleton containing the 0 family which associates 0 to each element in Vc,
and ∀v ∈ Vc, an abstract element 1NVc

(v) to represent the singleton containing the
family δ v which associates 1 to the element v and 0 to any other elements.

These primitives should satisfy the following properties:

1. γNVc
(⊥NVc

) = /0,

2. ∀a ∈NVc , ⊥NVc
vNVc

a,

3. ∀A ∈℘finite(NVc), tNVc
(A) ∈NVc and ∀a ∈ A, avNVc

tNVc
(A),

4. ∇NVc
satisfies Def. 7.2.1.(7) on page 158,

5. ∀a,b ∈NVc, a+] b ∈NVc and

{(tv +uv)v∈Vc | t ∈ γNVc
(a), u ∈ γNVc

(b)} ⊆ γNVc
(a+] b),

9.2. GENERIC ANALYSIS 251

6. ∀a,b ∈NVc , (a−] b) ∈NVc and
{

(tv−uv)v∈V

∣

∣

∣

∣

t ∈ γNVc
(a), u ∈ γNVc

(b),

∀v ∈ Vc, tv > uv

}

⊆ γNVc
(a]−] b]),

7. ∀a ∈NVc, t ∈ NVc , SYNCNVc
(t,a]) ∈NVc and

{u | u ∈ γNVc
(a),uv ≥ tv, ∀v ∈ Vc} ⊆ γNVc

(SYNCNVc
(t,a)),

8. 0NVc
∈NVc and (0)i∈Vc ∈ γNVc

(0NVc
),

9. ∀v ∈ Vc, 1NVc
(v) ∈NVc and (δ v

i)i∈Vc ∈ γNVc
(1NVc

(v)),

where δ v
i =

{

1 if i = v

0 otherwise.

Roughly speaking, the operator +] is an abstract counterpart to the
component-wise addition, the operator −] is an abstract counterpart to the
component-wise subtraction, and the primitive SYNCNVc

is used to extract from
an abstract value the representation of the configurations which simultaneously
contain all the threads required by a computation step.

We use these generic primitives to define some other primitives:

• We introduce the primitive ∑] that computes the abstract sum of the ele-
ment of a finite sequence of abstract elements. It is inductively defined by
∑](()i∈ /0) = 0NVc

and by ∑] ((ai)i∈I) = amin(I) +
] ∑]

(

(ai)i∈I\{min(I)}

)

in the
case where I is a non-empty totally ordered set.

• We introduce the primitive χ] as the sound counterpart of the characteristic
function. It maps each subset V of Vc to the abstraction of the tuple which
associates 1 to the variables in V and 0 to the variables in Vc \V . The
primitive χ is defined by χ](V) = ∑](1NVc

(v))v∈V .

We now define the abstract transition system. The initial configuration is de-
fined in Fig. 9.1 and the abstract transition rule is given in Fig. 9.2. These defi-
nitions use an auxiliary primitive βNVc

which computes an approximation of all
potential continuations of a syntactic thread. This primitive allows the modeling
of internal choices and parallel composition. The primitive βNVc

is defined over
the set of the syntactic continuation sets (cf. Def. 4.2.2 on page 54) as follows:

βNVc
:

{

℘(℘(Lp× (V ⇀ L))) →NVc

Ct 7→ tNVc
{χ](fst(A)) | A ∈ Ct}.

This way, each choice of continuation is abstracted by using the primitive χ],
which models the parallel composition. All potential continuation abstractions are

252 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

gathered by using the primitive tNVc
: this model internal choices. The following

proposition relates the concrete primitive for launching continuations launch (cf
Def. 4.4.7 on page 59) and the abstract primitive βNVc

:

Proposition 9.2.3 (abstract continuation computation). Let Ct ∈℘(℘(Lp ×
(V ⇀ L))) be a set of continuation choices.
Let A ∈ Ct be a continuation. Let id ∈M be a thread marker and let E ∈ V ⇀
L ×M be an environment. We have:

(ε, launch(A, id,E)) ∈ (γNVc ◦ γNVc
)(βNVc

(Ct)).

The initial abstract configuration is obtained by applying βNVc
to the initial

system description inits (cf Sect. 4.2.4 on page 54). An intuitive explanation of
abstract transitions is given in Fig. 9.3. We start from an abstract property C] (on
the left in the figure). We first compute an abstraction of the set of the config-
urations that satisfy the abstract property C] and in which all interacting threads
occur simultaneously (in dotted line in the figure). If this abstraction is the bot-

tom element, the abstract interaction is disabled. Otherwise, the result C
]

of the
interaction is obtained by translation: we decrease the occurrence number of the
interacting thread which are not resources, and we increase the occurrence num-
ber related to both the description of continuations and the performed interaction.
We do not bother about the control flow, since we use a Cartesian product between
this analysis and one of our control flow analyses (cf Chap. 8).

Theorem 9.2.4. (NVc,vNVc
,tNVc

,⊥NVc
,γNVc ◦ γNVc

,C
NVc
0 , NVc

,∇NVc
) is an

abstraction.

The proof of Thm. 9.2.4 is shown in appendix D.2.

9.3 Abstract domains

We only need to define an abstract domain to approximate sets of indexed families
of natural numbers in which abstract primitives may be precisely and efficiently
implemented. On the one hand, the primitive SYNCNVc

needs to express the prop-
erty that several variables may simultaneously be greater than one, which is a
relational information. On the other hand, the shape of the abstract transition rule
suggests that the domain should be closed under addition. This problem is very
similar to approximating the collecting semantics of a Petri net. We reject the
use of usual numerical domains. We are unlikely to design a precise primitive
SYNCNVc

in non-relational domains. Moreover, useful constraints are very likely
to involve more than two variables, so that Miné’s domains [58, 55, 56] may not

9.3. ABSTRACT DOMAINS 253

C
NVc
0 = βNVc

(inits)

Figure 9.1: Initial configuration.

Let v] be an abstract configuration.
Let R = (n,components,compatibility,v-passing,broadcast) be a reduction rule.
Let (pk)1≤k≤n ∈Cn be an n-tuple of program point labels.
Let (pik)1≤k≤n = (sk,(parameterk

l)l,(bdk
l)k,l,constraintsk,continuationk)1≤k≤n

be a sequence of partial interactions.
We denote by t ∈ NVc the tuple such that tv is the number of occurrence of v in
the sequence (pk)1≤k≤n.
If:

• pik ∈ interaction(pk), for any k ∈ J1;nK,

• SYNCNVc
(t,v]) 6=⊥NVc

,

then:

v](R,(pk,pik)
 NVc

SYNCNVc
(t,v])+] Transition+] Launched−] Consumed,

where:

• Transition = 1NVc
(ψ(R,(pk,pik)));

• Launched = ∑](βNVc
(continuationk))1≤k≤n;

• Consumed = ∑](1NVc
(pk))k∈{k′ | 1≤k′≤n, type(sk′)6=replication}.

Figure 9.2: Abstract transition rule.

254 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

C]

C
]

λ
 NVc

Figure 9.3: Intuitive abstract transition.

help. Disjunctive completion may be used to lift a non-relational domain into a
relational one: each configuration is abstracted in a finite non-relational domain,
and then the abstraction of a configuration set is given by the collection of all the
abstractions of its elements. Nevertheless, disjunctive completion often leads to
a lack of accuracy and to an exponential explosion. Disjunctive completion has
been used in [43,63] for abstracting the content of ambients. We cannot afford the
domain of linear inequalities among a finite set of variables [26] because we deal
with too many variables.

We propose the use of a reduced product between two domains: the interval
lattice [22] and the linear equalities lattice [47].

• The first domain is used for expressing properties of interest. This domain
may represent all the properties we need to express non-exhaustion of re-
sources, but it may not calculate them precisely without being refined.

• The second domain is used for expressing more complex properties, such
as mutual exclusion, which allows for more precise calculations in the first
domain.

The power of our analysis directly comes from the use of an inexpensive algo-
rithm, straightforwardly adapted from Linear Constraint Programming, to com-
pute an approximated reduction between these two domains.

Recently, a new domain, the octahedron domain, has been proposed in [69].
This domain is expressive enough to deal with the constraints that interest us.

9.3. ABSTRACT DOMAINS 255

Nevertheless, this domain needs to be guided to avoid complexity explosion. So
that, it cannot be applied straight forwardly, but it would be interesting to check
how useful this domain may be for our application.

9.3.1 Interval domain

The complete lattice (I ,vI ,tI ,⊥I ,uI ,>I) is the functional domain of nat-
ural number intervals, where lattice operations are defined point-wisely. The ab-
stract domain I is related to ℘(NVc) via the monotonic map γI defined by:

γI (f) = {u ∈ NVc | ∀i ∈ Vc, ui ∈ f (i)}.

A family (∇n
I

) of widening operators on I is defined as follows:

[f ∇n
I g](x) = f (x)∇ng(x),

where Ja;bK∇nJc;dK =

{

Jmin{a;c};+∞J if d > max{b;n}

Jmin{a;c};max{b;d}K otherwise.
We can easily define abstract primitives in I as follows:

• (f +I g) = [x→ f (x)+g(x)],

• (f −I g) = [x→ (f (x)−g(x))∩ J0;+∞J],

• SYNCI (t, f) = [x→ f (x)∩ Jt(x);+∞J],

• 0I = [x→ J0;0K],

• 1I (v) =

[{

x→ J1;1K if x = v

x→ J0;0K otherwise

]

.

9.3.2 Linear equalities domain

The complete lattice (K ,vK ,tK ,>K ,uK ,⊥K) of linear equality systems be-
tween the finite set of variables Vc is described with its lattice operations in [47].
This domain uses Gaussian elimination in order to normalize systems. It is related
to the domain℘(NVc) via the monotonic function γK which maps each system to
the set of its solutions. Moreover, since there is no infinite ascending chain [47],
we can choose tK as a widening operator. To define the addition +K and the
subtraction −K of two systems, we compute a particular solution of each system

256 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

O1 and O2, and a linear direction
−→
H1 and

−→
H2. Then we use the following equalities:

(O1 +
−→
H1)+K (O2 +

−→
H2) = (O1 +] O2)+(

−→
H1tK

−→
H2),

(O1 +
−→
H1)−K (O2 +

−→
H2) = (O1−

] O2)+(
−→
H1tK

−→
H2).

Such a decomposition may be extracted from the normal form in linear time, so
the cost of affine addition and subtraction is cubic due to the use of the Gaussian
elimination.

Other primitives are defined as follows:

• SYNCK (I,K) = K,

• 0K = {x = 0, ∀x ∈ Vc,

• 1K (v) =

{

x = 1 if x = v
x = 0 otherwise.

Roughly speaking, synchronization cannot be directly checked in K . So we de-
fine it as the identity. Linear constraints will therefore be used to prove that syn-
chronization interval constraints are incompatible, by reduction. Other primitive
definitions are straightforward.

9.3.3 Approximated reduced product

Our numerical domain is the product (I ×K). It is partially ordered by the
pair-wise ordering vI ×vK . It is related to ℘(NVc) by the concretization func-
tion γNVc

where γNVc
(i,s) is defined as γI (i)∩ γK (s). Generic primitives are

expressed as follows:

• ⊥NVc
, tNVc

, ∇NVc
, +], vNVc

, 0NVc
, 1NVc

are defined pair-wisely,

• SYNCNVc
(A,(i,s)) = ρ(i′,s),

where

{

i′(x) = i(x)∩ J1;+∞|[∀x ∈ A

i′(x) = i(x) ∀x ∈Lp \A,

and ρ satisfies ∀a ∈I ×K , γNVc
(a)vNVc

γNVc
(ρ(a)).

The definition of SYNCNVc
uses a reduction operator ρ . Roughly speak-

ing, the operator ρ simplifies constraints without losing any solution. We now
present a reduction ρ between I and K . It consists in taking into account lin-
ear constraints in order to narrow interval ranges. For instance, the system of

9.3. ABSTRACT DOMAINS 257

constraints x + y = 12∧ x ∈ J3;15K∧ y ∈ J4;19K can be reduced to the system
x + y = 12∧ x ∈ J3;8K∧ y ∈ J4;9K. Linear constraints are likely to be combined,
via Gaussian elimination, in order to give new linear constraints which will allow
for further reductions. Therefore, generating the whole set of such combinations
is likely to require an exponential time of execution.

We propose a two-step polynomial algorithm for computing an approximate
solution to this problem. The first step aims at narrowing infinite intervals into
finite ones. It uses Gaussian elimination to obtain a positive representation of sys-
tems of linear equalities, that is to say, an equivalent system of equations such
that if a variable occurs with a strictly negative coefficient in an equation, then
this variable occurs with a negative coefficient in each equation. Positive repre-
sentations contain only a few undefined forms1, which allows narrowing most of
the infinite intervals into finite ones with a O(|Vc|

3) worst-case. The second step
is inspired by [20]: it consists in obtaining a triangular system of constraints of
the form a1.x1 + ... + an.xn ∈ I where I is an interval. This system is then used
to propagate unidirectionally intervals from non-diagonal to diagonal variables.
The result is a good reduction with a O(|Vc|

3) worst-case. In the case that the
algorithm discovers an unsatisfiable constrain, the result of the reduction is set to
⊥NVc

.

9.3.3.1 Solving undefined forms

Let V inf
c be a subset of Vc and K a finite system of linear constraints on the vari-

ables Vc. We denote by K the system of equations:

{

∑{av
i .v | v ∈ Vc}= bi,∀i ∈ J1;nK .

We first define a positive form with respect to V inf
c as follows:

Definition 9.3.1. K is in positive form with respect to V inf
c if and only if for any

v ∈ Vc, if there exist i1, i2 ∈ J1;nK such that av
i1

< 0 < av
i2

, then v 6∈ V inf
c .

This way, the variables which may occur in the matrix describing K with both
a positive and a negative coefficient are known to be bounded2. Such a form can
be computed by using Gaussian elimination with a O(|Vc|

3) worst-case time cost.
A positive form contains only few undefined forms. For each constraint in which
all variables with an infinite range occur with the same sign, we can narrow the
range of variables that occurs in this constraint into finite intervals. A dynamic
resolution of such a system leads to a reduction step in O(|Vc|

2).

1An undefined form is a subtraction between two unbounded intervals.
2V inf

c denotes the set of the variables which are not proved to be bounded.

258 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

Example 9.3.2. We consider the set of variables Vc = {xi | 1≤ i≤ 9}. We suppose
that these variables are totally ordered by the order ≤Vc that is defined as: xi ≤Vc

x j if and only if i≤ j. We also suppose that we have no interval constraints yet, so
we set V inf

c = Vc. We consider the following system (in normal form (see [47])):











x1− x7 + x8 + x9 = 0 (L1
1)

x2− x7 + x8 + x9 = 0 (L1
2)

x3 + x4 + x5 + x6 +2.x7−2.x8−2.x9 = 3 (L1
3)

The variable x7 occurs with a positive coefficient in (L1
3) and with a negative

coefficient in (L1
2). So, we replace the constraint L1

1 with the affine combination of
(L1

1) (with the coefficient 1) and of (L1
3) (with the coefficient 1

2); we also replace
the constraint L1

2 with the affine combination of (L1
2) (with the coefficient 1) and

of (L1
3) (with the coefficient 1

2). Thus, we get the system:











x1 + 1
2 .x3 + 1

2 .x4 + 1
2 .x5 + 1

2 .x6 = 3
2 (L2

1)

x2 + 1
2 .x3 + 1

2 .x4 + 1
2 .x5 + 1

2 .x6 = 3
2 (L2

2)

x3 + x4 + x5 + x6 +2.x7−2.x8−2.x9 = 3 (L2
3)

This system is in positive form. Moreover, we can deduce that the variables x1 and
x2 range in the interval J0;1K and that the variables x3, x4, x5, and x6 range in the
interval J0;3K.

Remark 9.3.3. This Gaussian elimination only involve linear combinations with
positive coefficients. So, a variable that never occurs with a negative coefficient
before the elimination step, never occurs with a negative coefficient after the elim-
ination step.

9.3.3.2 Narrowing finite intervals

The second step is inspired by [20]: it consists in obtaining a triangular system of
constraints of the form a1.x1 + ...+ an.xn ∈ I where I is an interval. This system
is then used to propagate unidirectionally intervals from non-diagonal to diagonal
variables. The result is a good reduction with a O(|V |3) worst-case time cost.

We use three kinds of reductions:

1. Gaussian elimination:
{

x+ y+ z = 1

x+ y+ t = 2
=⇒

{

x+ y+ z = 1

t− z = 1,

9.4. PROTOTYPES AND ANALYSIS EXAMPLES 259

2. interval propagation:



















x+ y+ z = 3

x ∈ J0;5K

y ∈ J0;6K

z ∈ J0;8K

=⇒



















x+ y+ z = 3

x ∈ J0;3K

y ∈ J0;6K

z ∈ J0;8K,

3. redundancy introduction:

{

x+ y− z = 3

x ∈ J1;2|[
=⇒











x+ y− z = 3

y− z ∈ J1;2K

x ∈ J1;2K.

First, we use Gaussian elimination to get a normal form of the linear constraint
system, we then use interval propagation to narrow the range of the interval of
the pivot of each constraint. Then, we forget about the pivot using redundancy
introduction. Then, we get a new system involving only variables which were not
a pivot of a constraint in the previous one. Then, we proceed recursively with it
until constraints contain some variables. Then, we consider all the constraints we
have computed which form a triangular system. We propagate the information we
have collected on the interval ranges backward, by applying interval propagation
from non-diagonal variables to diagonal ones, starting from the last constraint and
ending with the first one.

9.4 Prototypes and analysis examples

9.4.1 Two prototypes

We now present some examples of analysis results. These results have been auto-
matically computed by using the π-s.a prototype [34] for systems that are written
in the π-calculus, and the amb-s.a. prototype [33] for systems that are written in
the ambient calculus. These two prototypes belong to preliminary works, since
they do not work on the meta language level. They propose the choice between
several numerical domains: the intervals [22], the product between the intervals
and the affine equalities [47], the octagons [55,58], and the abstract multi-sets [43]
(based on the use of disjunctive completion). In the case of the π-calculus, time
complexity results are given in [32]. These bounds are a bit too pessimistic, since
we bounded the reduction time complexity by O(|Vc|

4) instead of O(|Vc|
3), where

n is the number of variables.

260 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

9.4.2 Examples

We now describe results obtained on our examples. For the sake of brevity and
simplicity, we do not present linear constraints. They are not of interest when
considering the result as they are used internally to refine the interval information.
Interval constraints are tagged with the actions of syntactic threads.

Example 9.4.1. We give in Fig. 9.4 the result of occurrence analysis of the ftp-
server (Cf. Ex. 2.1.1 on page 18). This result ensures that no more than three
syntactic instances of the syntactic thread deal ![data] may simultaneously occur.
So we can conclude that no more than three sessions may be active at the same
time. This constraint is proved using the linear constraint which proves that the
sum of the numbers of available ports port![] and of activated sessions deal ![data]
is always equal to three.

Example 9.4.2. We give in Fig. 9.5 the occurrence analysis result for the token-
ring (Cf. Ex. 2.1.2 in page 18). This result ensures that only one syntactic instance
of the thread crit![] may occur at any time. So only one process may proceed its
critical section at the same time.

Remark 9.4.3. The analysis may not succeed in proving that the occurrence num-
ber of the syntactic thread mon![left, left0] is less than or equal to 1 without count-
ing the number of performed transitions. This is because it is an asynchronous
thread. On the other hand, only a linear number of extra variables are required
to prove this property.

Example 9.4.4. We enrich Ex. 3.1.1 (Cf. Ex. 3.1.1 on page 38) with some tokens
in order to ensure that the server may not launch more than three simultaneous
instances. The enriched system is given in Fig. 9.6. The ambients named token
denotes some tokens. They may be consumed when they are enclosed in the server
server. When consumed, they launch a server instance. Once the session is re-
leased, a new ambient named token is launched which models that another server
instance is available. It is worth noting that this token ambient contains explicit
rooting information so that the token may leave the packet and enter the scope of
the server ambient.

Occurrence counting results are also given in Fig. 9.6. The analysis automati-
cally discovers that the threads that are launched inside an instance ambient may
not occurs more than three times in the whole system. It is worth noting that the
analysis fails in proving that there may not be more than three occurrences of the
instance ambient simultaneously. This is because the lack of affine invariant that
relates the number of ambients named token and the number of ambients named
instance. Nevertheless, this information can be restored by applying a reduced

9.4. PROTOTYPES AND ANALYSIS EXAMPLES 261

((ν make)(ν server)(ν port)
((∗make?1[](ν address)(ν request)

(

(∗address?J0;+∞J[]server!J0;+∞J[address,request])
|

address !J0;+∞J[]
|

make!J0;1K[]
))

|
(∗server?1[email,data](ν deal)

(

port?[]J0;+∞J

(

deal !J0;3K[data]
|

deal?J0;3K[rep](email!J0;+∞J[rep] | port!J0;3K[])
)

⊕

email !J0;+∞J[]
))

| port!J0;1K[]

| port!J0;1K[]

| port!J0;1K[]

|make!J0;1K[])
)

Figure 9.4: The ftp-server occurrence analysis.

262 CHAPTER 9. OCCURRENCE NUMBER APPROXIMATION

((ν make)(ν mon)(ν left0)
(

((∗make?1[left](ν right)(mon!J0;+∞J[left,right] |make!J0;1K[right]))
| (∗make?1[left](mon!J0;1K[left, left0]))

|make!J0;1K[left0])
|
((∗mon?1[prev,next]

(∗prev?J0;+∞J[](ν crit)(crit?J0;1K[]next!J0;1K[]

| crit !J0;1K[])))

| left0!J0;1K[])))

Figure 9.5: The token-ring occurrence analysis.

product with the information that are derived by the analysis that is proposed in
Chap. 10.

9.4.3 Implementation issue

It is usually very difficult to scale up when using relational domains. Even a
domain which is quadratic in time may not scale up.

In order to speed up the analysis, we describe affine system by block-wise
matrices. At the beginning, matrices are diagonal. During computation we merge
blocks as soon as they are involved in the same computation step. The advantage
is that all affine operations (including the reduction) can be performed block-wise,
which decrease their complexity (which is the sum of the cube of the size of the
blocks instead of the cube of the sum of the size of the blocks).

The two following approaches have not been investigated yet. The first one
one is variable merging: instead of distinguishing the variables x, y, and z, we
may be interested in the sum x+y+z. This allows for considering fewer variables;
complexity can also be mastered by a packing strategy [8,57,53]: packing consists
in computing some packs of variables and in only detecting relationships between
variables in the same packs, these packs can be defined by the end-user, or they
can be computed during a pre-analysis. It would be very interesting to design
some strategy either to merge some variables or to define some packs, in the case
of our occurrence counting analysis.

9.4. PROTOTYPES AND ANALYSIS EXAMPLES 263

(ν request)(ν make)(ν server)(ν duplicate)(ν instance)
(ν answer)(ν client)(ν token)
(
server1[

!open1duplicate.0
|

!(k)1.openJ0;+∞Jtoken.

instanceJ0;+∞J[

inJ0;3Kk.openJ0;3Krequest.(rep)J0;3K.
(

answerJ0;+∞J[< rep >J0;+∞J]
|

outJ0;3Kserver.tokenJ0;3K[outJ0;+∞Jk.inJ0;+∞Jserver.0]
)

]
|

tokenJ0;1K[0] | tokenJ0;1K[0] | tokenJ0;1K[0]
]

|

client1[!(x)1.((ν q)(ν p)

pJ0;+∞J[

outJ0;+∞Jclient.0
|

requestJ0;+∞J[< q >J0;+∞J [< q >]
|

openJ0;+∞Jinstance.0
|

inJ0;+∞Jserver.duplicateJ0;+∞J[outJ0;+∞Jp. < p >J0;+∞J]
]

|

< make >J0;1K

)
|

< make >J0;1K

]
)

Figure 9.6: The ambient ftp-server analysis.

Chapter 10

Thread partitioning

We have proposed in Chap. 8 a first analysis that focus on the potential links
between threads. This first analysis captures dynamic aspects of systems, since it
distinguishes among the distinct instances of syntactic objects. Unfortunately, this
first analysis abstracts away concurrency, since it abstracts each thread separately.
It forgets away that some threads may not occur simultaneously. On the other side,
we have proposed in Chap. 9 an analysis that focuses on the concurrency prop-
erties. This second analysis captures which threads may occur simultaneously.
But this second analysis abstracts away the potential links between threads. A
Cartesian product (Cf. Sect. 7.3.1 on page 160) between these two analyses gives
accurate results. It implicitly uses the coalescent product: a global interaction is
enabled in the product analysis, only if it is enabled in each analysis. Unfortu-
nately, that is the only reduction that is performed.

In this chapter, we propose an analysis that captures both dynamic and concur-
rency properties. The state of a system is a set of threads. We propose to partition
the set of threads according to dynamical information (such as the value of a given
variable). Then, for each class of the partition, we count the number of thread in-
stances in this class. This idea comes from analyses for the ambient calculus. It
is quite easy to abstract the content of each ambient. Furthermore, each ambient
denotes a computation unit, so it is relevant to abstract the content of each ambi-
ent separately. Our goal is then to generalize this approach to models where the
notion of computation unit is not explicit. Thus, we specify as a parameter what a
computation unit is. Then, the analysis abstracts the threads in each computation
unit separately.

In Sect. 10.1, we give some examples that illustrate the kind of properties we
are interested in. In Sect. 10.2, we introduce an analysis for the ambient calculus.
This analysis captures a description of the content of each ambient. We gener-
alize this approach in Sect. 10.3 and give some examples of analysis results in
Sect. 10.4.

265

266 CHAPTER 10. THREAD PARTITIONING

10.1 Motivating examples

10.1.1 Shared-memory with dynamical allocation

Example 10.1.1. A shared memory with dynamic allocation of memory cells can
be described in the π-calculus by the system given in Fig. 10.1. We use several
font styles to distinguish several kinds channel names, and several kind variables.
Global channel names are written in roman. Local variables are written in italic.
There are two kinds of names associated with memory cells: some names have
an internal use, they are written in typewriter font; some names denote
capability to control a memory cell, they are written in SMALL CAPITAL LETTERS.
The names that describe the data of clients are written in bold. The initial unsafe
names are underlined.

The state of each memory cell is described by using three names. The name
cell encodes the content of the cell. The content of the cell is supposed to be
output on the channel named cell. Moreover, a cell may be locked or unlocked,
which is described by two names mutex and nomutex. If the signal mutex![]
occurs and the signal nomutex does not occur, then the cell is unlocked; if the
signal nomutex![] occurs and the signal mutex does not occur, then the cell
is locked. Interactions with a memory cell are described by using four names.
The name READ provides the capability to read the content of the cell. The name
WRITE provides the capability to overwrite the content of the cell. The name
LOCK provides the capability to lock the cell. The name UNLOCK provides the
capability to unlock the cell.

The global name create allows the creation of new memory cells. The global
name null describes the content of memory cells at initialization. Whenever a mes-
sage is sent via the channel named create, an instance of memory cell is launched:

1. seven fresh names (cell, mutex, nomutex, READ, WRITE, LOCK and
UNLOCK) are declared;

2. the content of the cell is initialized to the global name null, the cell is de-
clared unlocked (nomutex![]);

3. the four capability names are returned at an address given at the creation
of the cell: this gives the client the capability to interact with its memory
cell;

4. four resources are spawn; each of them describes the behavior of the cell
when it interacts with a client:

• a read operation requires one argument that denotes a return address:
the content of the cell is read and returned at the given address (please

10.1. MOTIVATING EXAMPLES 267

(νacreate)(νbnull)
(
∗create?1[d]
(νccell)(νdmutex)(νenomutex)
(ν f WRITE)(νgREAD)(νhLOCK)(ν iUNLOCK)

(
cell!2[null]
|
mutex!3[]
|
d!4[READ,WRITE,LOCK,UNLOCK]
|
∗READ?5[port].cell?6[u].(cell!7[u] | port!8[u])
|
∗WRITE?9[u,ack].cell?10[v](cell!11[u] | ack!11[])
|
∗LOCK?12[ack].mutex?13[](ack!14[] | nomutex!15[])
|
∗UNLOCK?16[ack].nomutex?17[](ack!18[] | mutex!19[])

)
|
∗rec20?[].
(ν jdata)(νkadd1)(ν ladd2)(νmtrace)(νnack1)(νoack2)(ν pack3)

create!21[add1].add1?22[r,w,m,n].m!23[ack1].ack1?24[].w!25[data,ack2].
ack2?26[].r!27[add2]n!28[ack3].ack3?29[].add2?30?[d].trace!31[d]

|
∗context?32[d].create!33[d]

)

Figure 10.1: A shared memory with dynamic allocation in the π-calculus.

268 CHAPTER 10. THREAD PARTITIONING

note that we copy the content of the cell once, not to loose it);

• a write operation requires two arguments: the new content and an ac-
knowledgment address: first, the content of the cell is removed; then,
it is replaced by the new content, while a signal is sent at the acknowl-
edgment address; acknowledgments control the sequentiality of client
requests;

• a lock operation requires one argument that denotes an acknowledg-
ment address: the operation may be performed as soon the mutex is
available, the mutex is taken and the acknowledgment is sent;

• an unlock operation requires one argument that denotes an acknowl-
edgment address: the operation may be performed as soon as the mu-
tex is not available, the mutex is released and the acknowledgment is
sent.

Mutex policy is left at the charge of the client.

Then we consider an unbounded number of clients. Each client is described
by two return addresses add1 and add2, three acknowledgment addresses ack1,
ack2 and ack3, a data data, and another name trace that is used to keep a trace
of the client session. Each client is created by the context (which uses the unsafe
name rec). Each client creates a cell and receives on the address add1 the capa-
bilities to interact with this cell. Then, the client locks the cell and waits for the
acknowledgment. Then, the client writes its data and waits for the acknowledg-
ment. Then, the client unlocks the cell and waits for the acknowledgment. Then,
the client reads the content of the cell and spawns a trace of the session.

The context may also create memory cells, by sending message on the unsafe
name context. The analysis given in Sect. 8.2.11 on page 213 proves that the client
data are not sent neither to other clients, nor to the context. But it is not able to
capture the concurrency aspects of this system. We would like to prove that for
each memory cell:

• there is always at most one emission over the channel named cell;

• there is always at most one signal mutex or nomutex.

Occurrence counting analysis (Cf. Chap. 9) may not help because it merges all
distinct instances of memory cells. The analysis proposed in this chapter succeeds
in proving those properties.

10.1.2 Authentication in protocol

Example 10.1.2. We consider in Fig. 10.2 a simplified version of the Woo and
Lam one-way public-key authentication protocol [76], in which host names are

10.1. MOTIVATING EXAMPLES 269

(να skA)(νβ skB)

c1〈pka(skA)〉.c2〈pkb(skB)〉.
(

!c3〈x_pkB〉.begin4(x_pkB).c5〈pkc(skA)〉.c6〈x_b〉.
c7〈signd(tuplee

n(pk f (skA),x_pkB,x_b),skA)〉
|
!c8〈x_pkA〉.(νγb)

c9〈b〉.c10〈m〉.
let11x = checksign(m,x_pkA) in
let12y_pkA = th3

1(x) in
let13y_pkB = th3

2(x) in
let14y_b = th3

3(x) in
[y_pkA = x_pkA]15.
[y_pkB = pkg(skB)]16.
[y_b = b]17.

[x_pkA = pkh(skA)]18.

end19(pki(skB))
)

Figure 10.2: Woo and Lam one-way public-key authentication protocol.

270 CHAPTER 10. THREAD PARTITIONING

replaced with public keys. We consider two principals A and B. The channel
c is unsafe: The context may send and listen on it. The system begins with the
creation of two secret keys for A and B. The public version of these keys are sent
on the unsafe channel. Both principals A and B may run an unbounded number of
sessions. At each session, the principal A first receives a message containing the
public key of its interlocutor. Then, the principal A emits a signal begin at program
point 4 with the public key of its interlocutor: this means that the principal A has
started a session with the host of the public key that it has received. Then, the
principal A sends its public key. Then, it waits for a message that should contain
a nonce created by its interlocutor. Then, it sends a tuple that contains its public
key, the public key of its interlocutor and the nonce. This tuple is signed with its
secret key. First, the principal B receives a message containing the public key of
its interlocutor. Then, the principal B creates a nonce. It sends this nonce and
waits for a message. If this message is a tuple that contains the public key of its
interlocutor, its own public key, and the nonce and if this message is signed by the
secret key of it interlocutor, the principal B concludes that this message has been
created by the principal A. It sends the signal end with the public key of B.

A context may not sign messages with the secret key of A. A context may only
force a session between the principal B by receiving the signed message from the
principal A, then by sending this message to the principal B. The nonce is used to
prevent the system to use the same spied message several times.

The analysis proposed in this chapter succeeds in proving that any signal
end(x) follows a signal begin(x) with the same argument x. This is the non-
injective agreement property. We do not prove the injective-agreement property
yet, that is ensured by the use of the nonce. We leave this last property in future
works. Blanchet proposes in [7] an analysis that proves the injective-agreement
property for this example.

10.2 Analyzing the content of an ambient

In this section, we describe an analysis that captures an approximation of the
content of each ambient. More precisely, we want to relate each label l ∈L to
an abstraction of the content of any ambient labeled l. Nielson et al. have already
proposed such an analysis in [63]. In this analysis, ambients are partitioned into
an exponential (with respect to the initial state program point number) number of
equivalence classes. Moreover, the content of ambients in each equivalence class
is described in a domain the height of which is also exponential. So the worst
case cost in both time and space, is at least a double exponential with respect to
the number of program points in the initial state of the system. In our analysis,
we consider only a quadratic number of classes (with respect to the number of

10.2. ANALYZING THE CONTENT OF AN AMBIENT 271

program points) and we use the reduced product between the interval and the
affine equalities (Cf. Chap. 9) to describe the content of the ambients in each
equivalence class. Thus we get a polynomial analysis (O(ni∗3+4)), where n is the
number of program points in the initial state and i is a parameter chosen among 1,
2, and 3.

10.2.1 Abstract domain

We consider the non standard semantics for the ambient calculus that we have
described in Chap. 3.2. We want to relate each ambient with an abstraction of its
content. More precisely, we will abstract the occurrence number of threads inside
each ambient. Since, there is an unbounded number of potential ambients, we
gather the description of the content of any ambient that have been created at the
same program point (i.e. we merge the abstraction of the ambient (i, idi) and of
the ambient (i, id j)). Intuitively, our abstract domain could be the set L → NL

of the function mapping each label l into a vector which indicates the number of
threads at each program points that may be located in the same ambient labeled l
at the same time. However, this domain is not rich enough:

• the content of an ambient a is often relating to the location of the ambient
a;

• introducing extra variables (see Chap. 9) helps in expressing some invariants
(since it allows the description of affine inequalities by using only affine
equalities).

Our main domain handles extra variables. Moreover, we partition the abstraction
of each ambient content according to the location of this ambient.

10.2.1.1 Notations

We recall that L is the set of labels. Labels in L are used to locate the syntactic
components of the system S . We suppose that the set L is partitioned into three
subsets of labels Lp, Lamb and Lc, such that labels in Lp tag capabilities and
input/output actions, labels in Lamb tag ambient creations, and labels in Lc tag
name restrictions.

For any program point P, we denote by lab(P) the label of the program point,
by act(P) the action that is associated to the program point, and by cont(P) the

272 CHAPTER 10. THREAD PARTITIONING

continuation that is associated to the program point. Thus, we define:

lab =



























































nl[•] = l,

inl n.P = l,

outl n.P = l,

openl n.P = l,

!openl n.P = l,

(n)l.P = l,

!(n)l.P = l,

〈n〉l = l;

act =



























































nl[•] = ambient,

inl n.P = in,

outl n.P = out,

openl n.P = open,

!openl n.P = !open,

(n)l.P = input,

!(n)l.P = !input,

〈n〉l = output;

cont =



























































nl[•] = 0,

inl n.P = P,

outl n.P = P,

openl n.P = P,

!openl n.P = P,

(n)l.P = P,

!(n)l.P = P,

〈n〉l = 0.

10.2.1.2 Partitioning

We partition set of threads according to the computation unit of these threads.
A computation unit is given by two ambient identities loc ∈ Lamb ×M and
loc′ ∈ Lamb ×M , and is written locloc′ . The computation unit locloc′ denotes
the potential content of the ambient loc when the ambient loc is inside the ambi-
ent loc′. The set of all computation units is denoted by unit. The top level ambient
((top,ε)) never migrates. Moreover the top level ambient is surrounded by no
ambient. Thus, we introduce an extra computation unit (top,ε)(top,ε) that denotes
the content of the top level ambient.

Let C ∈ C be a concrete configuration (we recall that C is the set of the
reachable configuration). For each thread t = (P, id, loc,E) ∈ C, we define
the program point give-pp(t) of the thread t as the label lab(P), the identity
of the thread give-id(t) as the thread identity (lab(P), id), the location of the
thread give-father(t) as the thread identity loc. Then, we define the ambient
give-big-fatherC(t) that encloses the surrounding ambient as the unique thread
identity that satisfies:

1. give-big-fatherC(t) = (top,ε), if loc = (top,ε);

10.2. ANALYZING THE CONTENT OF AN AMBIENT 273

2. give-father(t ′) where t ′ is the unique thread in C such that give-id(t ′) =
give-father(t), otherwise.

Given a configuration C, we say a computation unit (l, id)(l′,id′) is alive in
C if and only if, there exists an ambient thread t in C such that: give-id = (l, id),
give-father = (l′, id′). The set of the computation units that are alive in C is written
alive(C).

We define an abstraction ΠP0 which maps each concrete configuration C ∈ C

to a function f mapping each alive computation unit locloc′ to the set ℘(C) of
threads both in C if and in the computation unit locloc′ . The function ΠP0(C) is
defined as follows:

[

locloc′ ∈ alive(C) 7→ {t ∈C | give-father(t) = loc, give-big-fatherC(t) = loc′}
]

.

It worth noting that ΠP0(C) defines a partition of the threads in C according to
their location.

We introduce the abstract domain P0 mapping each computation unit to a set
of threads. The abstract domain P0 is related to the concrete domain ℘(Σ∗×C)
via a concretization function γP0 . For any function f ∈P0, the concretization
γP0(f) is defined as:

{

(u,C) ∈ Σ∗×C
∣

∣ΠP0(C) ∈ f
}

.

The abstract domain P0 may use an unbounded number of classes. To get a
decidable abstract semantics, we merge the description of all computation units
that have the same labels. An abstract computation unit is given by two labels
l ∈Lamb and l′ ∈Lamb, and is written lł′ . We denote by UNIT the set of abstract
computation unit. The abstraction function Πunit maps each computation unit
(l, id)(l

′,id′) to the abstract computation unit l l′ . We introduce the abstract domain
P1 mapping each abstract computation unit to a set of threads. The abstraction
function ΠP0 maps each function f ∈P0 to the element ΠP0(f) ∈P1 that is
defined as follows:

ΠP1(f)(ll′) =
⋃

{

f (locloc′)

∣

∣

∣

∣

∣

locloc′ ∈ Dom(f)
Πunit(locloc′) = ll′

}

.

The abstract domain P1 is related to the abstract domain℘(P0) via a concretiza-
tion function γP1 . For any function g ∈P1, the concretization γP1(g) is defined
as { f ∈P0 |ΠP1(f) ∈ g}.

274 CHAPTER 10. THREAD PARTITIONING

10.2.1.3 Numerical domain

Now, we use a parametric numerical domain to abstract the set of threads that
is associated to each abstract computation unit. We introduce a set Σsub of extra
variables. These variables are related to transitions labels. But unlike in the oc-
currence analysis, we do not associate them with a meaning. We relate the set1 Σ
to a smaller set Σsub by an onto map ψ . Let Vc be the set Lp∪Lamb∪Σsub.

Then, we consider ℘(NVc), the complete lattice of sets of function from the
set Vc into the set of the natural numbers. The domain ℘(NVc) is used to describe
the set of threads in each class of the partition. Thus, we introduce the abstract do-
main P2 mapping each abstract computation unit to an element A ∈℘(NVc). The
abstract domain P2 is related to the abstract domain ℘(P1) via a concretization
function γP2. For any function h ∈P2, the concretization2 γP2(h) is defined as:

{

g ∈P1

∣

∣

∣

∣

∀l, l′ ∈Lamb,∀U ∈ g(ll′), ∃ f ∈ h(ll′), such that:
∀p ∈Lp∪Lamb, Card{t ∈U | give-pp(t) = p}= fp

}

.

Then, we introduce a generic pre-order (NVc,vNVc
) to represent sets of nat-

ural number families indexed by Vc. It is related to ℘(NVc) via a monotonic
concretization γNVc

. Furthermore, we introduce several generic primitives: a rep-
resentation ⊥NVc

of the empty set, an abstract union tNVc
, a widening operator

∇NVc
, an abstract counterpart +] to the binary addition, an abstract counterpart

−] to the subtraction, an abstract synchronization SYNCNVc
. We also require the

abstraction of some elementary families: an abstract element 0NVc
to represent

the singleton containing the 0 family which associates 0 to each element in Vc,
and ∀v ∈ Vc, an abstract element 1NVc

(v) to represent the singleton containing the
family δ v which associates 1 to the element v and 0 to any other elements.

These primitives should satisfy the following properties:

1. γNVc
(⊥NVc

) = /0,

2. ∀a ∈NVc , ⊥NVc
vNVc

a,

3. ∀A ∈℘finite(NVc), tNVc
(A) ∈NVc and ∀a ∈ A, avNVc

tNVc
(A),

4. ∇NVc
satisfies Def. 7.2.1.(7) on page 158,

5. ∀a,b ∈NVc, a+] b ∈NVc and

{(tv +uv)v∈Vc | t ∈ γNVc
(a),u ∈ γNVc

(b)} ⊆ γNVc
(a+] b),

1We recall that Σ is the set of transition labels.
2We have no abstraction function, because we have not given any meaning to the variables in

Σsub.

10.2. ANALYZING THE CONTENT OF AN AMBIENT 275

6. ∀a,b ∈NVc , (a−] b) ∈NVc and
{

(tv−uv)v∈V

∣

∣

∣

∣

t ∈ γNVc
(a), u ∈ γNVc

(b),

∀v ∈ Vc, tv > uv

}

⊆ γNVc
(a−] b),

7. ∀a ∈NVc, t ∈ NVc , SYNCNVc
(t,a) ∈NVc and

{u | u ∈ γNVc
(a),uv ≥ tv, ∀v ∈ Vc} ⊆ γNVc

(SYNCNVc
(t,a)),

8. 0NVc
∈NVc and (0)i∈Vc ∈ γNVc

(

0NVc

)

,

9. ∀v ∈ Vc, 1NVc
(v) ∈NVc and (δ v

i)i∈Vc ∈ γNVc

(

1NVc
(v)
)

,

where δ v
i =

{

1 if i = v

0 otherwise.

Roughly speaking, the operator +] is an abstract counterpart to the
component-wise addition, the operator −] is an abstract counterpart to the
component-wise subtraction, and the primitive SYNCNVc

is used to extract from
an abstract value the representation of the configurations which simultaneously
contain all the threads required by a computation step.

10.2.1.4 Abstract domain

We introduce the abstract domain P = UNIT→NVc . An abstract element f ∈P

relates each abstract computation unit l l′ ∈ UNIT to an abstraction of the content
of any concrete computation unit (l, id)(l′,id′). Each abstract element f ∈P is
related with the set γP(f) that is defined as follows:

C ∈ (γP0 ◦ γP1)
([

cu ∈ UNIT 7→ γNVc
(f (cu))

])

.

Remark 10.2.1. For any f ∈P and any configuration (u,C) ∈ γP(f). A compu-
tation unit cu may be alive in C only if f (Πunit(cu)) 6=⊥NVc

.

Partial order vP (resp. abstract union tP , bottom elements ⊥P , and widen-
ing operator ∇P) applies the partial order vNVc

(resp. the abstract union tNVc
,

the bottom element ⊥NVc
, and the widening operator ∇NVc

) component-wise.

10.2.2 Abstract transition system

Now, we define the abstract transition system. The initial configuration is defined
in Fig. 10.3 and abstract transition rules are given in Figs. 10.5, 10.6, 10.7 and

276 CHAPTER 10. THREAD PARTITIONING

CP
0 =

(

βP
2 (S , top)

)[

toptop 7→ βP
1 (S)

]

.

Figure 10.3: Initial abstract configuration.

βP
1 (ni[P]) = 1NVc

(i)
βP

1 (P | Q) = βP
1 (P)+] βP

1 (Q)
βP

1 ((ν n)P) = β P
1 (P)

βP
1 (M) = 1NVc

(lab(M))

βP
1 (io) = 1NVc

(lab(io))

βP
1 (0) = 0NVc

βP
2 (ni[P],s) = tP{βP

2 (P, i); [(i,s) 7→ βP
1 (P)]}

βP
2 (P | Q,s) = tP{βP

2 (P,s);βP
2 (Q,s)}

βP
2 ((ν n)P,s) = β P

2 (P,s)
βP

2 (M,s) = [_ 7→ ⊥NVc
]

βP
2 (io,s) = [_ 7→ ⊥NVc

]

βP
2 (0,s) = [_ 7→ ⊥NVc

]

Figure 10.4: Abstract continuations.

10.8. These definitions use auxiliary primitives β P
1 and βP

2 which abstracts con-
tinuation launching. These primitives are defined in Fig. 10.4. The primitive β P

1
gives an abstraction of the threads that are launched in a current location. The
primitive βP

2 gives an abstraction of the threads that are launched in new created
ambients.

Abstract in migration is described in Fig. 10.5. It requires three threads: the
migrating ambient is labeled i, the target ambient is labeled j, the capability is la-
beled k. The migration is enabled whenever there exist two instances of ambients
labeled s and s′ such that the following spatial conditions are satisfied:

• the ambient s is in the ambient s′ and contains both the ambient i and the
ambient j;

• the ambient i is in the ambient s and contains the thread k;

• the content of the ambient j when surrounded by the ambient s is defined.

In such a case, the abstract computation consists in moving the ambient i inside
the ambient j:

• an ambient i inside an ambient j may now contain any previous potential
content of an instance of ambient i located in an instance of ambient s where

10.2. ANALYZING THE CONTENT OF AN AMBIENT 277

Let f ∈P be an abstract element.
Let i ∈Lamb, j ∈Lamb, and k ∈Lp be three labels.
We denote by context the set of pairs (s,s′) ∈L 2

amb such that:

• SYNCNVc
([x 7→ δ k

x], f (is)) 6=⊥NVc
;

• f (js) 6=⊥NVc
;

• SYNCNVc
([x 7→ δ x

i +δ x
j], f (ss′)) 6=⊥NVc

.

If act(i) = act(j) = ambient, act(k) = in, and context 6= /0,
then:

f
in(i, j,k)
 P t

P

{

f (a,b)
s

∣

∣

∣

∣

∃s′, (s,s′) ∈ context,
(a,b) = (i, j) or (a,b) = (j,s)

}

∪{ f ;βP
2 (cont(k), i)}

where:

• f (i, j)
s = [i j 7→ A(i, j,s)+] T (i, j,s)],

where

{

A(i, j,s) = SYNCNVc
([x 7→ δ k

x], f (is)),

T (i, j,s) = βP
1 (cont(k))−] 1NVc

(k)+] ψ(in(i, j,k)),

• f (j,s)
s = [js 7→ f (js)+] 1NVc

(i)+] ψ(in(i, j,k))];

Figure 10.5: Abstract in migration.

an occurrence of thread at program point k has been replaced with the thread
continuation: this continuation is given by the function β P

1 ; we also incre-
ment the variable ψ(in(i, j,k)) in this abstract content; this incrementation
has no meaning but helps in expressing more invariants;

• an ambient j inside an ambient s may now contain any previous potential
content of an instance of ambient j inside an instance of ambient s where an
instance of thread at program point i has been created (we also increment
the variable ψ(in(i, j,k)) in this abstract content);

• new created ambients are created; their initial content is statically known:
they are given by the function β P

2 .

Abstract out migration is described in Fig. 10.6. It requires three threads: the
migrating ambient is labeled i, the expelling ambient is labeled j, the capability is
labeled k. The migration is enabled whenever there exist two ambients labeled s
and s′ such that the following spatial conditions are satisfied:

278 CHAPTER 10. THREAD PARTITIONING

Let f ∈P be an abstract element.
Let i ∈Lamb, j ∈Lamb, and k ∈Lp be three labels.
We denote by context the set of pairs (s,s′) ∈L 2

amb such that:

1. SYNCNVc
([x 7→ δ j

x], f (ss′)) 6=⊥NVc
;

2. SYNCNVc
([x 7→ δ i

x], f (js)) 6=⊥NVc
;

3. SYNCNVc
([x 7→ δ k

x], f (i j)) 6=⊥NVc
.

If act(i) = act(j) = ambient, act(k) = out, and context 6= /0,
then:

f
out(i, j,k)
 P t

P







f (a,b)
(s,s′)

∣

∣

∣

∣

∣

∣

(s,s′) ∈ context
(a,b) = (i,s) or (a,b) = (s,s′)
or (a,b) = (j,s)







∪{ f ;βP
2 (cont(k), i)}

where:

• f (i,s)
(s,s′) = [is 7→ A(i, j,s)+] T (i, j,s)]

where

{

A(i, j,s) = SYNCNVc
([x 7→ δ k

x], f (i j))

T (i, j,s) = βP
1 (cont(k)))−] 1NVc

(k)+] ψ(out(i, j,k)),

• f (j,s)
(s,s′) = [js 7→ B(i, j,s)+]U(i, j,s)]

where

{

B(i, j,s) = SYNCNVc
([x 7→ δ i

x], f (js))

U(i, j,s) = ψ(out(i, j,k))−] 1NVc
(i),

• f (s,s′)
(s,s′) (s

s′) = C(i, j,s,s′),

where C(i, j,s,s′) = SYNCNVc
([x 7→ δ j

x], f (ss′))+] 1NVc
(i)+] ψ(out(i, j,k)).

Figure 10.6: Abstract out migration.

10.2. ANALYZING THE CONTENT OF AN AMBIENT 279

• the ambient s is in the ambient s′ and contains the ambient j;

• the ambient j is in the ambient s and contains the ambient i;

• the ambient i is in the ambient j and contains the thread k.

In such a case, the abstract computation consists in moving the ambient i inside
the ambient s:

• an ambient i inside an ambient s may now contain any previous potential
content of an instance of ambient i located in an instance of ambient j where
an occurrence of thread at program point k has been replaced with the thread
continuation: this continuation is given by the function β P

1 ; we also incre-
ment the variable ψ(out(i, j,k)) in this abstract content; this incrementation
has no meaning but helps in expressing more invariants;

• an ambient j inside an ambient s may now contain any previous potential
content of an instance of ambient j inside an instance of ambient s where
an instance of ambient i has been removed (we also increment the variable
ψ(out(i, j,k)) in this abstract content);

• an ambient s inside an ambient s′ may now contain any previous potential
content of an instance of ambient s inside an instance of ambient s′ where
an instance of ambient i has been added (we also increment the variable
ψ(out(i, j,k)) in this abstract content);

• new created ambients are created; their initial content is statically known:
they are given by the function β P

2 .

Abstract dissolution is described in Fig. 10.7. It requires two threads: the capa-
bility is labeled i, the ambient is labeled j. The dissolution is enabled whenever
there exist two ambients labeled s and s′ such that the following spatial conditions
are satisfied:

• the ambient s is in the ambient s′ and contains both the thread i and and the
ambient j;

• the content of the ambient j when surrounded by the ambient s is defined.

In such a case, the abstract computation consists in updating the content of s:

• an ambient s inside an ambient s′ may now contain any previous potential
content of an instance of ambient s located in an instance of ambient s′

where we have added any potential content of an instance of an ambient
j inside located in an instance of an ambient s and the thread continuation;

280 CHAPTER 10. THREAD PARTITIONING

Let f ∈P be an abstract element.
Let i ∈Lp and j ∈Lamb be two labels.
We denote by context the set of pairs (s,s′) ∈L 2

amb such that:

1. SYNCNVc
([x 7→ δ i

x +δ j
x], f (ss′)) 6=⊥NVc

;

2. f (js) 6=⊥NVc
.

If act(i) ∈ {open; !open}, act(j) = ambient, and context 6= /0,
then:

f
act(i)(i, j)
 P t

P
⋃

{{

f (s,s′)
(s,s′) ;βP

2 (cont(i),s); f s
(s,s′)

}

∣

∣ (s,s′) ∈ context
}

∪ f

where:

• f (s,s′)
(s,s′) = [ss′ →tNVc

{ f (ss′);A(i, j,s,s′)+] T (i, j,s,s′)+] ψ(act(i)(i, j))}],

where























A(i, j,s,s′) = SYNCNVc
([x 7→ δ i

x +δ j
x], f (ss′)),

T (i, j,s,s′) = f (js)−] r−] 1NVc
(j)+] βP

1 (cont(i)),

r =

{

0NVc
, if act(i) =!open

1NVc
(i), otherwise,

• f s
(s,s′) = [xs 7→ tNVc

{ f (xs), f (x j)}, for any x ∈Lamb].

Figure 10.7: Abstract dissolution.

this continuation is given by the function β P
1 ; we also increment the variable

ψ(open(i, j)) in this abstract content; this incrementation has no meaning
but helps in expressing more invariants; moreover, in case the capability
thread is not a resource, we decrement the occurrence number of threads
at program point i; in the case when the capability is a resource, it is still
available after the computation step;

• an ambient x inside an ambient s may contain any previous potential content
of an ambient x inside an ambient s, but also any previous potential content
of an ambient x inside an ambient j. These contents may not be merged
because due to marker unambiguity, two threads in a concrete configuration
in C that have the same location are also in the same computation unit;

• new created ambients are created; their initial content is statically known:
they are given by the function β P

2 .

10.2. ANALYZING THE CONTENT OF AN AMBIENT 281

Let f ∈P be an abstract element.
Let i, j be two labels in Lp.
We denote by context the set of pairs (s,s′) ∈L 2

amb such that:

SYNCNVc
([x 7→ δ i

x +δ j
x], f (ss′)) 6=⊥NVc

.

If act(i) ∈ {input; !input}, act(j) = output, and context 6= /0,
then:

f
act(i)(i, j)
 P t

P { f ′(s,s′)∪βP
2 (cont(i),s) | (s,s′) ∈ context};

where:

• f ′(s,s′)(s
s′) = tNVc

{

f (ss′);A(i, j,s,s′)+] T (i, j,s,s′)
}

,

where:






















A(i, j,s,s′) = SYNCNVc
([x 7→ δ i

x +δ j
x], f (ss′)),

T (i, j,s,s′) = βP
1 (cont(i))−] r−] 1NVc

(j)+] ψ(i, j),

r =

{

0NVc
if act(i) =!input,

1NVc
(i) otherwise,

.

• f ′(s,s′)(x) = f (x), otherwise.

Figure 10.8: Abstract communication.

Abstract communication is described in Fig. 10.8. It requires two threads: the
input thread is labeled i, the output thread is labeled j. The communication is
enabled whenever there exist two ambients labeled s and s′ such that the following
spatial conditions are satisfied:

• the ambient s is in the ambient s′ and contains both the thread i and the
thread j;

In such a case, the abstract computation consists in updating the content of s: we
take into account threads that are consumed, and launch the abstract continuation
(this continuation is given by the function β P

1); new created ambients are created;
their initial content is statically known: they are given by the function β P

2 .

Theorem 10.2.2. (P,vP ,tP ,⊥P ,γP ,CP
0 , P ,∇P) is an abstraction.

282 CHAPTER 10. THREAD PARTITIONING

10.2.3 Prototype and analysis example

10.2.3.1 Prototype

We now present an example of analysis result. This result has been automatically
computed by using the amb-s.a. prototype [33] for systems that are written in
the ambient calculus. The analyzer proposes the choice between several numer-
ical domains: the intervals [22], the product between the intervals and the affine
equalities [47], the octagons [55, 58], and the abstract multi-sets [43] (based on
the use of disjunctive completion).

10.2.3.2 Example

We now describe results obtained on an example. For the sake of brevity and
simplicity, we do not present linear constraints. They are not of interest when
considering the result as they are used internally to refine the interval information.

Example 10.2.3. We analyze the system that is given in Ex. 9.4.4 on page 260.
We label this system in Fig. 9.4.4.

The analyzer detects that a token ambient (created at program point 22) con-
tains:

• exactly one thread at program point 24 (i.e. the capability to enter inside
the server ambient), when the token ambient is at top level;

• no thread, when the token ambient is inside the server ambient;

• exactly one thread at program point 24 (i.e. the capability to enter inside
the server ambient), when the token ambient is inside the client ambient;

• exactly one thread at program point 23 (i.e. the capability to exit a packet),
when the token ambient is inside a packet (i.e. an ambient created at pro-
gram point 32) ambient.

This is a very accurate description of the content of the token, during the com-
putation of the server instance. Since there is at most one thread in each token
and since we have capture the fact that there is at most three tokens in the sys-
tem (Cf. Ex. 9.4.4 on page 260), a reduced product between occurrence counting
analysis and thread partitioning analysis would prove that there is at most three
simultaneous instances of threads at program point 23 or at program point 24.

10.3 Generalization

We extend this analysis to deal with the models that are encoded in our meta-
language.

10.3. GENERALIZATION 283

(ν request)(ν make)(ν server)(ν duplicate)(ν instance)
(ν answer)(ν client)(ν token)
(
server11[

!open12duplicate.0
|

!(k)13.open14token.

instance15[
in16k.open17request.(rep)18.

(
answer19[< rep >20]
|

out21server.token22[out23k.in24server.0]
)

]
|

token25[0] | token26[0] | token27[0]
]

|

client28[!(x)29.((ν q)(ν p)
p32[

out33client.0
|
request34[< q >35 [< q >]
|
open36instance.0
|

in37server.duplicate38[out39 p. < p >40]
]

|
< make >41

)
|
< make >42

]
)

Figure 10.9: An ftp-server with tokens in mobile ambients.

284 CHAPTER 10. THREAD PARTITIONING

10.3.1 Concrete partitioning

Let B be a finite set of indice. We define the set unit of computation units as the
set B→L ×M mapping each index b ∈ B to a value v ∈L ×M .

We consider a function give-index mapping each program point p to a com-
putation unit u ∈ B→ I(p). Then, the computation unit of a thread t = (p, id,E)
at program point p is defined as the function [b ∈ B→ E(give-index(p)(b))], this
computation unit is written give-unit(t).

Remark 10.3.1. We assume that the computation unit of a thread t is fully de-
fined by the program point and the environment of this thread (and not by the
other threads in the system configuration). Otherwise, we can enrich thread en-
vironments so that they map new variables to the values which are required to
define thread computation units. In that case, we also refine formal rules so that
these rules take into account the constraints about the values of these new vari-
ables. New rules also allows the description of value passing among these extra
variables.

Example 10.3.2 (Computation units in mobile ambients). In mobile ambients,
the computation unit of a thread t is the pair (loc, loc′) (that we denote locloc′)
where loc is the location of the thread and loc′ is the location of the ambient that
contains the thread t. The set B is chosen as the set {1;2}. We enrich thread envi-
ronments with an extra variable loc′ that denotes the location of the surrounding
ambient. Then, for any program point p, the function give-index(p) is defined as
the function [1 7→ loc,2 7→ loc′]. Then, we have to refine formal rules, so that they
take into account constraints about the location of the surrounding ambient and
so that they describe how the location of the surrounding ambient is updated dur-
ing computation steps. We may also use more ancestors to define the computation
unit. The more ancestors we consider, the more precise the analysis is.

In the set B, some indice may be redundant. For instance, in the case
of the ambient calculus, the computation unit is given by both the surround-
ing ambient and the location of this surrounding ambient. But, by construc-
tion, if two threads are in a same ambient, the location of their surrounding
ambient is the same. Having the location of the surrounding ambient in the
computation unit allows for a more precise partitioning at the abstract level.
We denote by Bs the set of indice b ∈ B that satisfy: for any configuration
C ∈ C , for any thread t1 = (p1, id1,E1) and t2 = (p2, id2,E2) in the configura-
tion C, if E1(give-index(p1)(b)) = E2(give-index(p2)(b)) for any b ∈ Bs, then
give-unit(t1) = give-unit(t2).

10.3. GENERALIZATION 285

10.3.2 Abstract partitioning

To get a decidable abstraction, we merge the description of the computation units
that have the same labels. We define the set UNIT of abstract units as B→L . The
abstraction function Πunit maps each computation unit [b ∈ B 7→ (lb, idb)] ∈ unit
to the abstract computation unit [b 7→ lb] ∈ UNIT.

10.3.3 Environment and counting domains

We want to abstract both dynamic properties about the linkage of threads and
concurrency properties. We compose several abstract domains to build our main
domain.

1. We assume that we are given a family (Atom]
V)V⊆V of abstract domains for

describing markers and environments of single threads. We also suppose
that we are given a family (Molecule]

(Vi)
)(Vi)∈℘(V)∗ of abstract domains for

describing markers and environments of thread tuples. These two families
are fitted with their corresponding primitives, as defined in Sects. 8.1.1.1
and 8.1.2 on page 169.

Moreover, we suppose that we are given a primitive force-lab to enforce
constraints about the labels of the variable values. For any tuple of interface
(Vi) ∈℘(V)n, for any abstract molecule m ∈ Molecule]

(Vi)
, for any set S =

{((xk, jk), lk) | k ∈ K} of elements ((x, j), l) such that 1 ≤ j ≤ n, x ∈ Vi

and l ∈L , the abstract element force-lab(S,m) is an abstract molecule in
Molecule]

(Vi)
that satisfies:

{

(idi,Ei) ∈ γ(Vi)(m)
∣

∣ ∀k ∈ K, fst(E jk(xk)) = lk
}

⊆ γ(Vi)(force-lab(S,m)).

2. We choose a set Σsub of factious counters. We map each transition label
λ ∈ Σ to a factious counter ψ(λ) ∈ Σsub. The function ψ is not necessarily
injective. We define a set Vc of counters as Lp ∪Σsub. Counters p ∈ Lp

denote occurrence number of thread at program point p. Other counters
have no meaning. We assume that we are given a numerical domain NVc ,
fitted with its primitives, as defined in Sect. 9.2 on page 249.

10.3.4 Main domain

Our main domain is a Cartesian product between a domain that describes the pair
marker/environment of each thread in the system and a domain that describes the
occurrence number of threads inside non-empty computation units.

286 CHAPTER 10. THREAD PARTITIONING

Let Aenv = (C]
env,venv,tenv,⊥env,γenv,C0env,→env,∇env) be the abstraction de-

fined by the families (Atom]
V) and (Molecule]

(Vi)
) as in Sect. 8.1 on page 169. Our

main domain C
]
part is defined as the product C

]
env× (UNIT→NVc). The abstract

domain C
]
part is related to the concrete domain ℘(Σ∗×C) by a concretization

function γpart. For each abstract element (ENV,CU)∈ C
]
part, the set γpart(ENV,CU)

contains any configuration (v,C) ∈ Σ∗×C that satisfies:

1. (v,C) ∈ γenv(ENV);

2. for any computation unit u ∈ unit, there exists a function t ∈ {(0) ∈ NVc}∪
(γNVc

(CU(Πunit(u)))) such that the occurrence number of threads at pro-
gram point p in the computation unit u is equal to t(p), i.e. :

t(p) = Card({(p, id,E) ∈C | give-unit(p, id,E) = u}).

We define the pre-order vpart, the abstract union tpart, the bottom element
⊥part, and the widening operator ∇part component-wise.

10.3.5 Partitioning primitives

Let n be a natural number. Let (pi)1≤i≤n ∈ L n
p be a tuple of program points.

Let mol ∈ Molecule]
(I(pi))1≤i≤n

be an abstract molecule that describes threads at

program points (pi).

1. we define the primitive same-unit that inserts the constraint that two threads
belong to the same computation unit. We use the abstract primitive SYNC]

that is defined on page 172 to enforce equality constraints among the values
associated to each index b ∈ B in both threads. Let i and j be two integers
between 1 and n. We define the primitive same-unit as:

same-unit(i, j,(pk),mol)
∆
= SYNC](S,(pk),mol),

where S = {((give-index(pi)(b)), i) = ((give-index(p j)(b)), j) | b ∈ B}.

2. we define the primitive distinct-unit that inserts disequality constraints
about the computation unit of two threads. If the set Bs contains exactly
one index, then we use abstract primitive SYNC] that is defined on page 172
to enforce that the values associated to this index in both threads are dis-
tinct. Otherwise, we do not change the abstract molecule. Let i, j be two
integers between 1 and n. We define the primitive distinct-unit as:

10.3. GENERALIZATION 287

• if Card(Bs) = 1,

distinct-unit(i, j,(pk),mol)
∆
= SYNC](S,(pk),mol),

where:

S = {((give-index(pi)(b)), i) 6= ((give-index(p j)(b)), j) | b ∈ Bs};

• otherwise,

distinct-unit(i, j,(pk),mol)
∆
= S.

3. we define the primitive set-unit that inserts constraints about the abstract
computation unit of a thread. Let a ∈ UNIT be an abstract computation unit.
Let i be an integer between 1 and n. We define the primitive set-unit as:

set-unit(i,a,(pk),mol)
∆
= force-lab(S,mol),

where S = {((give-index(pi)(b)), i),a(b)) | b ∈ B}.

10.3.6 Abstract operational semantics

We now use these generic primitives to simulate in the abstract the concrete oper-
ational semantics.

10.3.6.1 Enabling a partial interaction

Let us consider C] = (ENV,CU) ∈ C
]
part an abstract configuration. Let R =

(n,components,compatibility,v-passing,broadcast) be a reduction rule. Let
(pk)1≤k≤n ∈ L n

p be an n-tuple of program point labels and (pik)1≤k≤n =

(sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be an n-tuple of par-
tial interactions. For any k ∈ J1;nK, we choose Ctk ∈ continuationk.

We consider a concrete configuration C ∈ γpart(ENV,CU). We consider an n-
tuple of threads (t i) = (pi, idi,E i) ∈ Cn (each thread t i is at program point pi).
At the concrete level, the computation step labeled (R,(tk,pik)) is enabled if each
thread ti at program point pi, may compute the partial correct interaction and if the
synchronization constraints of the rule R are satisfied. Moreover, each thread ti

is in a computation unit. We consider the equivalence relation ∼ over the interval
J1;nK that is defined as [i∼ j⇐⇒ give-unit(ti) = give-unit(t j)]. We denote by A
the function that maps each integer i ∈ J1;nK to the abstract computation unit of
the thread ti. We know that each computation unit unit(ti) contains all the threads
t j such that i∼ j.

At the abstract level, the equivalence relation ∼ and the function A are not
known. We compute the set context of all pairs (∼,A) such that there may exist

288 CHAPTER 10. THREAD PARTITIONING

a configuration C in γpart(ENV,CU), such that there exists an n-tuple of threads
(t i) = (pi, idi,E i) ∈ Cn (each thread t i is at program point pi) such that C may
perform the computation step labeled (R,(tk,pik)) and such that the tuple (t i)
satisfies the constraints of (∼,A). We collect several kind of constraints. In
Sect. 10.3.6.1.1, we give the syntactic constraints. In Sect. 10.3.6.1.2, we give
constraints about environments. In Sect. 10.3.6.1.3, we give constraints about
occurrence numbers of threads.

10.3.6.1.1 Syntactic constraints

pik ∈ interaction(pk).

10.3.6.1.2 Constraints about environments First, we define the reactive
molecule mol10 as in Sect. 8.1.3.2 on page 174.

mol10
∆
= SYNC](cons,(pk),mol),

where:

• mol
∆
= INJ](ENV(p1))• ...• INJ](ENV(pn));

• cons
∆
=
⋃

({Rk | 0≤ k ≤ n});

• R0
∆
= {σ(X) = σ(Y) | (X ,Y) ∈ compatibility},

with σ :

{

Ik 7→ (I,k)

X k
l 7→ (paramk

l ,k);

• ∀k ∈ J1;nK, Rk = {(x,k)� (y,k) | x� y ∈ constraintsk};

Then, we take into account the constraints about computation unit: for any i,
j such that 1≤ j ≤ i≤ n, we define the abstract molecule moli

j by induction as:































molii = set-unit(i,A(i),molii−1)

moli+1
1 =

{

same-unit(1, i+1,(pk),molii) if i+1∼ 1,

distinct-unit(1, i+1,(pk),molii) otherwise,

molij+1 =

{

same-unit(j +1, i,(pk),molij) if j +1∼ i,

distinct-unit(j +1, i,(pk),molij) otherwise,

Thus, we define the interacting molecule mol(C],R,(pk,pik)1≤k≤n,∼,A) as:

mol(C],R,(pk,pik)1≤k≤n,∼,A)
∆
= molnn

10.3. GENERALIZATION 289

The computation step with the contextual constraints given by∼ and A is enabled
only if:

mol(C],R,(pk,pik)1≤k≤n,∼,A) 6=⊥(I(pk)).

10.3.6.1.3 Constraints about computation units Let i be an integer
between 1 and n. We denote by Ci the equivalence class { j ∈ J1;nK | i ∼ j}.
We denote by (t i

v)v∈Vc ∈ NVc the tuple such that t i
v is the cardinal of the set

{ j ∈ J1;nK | v = p j, give-unit(ti) = give-unit(t j)}. For each counter v, if v ∈Lp,
the counter v denotes a program point. In such a case, the integer t i

v denotes the
number of threads at program point v that are required in the computation unit
of the i-th interacting thread. We use the primitive SYNCNVc

to check that these
constraints are satisfiable. This way, the abstract computation with the contextual
constraints given by ∼ and A is enabled only if:

SYNCNVc
((t i

v)v∈Vc,CU(A(i))) 6=⊥NVc
, ∀i ∈ J1;nK.

10.3.6.2 Marker computation and value passing

Then, we compute the molecule that describes the pairs marker/environment of the
threads after value passing and marker computation. For that purpose, we use the
primitive that is given in Def. 8.1.2 on page 175. Let t be a partial interaction name
type in {replication;computation;migration}. Let n be an integer. Let (pk)1≤k≤n

be an n-tuple of program point labels. Let (bdk
l)k,l be an n-tuple of sequences of

variables (bdk
l is associated with the l-th variable (in the k-th thread) that is bound

by the interaction). Let (paramk
l)k,l be an n-tuple of sequences of parameters

(paramk
l is associated with the l-th parameter of the k-th thread). Let v-passing

be a partial map from V Y
f into V X

f ∪ V I
f . Let molecule] ∈ Molecule]

(I(pi))1≤i≤n

be the abstraction of n interacting threads, just before computing value passing
and marker computation. The abstract molecule after value passing and marker
computation is defined as:

marker-value(t,(pk)k,molecule],(bdk
l)k,l,(paramk

l)k,l,v-passing).

10.3.6.3 Launching continuations

We now describe how we simulate continuation launching at the abstract
level. Let C] = (ENV,CU) ∈ C

]
part be an abstract configuration. Let R =

(n,components,compatibility,v-passing,broadcast) be a reduction rule. Let
(pk)1≤k≤n ∈ L n

p be an n-tuple of program point labels and (pik)1≤k≤n =

290 CHAPTER 10. THREAD PARTITIONING

(sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be an n-tuple of par-
tial interactions. Let (Vi)1≤k≤n be an n-tuple of interfaces (after value pass-
ing). Let (ctk) ∈℘(Lp× (V ⇀ L)) be an n-tuple of continuations, such that
ctk ∈ continuationk, for any k such that 1 ≤ k ≤ n. Let (bdk

l)k,l be an n-tuple of
sequences of variables (bdk

l is associated with the l-th variable (in the k-th thread)
that is bound by the interaction). Let (paramk

l)k,l be an n-tuple of sequences of
parameters (paramk

l is associated with the l-th parameter of the k-th thread). Let

v-passing be a partial map from V Y
f into V X

f ∪V I
f . Let mol0 ∈Molecule]

(I(pi))1≤i≤n

be an abstract molecule. Let mol′ ∈Molecule]
(Vi)1≤i≤n

be another abstract molecule.

The abstract molecule mol0 denotes the n interacting threads just before comput-
ing value passing and marker computation; the abstract molecule mol′ denotes the
n interacting threads just after computing value passing and marker computation.
We introduce, for any i such that 1≤ i≤ n, the integer ni as the cardinal of the set

cti. We also write cti = {(p(i, j),E(i, j)
s) | 1 ≤ j ≤ ni}. We define an integer m as

the sum Σ1≤i≤nni. We introduce φ as the unique monotonic bijection from the set
{(i, j) | 1≤ i≤ n, 1≤ j ≤ ni} (we use the lexical order) into the interval J1;mK.

10.3.6.3.1 Balance molecule Unlike in the environment analysis, we do
not merge all potential continuations in the abstract level: we do a case analysis
according to which continuations are launched. Then, for each choice of potential
continuations, we build a molecule that gathers the descriptions of the threads that
interact and of the threads that are launched. We call this molecule the balance
molecule.

Definition 10.3.3 (balance molecule). We gather the description of the interact-
ing threads (before value passing and marker computation) and the description of
threads in their continuation as follows. For any k ∈ J1;mK, we define the molecule
molk by induction as:

molk = molk−1 •GC](I(p(i, j)),update](E(i, j)
s ,PROJ](i,mol′))),

where φ(i, j) = k.
Then, we collect constraints about the computation units of interacting threads

and about the computation units of launched threads. For each launched thread,
each index in the computation unit is associated to a value. Either this value
is fresh, or it comes from another interacting thread. In the last case, we col-
lect some constraints: there are two sub-cases, either the value has been passed
from an interacting thread to its continuation, or its has been passed by another
thread through a communication. We define the balance molecule balance as the
molecule SYNC](cons,(qk)1≤k≤m+n,molm), where:

10.3. GENERALIZATION 291

1. the set of constraints cons is defined as:






(x,φ(i, j)+n) = σ(x, i, j)

∣

∣

∣

∣

∣

∣

1≤ i≤ n, 1≤ j ≤ n j,

∃b ∈ B, x = give-index(p(i, j))(b),

x 6∈ Dom(E(i, j)
s)







,

with σ(x, i, j) =











(parama
b,a) if ∃ j′,

{

bdi
j′ = x,

v-passing(Y i
j′) = Xa

b ,

(x, i) otherwise.

2. qk =

{

pk if 1≤ k ≤ n,

p(i, j) if k > n and k−n = φ(i, j).

10.3.6.3.2 Potential computation units and potential labeling Then,
we consider any case of equality relations among the computation units of the
threads that are described in the balance molecule, of abstract computation units,
and of the formal variable value labeling. For any k such that 1≤ k≤ n, we denote
(ak,bk) = arity(components(k)). We introduce the set V X

R
of formal variables as

{X k
l | 1 ≤ k ≤ n, 1 ≤ l ≤ ak}. Each case is described by an equivalence relation

∼ over the interval J1;m + nK, by a function A ∈ J1;m + nK→ UNIT, and by a
function lab ∈ V X

R
→L . The equivalence relation ∼ means that the i-th thread

and the j-th thread in the balance molecule are in the same computation unit if and
only if i ∼ j. The function A means that the abstract computation unit of the i-th
thread is A(i). The function lab means that each formal variable X is associated
with a value the label of which is lab(X).

We consider only triples (∼,A, lab) the restriction of which is compatible with
the precondition constraints. This means that:

1. mol(C],R,(pk,pik)1≤k≤n,∼ ∩J1;nK2,A|J1;nK) 6=⊥(I(pk))1≤k≤n
,

2. SYNCNVc
((t i

v)v∈Vc,CU(A(i))) 6=⊥NVc
, ∀i ∈ J1;nK,

where t i
v is the cardinal of the set { j ∈ J1;nK | v = p j, give-unit(ti) = give-unit(t j)}.

Then, we take into account the constraints denoted by lab. We require that the
label of the value of each variable x is the label lab(x). That is to say:

force-lab
(

S,mol
(

C],R,(pk,pik)1≤k≤n,∼ ∩J1;nK2,A|J1;nK

))

6=⊥(I(pk))1≤k≤n
,

where S = {(paramk
l ,k), lab(X k

l) | X k
l ∈ V X

R
}.

We also take into account the fact that some threads are necessarily launched
in new computation units: for any (i, j) such that 1≤ i≤ n and 1≤ j≤ ni, if there

292 CHAPTER 10. THREAD PARTITIONING

exists b ∈ B such that give-index(p(i, j))(b)∈Dom(E(i, j)
s), the computation unit of

the φ(i, j)-th thread is new. In such a case, we should have k 6∼ n+φ(i, j) for any
k such that 1≤ i≤ n.

This gives the following definition for the set of admissible constraint sets.

Definition 10.3.4 (admissible constraint sets). We define the set
extended-context of admissible constraint sets as the set of triples (∼,A,B)
such that:

1. mol(C],R,(pk,pik)1≤k≤n,∼ ∩J1;nK2,A|J1;nK) =⊥(I(pk))1≤k≤n
,

2. force-lab(S,mol(C],R,(pk,pik)1≤k≤n,∼ ∩J1;nK2,A|J1;nK)) 6= ⊥(I(pk))1≤k≤n
,

where S = {(paramk
l ,k), lab(X k

l) | X k
l ∈ V X

R
};

3. SYNCNVc
((t i

v)v∈Vc,CU(A(i))) 6=⊥NVc
, ∀i ∈ J1;nK,

where t i
v is the cardinal of the set { j ∈ J1;nK | v = p j, give-unit(ti) =

give-unit(t j)}.

4. k 6∼ (n+φ(i, j)), for any i, j,k such that:

(a) 1≤ k ≤ n,

(b) ∃b ∈ B, give-index(p(i, j))(b) ∈ Dom(E(i, j)
s).

Then, we consider any case of potential constraint set (∼,A, lab) ∈
extended-context for the computation units.

10.3.6.3.3 Enforcing computation unit constraints Now, we enforce
the constraints given by the triple (∼,A, lab) in the balance molecule.

Definition 10.3.5 (updated balance molecule). For any i, j such that 1≤ j≤ i≤
m, we define the abstract molecule balancei

j by induction as:










































balance1
0 = balance

balancei
i = set-unit(i,A(i),balancei

i−1)

balancei+1
1 =

{

same-unit(1, i+1,(pk),balancei
i) if i+1∼ 1,

distinct-unit(1, i+1,(pk),balancei
i) otherwise,

balancei
j+1 =

{

same-unit(j +1, i,(pk),balancei
j) if j +1∼ i,

distinct-unit(j +1, i,(pk),balancei
j) otherwise,

We define the updated balance molecule updated-balance(∼,A, lab) under the
assumptions (∼,A, lab) as the molecule:

force-lab(S,balancem
m),

10.3. GENERALIZATION 293

where S = {(paramk
l ,k), lab(X k

l) | X k
l ∈ V X

R
}.

10.3.6.3.4 Launching abstract atoms Then, we compute the abstraction
of pairs marker/environment after continuation launching. For that purpose, we
collect the abstraction of all the atoms of new threads in the balance molecule.

Definition 10.3.6 (updating abstract atoms). We define the abstract description
new-atoms ∈ C

]
env of the pairs of marker/environment of new threads as the func-

tion that maps any program point p(i, j) with 1≤ i≤ n, 1≤ j≤ ni to the following
abstract atom:

tI(p(i, j)){GC](I(p(i, j)),PROJ](φ(i′, j′),updated-balance)) | p(i, j) = p(i′, j′)}.

10.3.6.3.5 Updating computation units Then, we can update properties
about computation units. We first count the threads that are consumed or created
in the computation unit of each thread in the balance molecule.

Definition 10.3.7. For any l ∈ J1;m+nK, we define:

1. the abstraction created(l) of the number of threads that are launched in the
computation unit of the l-th thread. The abstract element created(l) ∈NVc

is defined as:
]

∑(uk)n<k≤m,

where: uk =











1NVc
(p(i, j)) when ∃i, j,

{

k = φ(i, j)

and k ∼ l,

0NVc
otherwise;

2. the abstraction consumed(l) of the number of threads that are consumed in
the computation unit of the l-th thread. The abstract element consumed(l)∈
NVc is defined as:

]

∑(vk)1≤k≤n,

where: vk =











1NVc
(pk) if

{

type(pik) 6= replication

and k ∼ l;

0NVc
otherwise;

3. the update of factious variables transition. The abstract element transition
is defined as:

transition = 1NVc
(ψ(R,(pk,pik))).

294 CHAPTER 10. THREAD PARTITIONING

Then we associate each thread in the balance molecule to an abstraction of the
content of the computation unit it belongs to, after continuation launching.

Definition 10.3.8. We define a function new-unit mapping each index l ∈ J1;m+
nK to a description of the occurrence number of thread in the computation unit of
the l-th thread, as follows:

1. if there exists j ∈ J1;nK such that l ∼ j, we define new-unit(l) as:

SYNCNVc
(t j,CU(A(l)))−] consumed(l)+] created(l)+] transition;

2. else, if l = φ(i, j) and if there exists b∈B such that A(give-unit(p(i, j)))(b)∈

Dom(E(i, j)
s), we define new-unit(i) as:

created(i)+] transition,

3. otherwise, we define new-unit(i) as:

(0NVc
∪ CU(A(i)))+] created(i)+] transition(i).

Roughly speaking, in the first case, the fact that there exists an interacting
threads in the computation unit before the computation step ensures that the com-
putation unit was not empty; in the second case, at least one name occurring in
the computation unit is fresh, so the computation unit was empty before the com-
putation step; in the third case, we do not know whether the computation unit was
empty, or not before the computation step, so we consider both cases.

Remark 10.3.9. When a thread is launched in a computation unit that is not con-
strained in the precondition, we have to consider both cases: either the computa-
tion unit is not empty, so its abstraction is given by the function CU, or the com-
putation unit is empty, so its abstraction is given by 0NVc

. In mobile ambients,
our analysis will be less precise that the analysis we have proposed in Sect. 10.2,
because when an ambient migrate inside another one. We have no constraint on
the content of the target ambient. We will address this accuracy problem in future
works.

10.3.6.3.6 Primitive definitions We summarize the primitives that we
need to describe continuation launching in the abstract computation step:

Definition 10.3.10 (continutation launching primitives). Let
C] = (ENV,CU) ∈ C

]
part be an abstract configuration. Let R =

(n,components,compatibility,v-passing,broadcast) be a reduction rule.

10.3. GENERALIZATION 295

Let (pk)1≤k≤n ∈ L n
p be an n-tuple of program point labels and

(pik)1≤k≤n = (sk,(paramk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be an
n-tuple of partial interactions. Let (Vi)1≤k≤n be an n-tuple of interfaces (after
value passing). Let (ctk) ∈℘(Lp × (V ⇀ L)) be an n-tuple of continu-
ations, such that ctk ∈ continuationk, for any k such that 1 ≤ k ≤ n. Let
mol0 ∈ Molecule]

(I(pi))1≤i≤n
be an abstract molecule. Let mol′ ∈ Molecule]

(Vi)1≤i≤n

be an abstract molecule. The abstract molecule mol0 denotes the n interacting
threads just before computing value passing and marker computation; the abstract
molecule mol′ denotes the n interacting threads just after computing value passing
and marker computation. We introduce, for any i such that 1≤ k ≤ n, the integer
ni as the cardinal of the set cti. We also write cti = {(p(i, j),E(i, j)

s) | 1 ≤ j ≤ ni}.
We define an integer m as the sum Σ1≤i≤nni. We introduce φ as the unique
monotonic bijection from the set {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ni} into the interval
J1;mK (using the lexical order).

1. the set context’(C],R,(pk,pik,ctk)) is defined as extended-context;

2. the abstract element ENV′(R,(pk,pik,ctk),C],mol0,mol′,∼,A, lab) is de-
fined as new-atoms;

3. the molecule bal(R,(pk,pik,ctk),C],mol0,mol′,∼,A, lab) is defined as
balance;

4. the function CU′(R,(pk,pik,ctk),C],∼,A, lab) is defined as new-unit;

10.3.6.4 Broadcast value passing

Broadcast value passing consists in substituting all the occurrences of a value
in the system by another one. Let C] = (ENV,CU) ∈ C

]
part be an abstract con-

figuration that denotes the state of the system before the computation step. We
consider a triple (∼,A, lab) that denotes constraints on the computation unit of
the threads involved in the computation step. We consider molecule the abstract
molecule that describes the interacting threads having taken into account the con-
straints denoted by both∼ and A. We consider balance the abstract molecule that
describes the interacting threads and the launched threads having taken into ac-
count the constraints denoted by ∼, A, and lab. We denote by n the number of
interacting threads. We denote by m the number of launched threads. For any k
such that 1 ≤ k ≤ m + n, we denote by qk the program point of the k-th thread
in the abstract molecule balance. Let new-atoms ∈ C

]
env be the description of the

pairs marker/environment of the new threads (before broadcast communication).
Let new-unit ∈ UNIT → NVc be the description of the computation unit of the

296 CHAPTER 10. THREAD PARTITIONING

interacting threads and of the created threads. Let (paramk
l)k,l be an n-tuple of

sequences of parameters (paramk
l is associated with the l-th parameter of the k-th

thread). We denote by broadcast the broadcast substitution (it is a partial map
from V I

R
into V X

R
∪V I

R
).

10.3.6.4.1 Environment properties We use the primitive glob] which is
defined in Sect. 8.1.3.5 on page 179. We first refine the abstract molecule molecule
so that it takes into account the constraints that are denoted by the function lab.
We define molecule′ as the molecule:

force-lab(S,molecule),

where S = {(paramk
l ,k), lab(X k

l) | 1≤ k ≤ n, X k
l ∈ Dom(lab)}.

Then, we define the abstract element:

ENVres(C
],(paramk

l),broadcast,molecule, lab) ∈ C
]
env

as the element:

glob](molecule′,(paramk
l),broadcast,tenv{ENV;new-atoms}).

10.3.6.4.2 Computation unit properties At the concrete level, a restric-
tion broadcast′ of the function broadcast is chosen. Then, we compute the sub-
stitution τ as the function that maps the thread identity of the k-th interacting
thread to the value of the variable broadcast(Ik) whenever Ik ∈ Dom(broadcast′),
and leaves other values unchanged. The substitution τ applies on computation
units component-wise (we denote by τ ∈ unit→ unit the function that applies τ
component-wise). The content of each computation unit u, after the broadcast
substitution is then obtained as the sum of the contents of all computation units
u−1 such that τ(u−1) = u.

We denote by l the function that maps each integer k such that 1 ≤ k ≤ n to
the label l(k) where:

l(k) =











pk if Ik 6∈ Dom(broadcast′);

pk′ if broadcast′(Ik) matches Ik′;

lab(broadcast′(Ik)) otherwise.

We introduce the family (v j) j∈J of the distinct concrete computation units
such that: {w ∈ unit | tau(w) = u} = {v j | j ∈ J}. In the abstract, we will only
consider some constraints about each computation unit v j. These constraints are
described at the concrete level by the function i ∈ (J×B)→ J0;nK, that is defined
as:

10.3. GENERALIZATION 297

1. i(j,b) = 0 whenever v j(b) is not in the domain of τ (in such a case v j(b) =
u(b),

2. and i(j,b) = k whenever v j(b) is the identity of the k-th interacting thread
and Ik = Dom(broadcast′) (in such a case v j(b) is the identity of the k-th
interacting thread).

Moreover, for any distinct j1, j2 ∈ J, there exists b ∈ Bs, such that i(j1,b) 6=
i(j2,b), otherwise we would have v j1 = v j2 .

Let u] be an abstract computation unit. We want to compute the set F of the
pairs ((v]

j) j∈J, i ∈ J×B→ J0;nK) such that there exists a computation unit u and
a family of distinct computation units (v j) j∈J that satisfy:

1. u] = Πunit(u);

2. v] = Πunit(v j) for any j ∈ J;

3. {w ∈ unit | tau(w) = u}= {v j | j ∈ J};

4. i(j,b) = 0 whenever v j(b) is not in the domain of τ (in such a case v j(b) =
u(b);

5. and i(j,b) = k whenever v j(b) is the identity of the k-th interacting thread
and Ik = Dom(broadcast′) (in such a case v j(b) is the identity of the k-th
interacting thread).

Definition 10.3.11 (abstract computation unit origin). Thus we can define F

as the set of the family (v]
j, i j) j∈J such that:

1. for any j ∈ J, v]
j ∈ UNIT is an abstract computation unit;

2. for any j ∈ J, i j ∈ B→ J0;nK is a function;

3. for any j ∈ J, b ∈ B, i j(b) = 0 implies v]
j(b) = u](b);

4. for any j ∈ J, b ∈ B, i j(b) > 0 implies v](b) = pk;

5. for any j1, j2 ∈ J, [∀b ∈ Bs, i j1(b) = i j2(b)] =⇒ j1 = j2.

Remark 10.3.12. The last property ensures that the set F is finite up to re-
indexing.

298 CHAPTER 10. THREAD PARTITIONING

For any (v]
j, i j) ∈F , the abstraction of the new content of the a concrete com-

putation unit satisfying the abstraction u] is then obtained by summing for each
j ∈ J the abstraction of the content of a computation unit that satisfies v]

j.
To get more precise results, we introduce a primitive is-in-balance that takes

a family f = (v]
j, i j) ∈ F and an index j ∈ J. It returns the set A of integer

k ∈ J0;m+nK such that for any k ∈ A such that k > 0, the k-th thread in the balance
molecule may be in a concrete computation unit that satisfies both the abstraction
v]

j and the constraints induced by i j; and such that 0 6∈ A only if , there may be no
thread in the balance molecule in any concrete computation unit that satisfies both
the abstraction v]

j and the constraints induced by i j.

Definition 10.3.13. For any v] ∈ UNIT and any f = (v]
j, i j)i∈J ∈ F , we define

is-in-balance(j, f) by:

1. 0 6∈ is-in-balance(j, f) if and only if:

(a) Card(Bs) = 1 and

(b) for any k′ ∈ J1;m + nK, SYNC]({(give-index(qk′)(b),k′) 6=
(σ(i j(b))); | b ∈ Bs},(qk),balance) =⊥(Vi),

where σ :

{

X k
l 7→ (paramk

l ,k),

Ik 7→ (I,k),

2. for any k such that 1 ≤ k ≤ m + n, k ∈ is-in-balance(v]
j, f) if and only

if SYNC]({(give-index(qk′)(b),k′) = (σ(i j(b | b ∈ B)))},(qk),balance) 6=
⊥(Vi),

where σ :

{

X k
l 7→ (paramk

l ,k),

Ik 7→ (I,k).

Then, for any k ∈ J, we use the primitive is-in-balance to refine the abstraction
of the content of the computation unit vk. We consider two choices. When a
computation unit contains no thread of the balance molecule, then its content is
either empty, or given by the abstract precondition CU(v]

k). When a computation
unit contains a thread in the balance molecule, then its content before broadcast
substitution is given by the updated abstraction new-unit(v]

k). Thus, we define by

φ(k,(v]
j, i j) j∈J) the abstraction of the content of v]

k as follows:

Definition 10.3.14 (refined content).

φ(k,(v]
j, i j) j∈J) = removezero(tNVc

OLD∪NEW)

where:

10.3. GENERALIZATION 299

1. OLD =

{

tNVc
{0NVc

; CU(v]
k)} if 0 ∈ is-in-balance(v]

k,(v
]
j, i j)),

⊥NVc
otherwise;

2. NEW =

{

new-unit(v]
k) if J1;m+nK∩ is-in-balance(v]

k,(v
]
j, i j)) 6= /0,

⊥NVc
otherwise;

3. removezero(A) =

{

⊥NVc
if A = 0NVc

A otherwise.

Then we can update the abstraction of the content of any computation unit.

Definition 10.3.15 (updated computation unit content). We define the abstract
element:

CUres(C
],(paramk

l),broadcast,balance, lab,ctk) ∈ C
]
env

as the element:

[u 7→ tNVc
{

]

∑(φ(j),(v j, i j) j∈J) j∈J | Jis a set, (v j, i j) ∈F}]

10.3.6.5 Abstract operational semantics

We use these primitives in order to describe both the abstraction of the initial states
and the abstract computation rule.

The abstraction of the initial states is defined as:

C0part = (C0env, t0)

where C0env is defined as in Sect. 8.1.4 on page 181 and t0 is defined as:

[

u] 7→ΠNVc

([

pk 7→ Card

{

(q,Es) ∈ inits

∣

∣

∣

∣

q = pk, ∀b ∈ B,
Es(give-index(q)(b)) = u](b)

}])]

.

Computation steps are described by the abstract reduction relation in
Fig. 10.10. We recall the different steps of this computation, as follows:

• interaction enabling:

– first, we find some threads that exhibit the right partial interactions;

– then, we check that their interface are compatible with both formal
rule synchronization constraints and each matching constraint set;

300 CHAPTER 10. THREAD PARTITIONING

Let C] = (f ,P) ∈ C
]
part be an abstract configuration.

Let R = (n,components,compatibility,v-passing,broadcast) be a reduction rule.
Let (pk)1≤k≤n ∈ L n

p be an n-tuple of program point labels and (pik)1≤k≤n =

(sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be an n-tuple of par-
tial interactions.
We denote by context the set of pairs (∼,A) where ∼ is an equivalence relation
over J1;nK and A a function A ∈ J1;nK→ UNIT such that:

1. mol(C],R,(pk,pik)1≤k≤n,∼,A) 6=⊥(I(pk))1≤k≤n
,

2. SYNCNVc
(t j,CU(A(i))) 6=⊥NVc

, ∀i ∈ J1;nK,

If context 6= /0 and ∀k ∈ J1;nK, pik ∈ interaction(p), then:

C
(R,(pk,pik)k)
−→] tpart

{

(ENVres(c),CUres(c)

∣

∣

∣

∣

c ∈ context× Π
1≤k≤n

continuationk
}

.

where for any (ctk) such that for any k ∈ J1;nK, we have ctk ∈ continuationk, for
any (∼,A, lab) ∈ context:

• context = context′(C],R,(pk,pik,ctk));

• mol(∼,A,(ctk)) = mol(C],R,(pk,pik)1≤k≤n,∼ ∩J1;nK2,A|J1;nK);

• mol ′(X) = marker-value(type(components(1)),(pk),mol(X),(bdk
l),

(paramk
l),v-passing);

• bal(∼,A, lab,(ctk)) = bal(R,(pk,pik,ctk),C],mol(∼,A,(ctk)),mol ′(∼
,A,(ctk)),∼,A, lab);

• ENV(∼,A, lab(ctk)) = ENV′(R,(pk,pik,ctk),C],∼,A, lab);

• CU(∼,A, lab,(ctk)) = CU′(R,(pk,pik,ctk),C],∼,A, lab);

• ENVres((∼,A, lab),(ctk)) = ENVres(C],(paramk
l),broadcast,m, lab),

where m = mol(∼,A,(ctk));

• CUres((∼,A, lab),(ctk)) = CUres(C],(paramk
l),broadcast,balance,

lab,(ctk)).

Figure 10.10: Abstract semantics.

10.4. APPLICATIONS 301

– then, we check that each computation unit contains enough threads to
compute the interaction;

• interaction computation:

For each case of contextual constraints and of potential continuations:

– we abstract marker allocation and value passing;

– we compute the abstraction of pair of marker/environment after broad-
cast substitution;

– we compute the abstraction of the content of computation unit after
broadcast substitution, by case analysis.

Theorem 10.3.16. (P,vP ,tP ,⊥P ,γP ,CP
0 , P ,∇P) is an abstraction.

10.4 Applications

10.4.1 Race-condition analysis for the π-calculus

Example 10.4.1 (Shared memory analysis). We consider the shared memory ex-
ample that is given in Fig. 10.1 on page 267. We extend the interface of each pro-
gram point, so that they all contain the variable cell. We suppose that threads
at program points 20 and 32 associate the variable cell with the value (ext,ε);
Threads at program point 2, 5, and 9 have already the variable cell in their
interface. Threads with the marker id and at program point 3, 4, 12, and 16 asso-
ciate the variable cell with the value (c, id). Other threads inherit the value of
the variable cell from the the thread of which they are in the continuation. Then,
we define the computation unit of a thread as the value of the variable cell.

The environment analysis LOC2 (Cf. Sect. 8.2.7.2 on page 219) proves that
the instances of the channels cell, mutex, or nomutex are never communi-
cated anywhere in the system. The abstract domain of equalities and disequalities
among value markers (see Sect. 8.3.1.3 on page 228) proves that the marker of
the value of any variable cell, nomutex, or mutex is always the same as the
computation unit marker. Moreover, the partition-based analysis proves that, in
each computation unit labeled c:

1. the sum between the number of occurrences of threads at program points
2, 7, and 11 is always equal to one. This prove that each memory cell is
associated with one and at most one value.

2. the sum between the number of occurrences of threads at program points 3,
, 15, and 19 is always equal to one. This proves that the mutex policy is

302 CHAPTER 10. THREAD PARTITIONING

satisfied (i.e. the mutex is either available or released and there is only one
available slot).

Remark 10.4.2. To prove that the client data are not sent neither to other clients,
nor to the context. We need to use the analysis that is given in Sect. 8.2.11 on
page 213. We require the partitioned numerical abstraction of environments to
relate the values of the cell location (i.e. the value of the variable cell) and of
the cell content (i.e. the value of variables u and d). Nevertheless, if we remove
the context (we still consider an unbounded number of clients), the analysis LOC2

succeeds in proving that the client data are never sent to other clients.

10.4.2 Authentication analysis for the spi-calculus

Example 10.4.3 (One-way public key authentication protocol analysis). We
consider the authentication protocol given in Fig. 10.2. We extend the interface
of each program point with an extra variable unit. We also consider a fresh name
label 0.

We suppose that:

1. The environments of threads at program points α , β , and γ associate the
variable unit to the value (0,ε) (resp. (β ,ε));

2. The environments of threads at the program point 1, 2 and 3 associate the
variable unit to the variable (0,ε).

3. The environments of threads at the program point 4 associates the variable
unit either to a secret key if this thread has been created by the reception of
the corresponding public key, or to the value (0,ε) otherwise.

4. The value of the variable unit is passed during computation steps to threads
at program points 5, c, 6, 7 , d, e, and f .

5. The environments of threads at the program point 8, 9 and 10 associate the
variable unit to the variable (0,ε).

6. When a message (denoted by a thread tm) is communicated to a thread at
program point 10, the environment of the thread at program point 11 asso-
ciate the variable unit to the value of the variable unit in the environment of
the thread tm.

7. The value of the variable unit is passed during computation steps to threads
at program points 12, 13, 14, 15, 16, 17, 18, g, h, and i.

10.4. APPLICATIONS 303

Remark 10.4.4. We need to introduce new partial interactions to describe the value
associated to the variable unit during communication. We include communicated
terms in communication rule. Firstly, this allows us to pass the value of the vari-
able unit of a thread denoting a term to the thread this term is communicated to.
Secondly, it allows us to compute the value of the variable unit according to the
shape of the communicated term.

The environment analysis detects that:

1. at program point 19, the variable unit is associated with the secret key of
the principal B;

2. if the variable unit at program point 4 is associated with the secret key of
the principal B, then the argument of the begin signal is associated with the
public key of B.

The analysis detects that a computation unit may contain a thread at program
point 19 only if it contains a thread at program point 4. For that purposes, it makes
the closure among several simpler constraints that are encoded in linear equality
constraints (thanks to the use of factious variables). These simpler constraints
are:

1. a computation unit may contain a thread at program point d only if it con-
tains a thread at program point 4;

2. a computation unit may contain a thread at program point 12 only if it
contains a thread at program point d;

3. a computation unit may contain a thread at program point 13 (resp. 14,
15, 16, 17, 18, and 19) may be launched in a computation unit, only by
consuming a thread at program point 12 (resp. 13, 14, 15, 16, 17, reps. 18)
in the same computation unit.

This proves the non-injective agreement property: for any instance of a thread
19, there exists a thread at program point 4 such that the arguments of the two
threads match.

Chapter 11

Conclusion

11.1 Contribution

In this thesis, we propose a generic framework for analyzing mobile systems.
Our approach is generic: it does not depend on the model under consideration.
We give a meta language. We encode the models most frequently used in the
literature, such as the π-calculus, the ambient calculus, the join-calculus, the spi-
calculus, and the BIO-ambients. Thus, we model successfully matching guards,
internal and external choices, guarded replication and explicit recursion, location,
migration and dissolution, term construction and destruction, safe migration, and
channeled communication across boundaries.

We obtain some semantics that do not use α-conversion. Each name (channel
name, ambient name, memory cell name, etc. . .) is tagged with a marker that
encodes the local history of the thread that has declared this name. This makes
further analyses easier, since the state of the system is not defined up to a congru-
ence relation. Moreover, it allows us to express some properties about the history
of the threads that declare names. For instance, given two names, we can decide
whether they have been created by the same instance of a thread, or not. More-
over, our semantics are context independent. They take into account any potential
intruder, that respects the semantics of the encoded models.

Then, we use the Abstract Interpretation framework to design decidable anal-
yses. This framework is highly generic: it can be applied to a wide variety of
analyses, provided some abstract primitives are given. Moreover, it is extensi-
ble: it allows us to build the (approximated reduced) product of several analyses
expressed in this framework. We propose three kinds of generic analyses.

• We propose an environment analysis that associates each program point to
a description of the environments that may be associated to threads at this
program point. This analysis is non-uniform: it distinguishes between sev-

305

306 CHAPTER 11. CONCLUSION

eral instances of names. It also distinguishes between recursive instances of
threads. We build a hierarchy of different environment analyses with differ-
ent levels of precision (we do not compare only transfer function accuracy,
but the whole analysis accuracy). Our abstract semantics succeeds in vali-
dating non-uniform confidentiality properties, such as whether the data of a
client may not be communicated to other clients in the case of a ftp-server.
We prove this property even in the case of an unbounded number of clients.

• We propose an occurrence counting analysis. The occurrence counting anal-
ysis consists in abstracting the occurrence number of thread instances dur-
ing computation sequences. It is especially useful to detect mutual exclu-
sion. It also helps in discovering a bound to the number of agents during
computation sequences, so that we can verify that some part of the systems
will not exceed the physical limits imposed by the implementation of the
system. In the case of an ftp-server, we can automatically infer the maxi-
mum number of simultaneous client sessions.

• Finally, we introduce the notion of thread partitioning. Threads are gathered
into computation units. These computation units are semantically defined.
Then, we count the occurrence number of threads inside each computation
unit. This analysis mixes both dynamic (it distinguishes among several in-
stances of each computation unit) and concurrency properties. It succeeds
in proving the absence of race-conditions in a shared memory with dynamic
allocation. We also prove the non-injective agreement property in a version
of the Woo and Lam one-way public-key authentication protocol.

11.2 Future works

11.2.1 Implementation

Our two prototypes π-s.a and amb-s.a have been implemented according to non
standard semantics computed by hand. They address the problem of environment
analysis and occurrence counting analysis. The prototype amb-s.a. also captures
an approximation of the content of each ambient. Much works remain to do.

We want to implement a concrete interpreter for our meta language. Given a
front-end file for a model, it will automatically provide a concrete interpreter for
this model. We do not want to implement distributed abstract machines. Our goal
is to provide quickly a tool implementation of models, in order to give intuition
on the semantics of the model and to study toy examples.

Then, we want to implement all the analyzes that we have proposed in this
thesis. Most of the examples that we have given in this thesis have been analyzed

11.2. FUTURE WORKS 307

by using our prototypes. Nevertheless, thread partitioning results have been com-
puted by hand. The proof of non-injective agreement property is quite complex, a
prototype is required to check that the analysis captures it.

11.2.2 Proving high level properties

We capture very low level properties. These properties are required in design-
ing accurate analyses for high level properties. We sometimes bridge the gap
between the properties that we prove and the property we are interested in by
manual proofs. We want to design a formal and automatic framework to do this.

Thread partitioning provides higher level properties. But it requires some kind
of human annotations. We need to describe the computation unit of each thread
during the computation. First, we would like to extend the meta language: we
want to provide systematic tools to include new rules and new partial interactions
in order to describe the behavior of computation units easily. then, we would like
to propose generic families of computation units. Each generic family would ad-
dress a given class of high level properties (such as the absence of race conditions).
Then, the resulting analysis could be instantiated to each encoded model.

We also want to extend the class of properties that we analyze. For instance,
we want to infer injective agreement properties, which ensure that at most one end
signal is spawned per begin, in authentication protocols.

11.2.3 Extending model expressiveness

We want to extend our meta language. Our meta language is based on the use
of asymmetric communication and name atomicity. We can deal neither with
fusion, nor with equational theories over terms. Moreover, we think that we can
encode higher order communications. But the analysis results may be quite hard
to understand. Our framework may be adapted to get more useful results.

We also want to design analyses that abstract the mobile behavior of programs
written in complex languages. We may need to capture interactions between prop-
erties related to mobility, and other properties of the programs (the data-flow for
instance).

11.2.4 Approximating probabilistic behavior

In this thesis, we address only reachability properties. Many applications require
more complex properties. For instance, the behavior of a cell in biology is often
controlled by the concentration of the components in the whole system. The cell
may either die, or duplicate itself. These two states are reachable. A reachability
analysis gives no information for such a system.

308 CHAPTER 11. CONCLUSION

Therefore, we need to analyze the probabilistic semantics of models, where
each computed transition is chosen according to the concentration of the compo-
nents in the system. Then, our goal is to capture the probabilistic behavior of a
system.

Appendix A

Correspondence proves

A.1 The standard and the naive semantics

In this section we give the proof of Thm. 2.2.5, which formalizes the relation
between the standard and the naive semantics.

Theorem 2.2.5. We have S = Π(C n
0 (S)), and for any non standard configu-

rations C and for any word u ∈ (L 2 ∪{ε;⊕})∗ such that C n
0 (S)

u
−→ n

∗ C, we
have:

1. C
ε
−→ n C′ =⇒ Π(C)≡Π(C′);

2. ∀λ ∈L 2∪{⊕}, C
λ
−→ n C′ =⇒ Π(C)

λ
−→ Π(C′);

3. ∀λ ∈L 2∪{⊕}, Π(C)
λ
−→ P =⇒ ∃D, ∃E,

{

C
ε
−→ n

∗ D
λ
−→ n E

Π(E)≡ P.

Proof. We have C n
0 (S) = (S ,ε, /0), then Π(C n

0 (S)) = S . Let C be a non stan-
dard configuration and u a word in (L 2∪{ε;⊕})∗ such that C n

0 (S)
u
−→ n

∗ C,

1. let C′ be a non standard configuration such that C
ε
−→n C′, we want to prove

that Π(C)≡Π(C′) by case analysis on C
ε
−→ n C′:

(a) in the case that C
ε
−→ n C′ consists in decomposing a thread into two

concurrent threads, we have Π(C)≡Π(C′) thanks to the associativity
and commutativity congruence rules;

(b) in the case that C
ε
−→ n C′ consists in removing a thread the syntac-

tic component of which is the empty thread, we have Π(C) ≡ Π(C′)
thanks to the “end of a thread” congruence rule;

309

310 APPENDIX A. CORRESPONDENCE PROVES

(c) in the case that C
ε
−→ n C′ consists in opening a channel, we have

Π(C)≡Π(C′) thanks to the extrusion rule, the swapping rule, and the
consistency of the marker allocation scheme (Cf. Prop. 2.2.1).

2. let C′ be a non standard configuration such that C
λ
−→ n C′, we have

Π(C)
λ
−→ Π(C′): in the case that C only contains the threads involved

in the non standard computation step, the property is true by definition of
the two relations and thanks to the fact that a standard computation step can
be performed inside name restriction; then we use the fact that a standard
computation step can be performed both within parallel composition and
within name restriction to prove it in the general case.

3. let P be a standard configuration such that Π(C)
λ
−→ P. The binary re-

lation
ε
−→ n is nœtherian and locally confluent. So, following [30], we

can take a non standard configuration D such that C
ε
−→ n

∗ D and such

that for any configuration E, D
ε
6−→ n E. According to Thm. 2.2.5.(1),

we have Π(C)≡ Π(D), then since
λ
−→ is compatible with ≡, we get that

Π(D)
λ
−→ P. Besides, we can deduce from the fact that D cannot be re-

duced by a computation step labeled with ε , that the syntactic component
of every thread of D is either of the form P ⊕ Q or of the form aP. So the

computation step Π(D)
λ
−→ P can be lifted in the non standard semantics,

so that we can choose a non standard configuration E such that D
λ
−→ n E

and Π(E)≡ P.

A.2 The standard and the intermediate seman-
tics

In this section we give the proof of Thm. 2.2.8, which formalizes the relation
between the standard and the intermediate semantics.

Proposition 2.2.6. For any non standard configuration C, we have C ⇓
⋃

t∈C
β i(t).

Proof. Since the relation β i separately acts on each thread, it is enough to prove
the property in the case that C is a singleton {(P, id,E)}. This is done by induction
on the syntax of P:

A.2. THE STANDARD AND THE INTERMEDIATE SEMANTICS 311

• in the case that P = 0,
we have {(0, id,E)}

ε
−→ n /0 and β i(0, id,E) = /0,

so {(0, id,E)} ⇓ β i(0, id,E);

• in the case that P = (ν n)Q, we have {(P, id,E)}
ε
−→ n {(Q, id,E[n 7→

(n, id)])},
and by induction {(Q, id,E[n 7→ (n, id)])} ⇓ β i(Q, id,E[n 7→ (n, id)]),
since β i(P, id,E) = β i(Q, id,E[n 7→ (n, id)]),
we obtain {(P, id,E)} ⇓ β i(P, id,E);

• in the case that P = (P1 | P2),
we have {(P1 | P2, id,E)}

ε
−→ n {(P1, id,E|fn(P1));(P2, id,E|fn(P2))},

and by induction ∀i ∈ {1;2}, {(Pi, id,E|fn(Pi))} ⇓ β i(Pi, id,E|fn(Pi)),
since1 β i(P1 | P2, id,E) = β i(P1, id,E|fn(P1))∪β i(P2, id,E|fn(P2)),
we obtain {(P1 | P2, id,E)} ⇓ β i(P1 | P2, id,E);

• otherwise we have β i(P, id,E) = {(P, id,E|fn(P))},
and {(P, id,Efn(P))} ⇓ {(P, id,E|fn(P))},
so {(P, id,E)} ⇓ β i(P, id,E).

Theorem 2.2.8. We have S ≡ Π(C i
0(S)), and for all non standard configura-

tions C and for all word u ∈ (L 2∪{ε;⊕})∗ such that C i
0(S)

u
−→ i

∗ C, we have:

1. ∀λ ∈L 2∪{⊕}, C
λ
−→ i C′ =⇒ Π(C)

λ
−→ Π(C′);

2. ∀λ ∈L 2∪{⊕}, Π(C)
λ
−→ P =⇒ ∃D,

{

C
λ
−→ i D

Π(D)≡ P.

Proof. The proof of these properties mainly relies on Thm. 2.2.5 and the fact

that
λ
−→ i is defined as the composition of

λ
−→ n and ⇓: accordance to

Thm. 2.2.5, we know that S = Π(C n
0 (S)), then by definition of C i

0(S), we

have C n
0 (S)

ε
−→ n

∗ C i
0(S), and so we can deduce from Thm. 2.2.5.(1) that

S ≡ Π(C i
0(S). Then let us take a non standard configuration C and word

u ∈ (L 2∪{ε;⊕})∗ such that C i
0(S)

u
−→ i

∗ C,

1. let C′ be a non standard configuration such that C
λ
−→ i C′, there exists

another non standard configuration D such that C
λ
−→ n D

ε
−→ n

∗ C′, we

1We use the property that β i(R, id,E) = β i(R, id,E|fn(R)) which can be easily proved for all
threads R by induction on the syntax of R.

312 APPENDIX A. CORRESPONDENCE PROVES

obtain from Thm. 2.2.5.(2) that Π(C)
λ
−→ Π(D) and from Thm. 2.2.5.(1)

that Π(D)≡Π(C′), so Π(C)
λ
−→ Π(C′);

2. let P be a standard configuration such that Π(C)
λ
−→ P, following

Thm. 2.2.5.(3), there exists two non standard configurations D and E, such

that C
ε
−→ n

∗ D, D
λ
−→ n E and Π(E)≡ P, moreover, since C i

0(S)
u
−→ i

∗ C,

we know that for any non standard configuration D′, we have C
ε
6−→ n D′,

this means that D = C, so we have C
λ
−→ n E and Π(E) ≡ P, then we in-

troduce the non standard configuration F such that E ⇓ F , we know from

Thm. 2.2.5.(1) that Π(E)≡Π(F), and by definition of
λ
−→ i that C

λ
−→ i F ,

so we can conclude that P≡Π(F) and C
λ
−→ i F .

A.3 The standard and the efficient semantics

In this section we give the proof of Thm. 2.2.10, which formalizes the relation
between the standard and the efficient semantics.

Proposition 2.2.9. For any non standard configuration C, we have:

{b |C =⇒ b}=
{

⋃

Contt | ∀t ∈C, Contt ∈ β (t)
}

.

Proof. Since the β relation separately acts on each thread, it is enough to prove
the property in the case that C is a singleton {(P, id,E)}. This is done by induction
on the syntax of P:

• in the case that P = 0, only the garbage collection rule applies to the
thread (P, id,E) and no rule applies on the empty set, so we conclude that
{b | {(0, id,E)} =⇒ b}= { /0}= β (0, id,E);

• in the case that P = (ν n)Q, only the name restriction rule can apply:
we have {(P, id,E)}

ε
−→ n {(Q, id,E[n 7→ (n, id)])}, {b | {Q, id,E[n 7→

(n, id)]} =⇒ b} = β (Q, id,E[n 7→ (n, id)]) (by the induction hypothesis),
and β (P, id,E) = β (Q, id,E[n 7→ (n, id)]),
so we obtain {b | {(P, id,E)} =⇒ b}= β (P, id,E);

• in the case that P = (P1 |P2), only the rule which decomposes the thread can
apply: we have {(P1 | P2, id,E)}

ε
−→n{(P1, id,E|fn(P1));(P2, id,E|fn(P2))}, so,

A.3. THE STANDARD AND THE EFFICIENT SEMANTICS 313

since 99K separately acts on each thread, we obtain {b | {(P, id,E)} =⇒
b} = {b1 ∪ b2 | ∀i ∈ {1;2}, {(Pi, id,E)} =⇒ bi}; moreover by induction
we know that for i in the set {1;2}, we have {bi | {(Pi, id,E|fn(Pi))} =⇒

b} = β (Pi, id,E|fn(Pi)), then by definition of β (P1 | P2, id,E), we obtain2

{b | {(P1 | P2, id,E)} =⇒ b}= β (P1 | P2, id,E);

• in the case that P = (P1⊕P2), only the two choice rules can apply: we have

either {(P1⊕P2, id,E)}
⊕
−→ n {(P1, id,E|fn(P1))} or {(P1⊕P2, id,E)}

⊕
−→ n

{(P2, id,E|fn(P2))}, so {b | {(P1 ⊕ P2, id,E)} =⇒ b} =
∪i∈{1;2}{b | {(Pi, id,E)}
=⇒ b}; moreover by induction we know that for i in the set {1;2},
we have that {bi | {(Pi, id,E|fn(Pi))} =⇒ b} = β (Pi, id,E|fn(Pi)), so

since2 β (P1⊕ P2, id,E) = β (P1, id,E|fn(P1))∪ β (P2, id,E|fn(P2)), we obtain
{b | {(P1⊕P2, id,E)} =⇒ b}= β (P1⊕P2, id,E);

• otherwise we have β (P, id,E) = {{(P, id,E|fn(P))}},
and ∀b, {(P, id,Efn(P))} 699K b, so {b | {(P, id,E)} =⇒ b}= β (P, id,E).

Theorem 2.2.10. For any initial non standard configuration C0 ∈ C e
0 (S), there

exists k ∈ N such that S
⊕k

−→∗ Π(C0) and for all non standard configurations C
and for all word u ∈ (L 2)∗ such that C0

u
−→ e

∗ C, we have:

1. ∀λ ∈L 2, C
λ
−→ e C′ =⇒ ∃k ∈ N, ∃P, Π(C)

λ
−→ P

⊕k

−→∗ Π(C′);

2. ∀λ ∈L 2, Π(C)
λ
−→ P =⇒ ∃D,















C
λ
−→ e D

and

{

∃k > 0, P
⊕k

−→+ Π(D)

or P≡Π(D).

Proof. Let C0 ∈ C e
0 (S) be an initial configuration, since C e

0 (S) = β (S ,ε, /0),
we obtain that C n

0 (S) 99K∗ C0, then by definition of 99K and thanks to

Thm. 2.2.5.(1) and Thm. 2.2.5.(2), there exists k ∈ N such that Π(C n
0 (S))

⊕k

−→

∗ Π(C0), since S = Π(C n
0 (S)) we get that S

⊕k

−→∗ Π(C0). Then let us take a non
standard configuration C and a word u ∈ (L 2)∗ such that C0

u
−→ e

∗ C,

2We use the property that β (R, id,E) = β (R, id,E|fn(R)) which can be easily proved for all
threads R by induction on the syntax of R.

314 APPENDIX A. CORRESPONDENCE PROVES

1. let C′ be a non standard configuration such that C
λ
−→ e C′, by definition of

λ
−→ e , there exists another non standard configuration D such that we have

C
λ
−→ n D 99K∗ C′; moreover, we obtain from Thm. 2.2.5.(2) that Π(C)

λ
−→

Π(D) and we deduce from Thm. 2.2.5.(1) and Thm. 2.2.5.(2) that there

exists k ∈ N, such that Π(D)
⊕k

−→∗ Π(C′);

2. let P be a standard configuration such that Π(C)
λ
−→ P, following

Thm. 2.2.5.(3), there exist two non standard configurations D and E which

satisfy C
ε
−→ n

∗ D, D
λ
−→ n E and Π(E) ≡ P; since C i

0(S)
u
−→ e

∗ C, we
know that for any non standard configuration D′, we have C 699K D′, this

means that D = C and λ 6= ⊕, so we have C
λ
−→ n E and Π(E) ≡ P, then

we introduce the non standard configuration F such that E =⇒ F , by def-

inition of
λ
−→ e , we have C

λ
−→ e F; moreover we have either E

ε
−→ n

∗ F
and thanks to Thm. 2.2.5.(1) Π(E)≡ Π(F), or E 99K∗ E ′

⊕
−→ n E ′′ 99K∗ F ,

and thanks to Thm. 2.2.5.(1) and Thm. 2.2.5.(2), there exists k > 0 such that

Π(E)
⊕+

−→∗ Π(F).

Appendix B

Marker freshness

B.1 Thread marker freshness

In this section we give the proof of Thm. 4.5.13.
We first prove that the computation of a single partial interaction may not

launch two instances of threads with labels that are in the same program point
class and that two instances of the same thread with labels in the same class may
not occur at the beginning of the system computation:

Lemma B.1.1. Let i,k be two integers such that i ∈ J0;oK and such that either
k = 0 if i = 0, or 1≤ k ≤ ni otherwise. Let p and p′ be two program points, let id
be a marker, and let E,E ′ be two environments such that (p, id,E) ∈ created(i,k)
and (p′, id,E ′) ∈ created(i,k). Then, if p∼ p′, then p = p′ and E = E ′.

Proof. We prove the Lem. B.1.1 by case analysis as follows:

1. in the case when i = k = 0:

Let t = (p, id,E) and t ′ = (p′, id′,E ′) be two threads in C0 such that
p ∼ p′ and id = id′. Thanks to the definition of C0 there exists Ct ∈
inits such that {t; t ′} ⊆ launch(Ct,ε, /0). Thanks to Def. 4.4.7, there ex-
ist two static environments Es,E ′s such that t = (p,ε,update(ε, /0,Es)) and
t ′ = (p′,ε,update(ε, /0,E ′s)) and (p,Es),(p′,Es) ∈ Ct. Thanks to Def. 4.5.4,
since Ct∈ inits and p∼ p′, we have Es = E ′s and p = p′. So we can conclude
that: E = E ′ and p = p′.

2. otherwise: Let t = (p, id,E), t ′= (p′, id′,E ′) be two threads in created(i,k),
such that p∼ p′ and id = id′. We want to prove that E = E ′:
By Def. 4.4.7, there exist two static environments Es,E ′s such that:

• {(p,Es);(p′,E ′s)} ⊆ Ctk(i);

315

316 APPENDIX B. MARKER FRESHNESS

• E = update(id
k
(i),E

k
(i),Es);

• E ′ = update(id
k
(i),E

k
(i),E ′s).

By Def. 4.5.4, we have p = p′ and Es = E ′s. So E = E ′ and p = p′.

The following lemma allows the tracking of thread origin. It gives a charac-
terization of the initial threads and relates each non initial thread t to a thread that
has been consumed when launching the thread t.

Lemma B.1.2 (Parent thread). Let t = (p, id,E) be a thread in created(i,k),
then:

1. in the case where k = i = 0, we have id = ε and t ∈ initp;

2. in the case where type(sk(i)) = computation, there exist an environment E ′

and a program point q such that t ′ = (q, id,E ′) ∈ consumed(i,k), moreover
the class [q]∼ is the only class such that [p]∼ ∈ succ([q]∼);

3. in the case where type(sk(i)) = replication, the marker id matches
N((p1, ..., pn), id1, ..., idn), moreover for any l ∈ J1;nK such that
type(sl(i)) = computation, there exists E ′ such that (pl, idl,E ′) ∈
consumed(i, l);

4. in the case where type(sk(i)) = migration, there exists a program point q ∈
[p]∼, an environment E ′ such that t ′ = (q, id,E ′) ∈ consumed(i,k);

This way, a regular computation may launch a thread only if it consumes a
thread the program point of which is in the syntactic predecessor of the created
thread and the marker of which is the same. When a replication launches an in-
stance, the associated marker allows the tracking of the thread which are computed
(thanks to Def. 4.1.6 there are always at least one consumed thread). In case of mi-
gration, the thread is obtained by updating the environment of an existing thread
and the program point:

Lemma B.1.3. Let i and k be two integers such that type(sk(i)) = migration. Then
there exists two program points p and p′, a marker id and two environments
E and E ′ such that: p ∼ p′, consumed(i,k) = {(p, id,E)} and created(i,k) =
{(p′, id,E ′)}.

We now prove our main theorem:

B.1. THREAD MARKER FRESHNESS 317

Theorem 4.5.13 (Thread marker freshness). Let i be an integer between 0 and o
and let (p, id,E) be a thread in Ci. Then, there exists an unique 4-tuple (p′, i′,k,E ′)
such that p′ is a program point label, i′ and k are integers, and E ′ is an environ-
ment that satisfy p ∼ p′, (p′, id,E ′) ∈ created(i′,k) and such that either i = 0, or
type(sk(i)) 6= migration.

We prove Thm. 4.5.13 by proving the following stronger theorem:

Theorem B.1.4. Let i be an integer between 0 and o. Then:

1. let (p, id,E) be a thread in Ci. Then there exists an unique 4-tuple
(p′, i′,k,E ′) such that p′ is a program point label, i′ and k are integers,
and E ′ is an environment that satisfy p∼ p′, (p′, id,E ′) ∈ created(i′,k) and
either i = 0, or type(sk(i)) 6= migration.

2. Let p and p′ be two program points and let id be a marker. Let E and E ′

be two environments such that (p, id,E) ∈Ci and (p′, id,E ′) ∈Ci. If p∼ p′

then p = p′ and E = E ′.

Proof. The proof is made by induction over i:

1. in the case where i = 0. By definition, we have C0 = created(0,0). The two
points follows from Lem. B.1.1.

2. we suppose that there exists an integer i0 such that Thm. B.1.4 is satisfied
for any i < i0; we prove that it is also valid for i = i0:

(a) Let p1 and p2 be two program point labels and id be a marker. Let
E1, E2 be two environments, and i1, i2, k1 and k2 be four integers such
that:

• p1 ∼ p2,

• (p1, id,E1) ∈ created(i1,k1),

• (p2, id,E2) ∈ created(i2,k2),

• type(sk1(i1)) 6= migration,

• and type(sk2(i2)) 6= migration.

We make a case analysis:

i. in the case where type(sk1(i1)) = computation:
By Lemma B.1.2, there exist a program point q1 and an envi-
ronment E ′1 such that (q1, id,E ′1) ∈ consumed(i1,k1) and [p1]∼ ∈
succ([q1]∼). So we have (q1, id,E ′1) ∈ Ci1−1. By Lemma
4.5.12, there exist a program point q′1, two integers j1 and l1,
and an environment E ′′1 such that (q′1, id,E ′′1) ∈ created(j1, l1),

318 APPENDIX B. MARKER FRESHNESS

j1 < i1, type(sl1(j1)) 6= migration, and q1 ∼ q′1. By Def. 4.5.8,
we have type(sk2(i2)) = computation. So by Lemma B.1.2,
there exist a program point q2 an environment E ′2 such that
(q2, id,E ′2) ∈ consumed(i2,k2) and [p2]∼ ∈ succ([q2]∼). So we
have (q2, id,E ′2) ∈Ci2−1 By Lemma 4.5.12, there exist a program
point q′2, two integers j2 and l2, and an environment E ′′2 such that
(q′2, id,E ′′2) ∈ created(j2, l2), j2 < i2, type(sl1(j1)) 6= migration,
and q2 ∼ q′2. We have p1 ∼ p2, [p1]∼ ∈ succ([q1]∼), and [p2]∼ ∈
succ([q2]∼). So, by Def. 4.5.8, we have q2 ∼ q1. Then, q′2 ∼ q′1.
So by induction hypotheses, we have q′2 = q′1, j1 = j2, l1 = l2, and
E ′′1 = E ′′2 .
We suppose that i1 < i2. Since type(sk1(i1)) = computation and
thanks to the second induction hypothesis, there is no environ-
ment E and no program point r1 such that (r1, id,E) ∈ Ci1 and
q1 ∼ r1. Moreover for any i′ ≥ i1, there is no environment E and
no program point r1 such that (r1, id,E) ∈Ci′ and q1 ∼ r1, other-
wise there would exists (r′1, i

′,k′,E) such that i′ > i1, (r′1, id,E) ∈
created(i′,k′), and r1 ∼ r′1, which is absurd thanks to the first in-
duction hypothesis. This is absurd since (q2, id,E ′2) ∈ Ci2−1. So
we can conclude that i1 = i2. Then we can conclude by the first
induction hypothesis that E ′1 = E ′2 and q1 = q2. Then we have
k1 = k2 because at each computation step, interacting threads are
distinct pair wise. We can also conclude that E = E ′ and p1 = p2

by lemma B.1.1.

ii. in the case where type(sk1(i1)) = replication:
By Lemma B.1.2, the marker id matches
N((o1, . . . ,on), id1, . . . , idn). By Def. 4.5.8, we have
type(sk2(i2)) = replication. By Def. 4.1.6, type(s2(i1)) =
computation. So by Lemma B.1.2, there exists E ′1, such that
(o2, id2,E ′1) ∈ consumed(i1,2). We have (o2, id2,E ′1) ∈Ci1−1. By
Lemma 4.5.12, there exist a program point o′2, two integers j1 and
l1, and an environment E ′′1 such that (o′2, id2,E ′′1)∈ created(j1, l1),
j1 < i1, type(sl1(j1)) 6= migration, and o2 ∼ o′2. By Def. 4.1.6,
we have type(s2(i2)) = computation. So by Lemma B.1.2, there
exists E ′2 such that (o2, id2,E ′2) ∈ consumed(i2,2). So we have
(o2, id2,E ′2) ∈ Ci2−1. By Lemma 4.5.12, there exist a program
point o′′2 , two integers j2 and l2, and an environment E ′′2 such that
(o′′2, id2,E ′′2) ∈ created(j2, l2), j2 < i2, type(sl2(j2)) 6= migration,
and o2 ∼ o′′2 . We have: o′2 ∼ o2∼ o′′2 . So by induction hypotheses,
we have o′2 = o′′2 , j1 = j2, l1 = l2, and E ′′1 = E ′′2 .

B.1. THREAD MARKER FRESHNESS 319

We suppose that i1 < i2. Since type(s2(i1)) = computation and
thanks to the second induction hypothesis, there is no environ-
ment E and no program point r1 such that (r1, id2,E) ∈ Ci1 and
o2 ∼ r1. Moreover for any i′ ≥ i1, there is no environment E and
no program point r1 such that (r1, id2,E) ∈Ci′ and o2 ∼ r1, other-
wise there would exists (r′1, i

′′,k′′,E) such that i′′> i1, (r′1, id,E)∈
created(i′′,k′′), and r1 ∼ r′1, which is absurd thanks to the first in-
duction hypothesis. This is absurd since (o2, id2,E ′2) ∈Ci2−1. So
we can conclude that i1 = i2. Then we can conclude by the first
induction hypothesis that E ′1 = E ′2. Then, we have k1 = k2 be-
cause at each computation step, interacting threads are distinct
pair wise. We can also conclude that E = E ′ and p1 = p2, by
lemma B.1.1.

(b) We suppose that the first point is satisfied for any i such that i≤ i0.

Let (p, id,E) be a thread in Ci0 . We make a case analysis:

i. if there exists p′, i,k,E ′ such that (p′, id,E ′) ∈ created(i,k),
type(sk(i)) 6= migration, and p′ ∼ p:
By the first point of the Thm. B.1.4, we have ((p′′, id,E ′′) ∈
created(i′,k′), type(sk′(i′)) 6= migration, and p′′ ∼ p) implies that
p′′ = p′, i = i′, k = k′ and E ′ = E ′′. We can conclude because
broadcast communications modify neither program points, nor
thread markers.

ii. Otherwise, there exists E ′′ and p′ such that (p′, id,E ′′) ∈ Ci−1

and p ∼ p′. By the first induction hypothesis, there is no triple
(p′′,k′,F) such that (p′′, id,F) ∈ created(i,k′), type(sk′(i)) 6=
migration and p′′ ∼ p. We can conclude since both broadcast
communications modify neither program points, nor thread mark-
ers and migration preserves equalities among program points.

Appendix C

Context approximation

C.1 In the π-calculus

In this section we give the proof of Thms. 6.2.8 and 6.2.9, which formalize the
relation between the semantics of closed and open systems.

C.1.1 Trace projection

We first recall Def. 6.2.7:

Definition 6.2.7. (trace projection). Computation sequence projection is then

defined as follows: Let τ = C0
λ1−→ e . . .

λn−→ e Cn be a non standard computation
sequence, with C0 ∈ C e

0 (S). We define the projection of τ , Πτ(SI,ΦM ,ΦN)(τ)
as the non standard computation sequence:

(A0,U0,F0)
Πλ (λa1)

. . .
Πλ (λap)

(Ap,Up,Fp)

of the open system SI, where

• a1, . . . ,ap is the strictly ascending sequence of the elements of the set {i ∈
J1;nK | λi ∈L 2 \ (L \LI)

2};

• the initial configuration (A0,U0,F0) is the following triple:

(ΠΦM ,ΦN

C (C0),en,{tn | n ∈ N});

• for k ∈ J1; pK, the configuration (Ak,Uk,Fk) is defined as follows:

– Ak = ΠΦM ,ΦN

C (Cak),

321

322 APPENDIX C. CONTEXT APPROXIMATION

– Uk =

{

Uk−1 if fst(λak) ∈LI,

Uk−1∪{Π
ΦM ,ΦN

N
(E(xr)) | r ∈ J1;nK} otherwise,

where, in the last case, (x! j[x1, . . . ,xn]P, id,E) is the unique thread in
Cak−1 \Cak which matches this notation;

– Fk =















Fk−1 if







snd(λak) ∈LI or
λak−→ e is not a resource fetching,

Fk−1 \{ΦM (snd(λak), id) | (P, id,E) ∈Cak−1\Cak} otherwise.

C.1.2 Soundness

Then, we introduce some lemma to help proving the soundness of the context
independent semantics.

The following lemma shows that the extraction function β and the configura-
tion projection commute:

Lemma C.1.1. Let (P, id,E) be a thread such that P is a sub-term of SI, then we
have:

β (P,ΠΦM

M
(id), [x 7→ΠΦM ,ΦN

N
(E(x))]) = ΠΦM ,ΦN

C (β (P, id,E)).

Proof. This lemma can easily by proved by induction on the syntax of P. We use
the fact that each sub-term of a sub-term of SI is also a sub-term of SI. 2

The following lemma establishes the fact that communications between two
threads of the context leave the threads of the system SI unchanged:

Lemma C.1.2. Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non standard computation se-
quence, with C0 ∈ C e

0 (S); we denote by (A0,U0,F0)...(Ap,Up,Fp) the computa-

tion sequence Πτ(SI,ΦM ,ΦN)(τ), then we have ΠΦM ,ΦN

C (Cn) = Ap.

Proof. We prove Lem. C.1.2 by induction over the integer n−ap.

1. in the case that n = ap, we have ΠΦM ,ΦN

C (Cn) = Ap by Def. 6.2.7;

2. we now suppose that there exists m0 ∈ N such that Lem. C.1.2 is satisfied
provided that n− ap < m0, we now prove it in the case that n− ap = m0:
we know from the induction hypothesis that ΠΦM ,ΦN

C (Cn−1) = Ap, then we
have λn ∈ (L \LI)

2, so we can conclude that both the set Cn−1 \Cn and the
set Cn \Cn−1 only contain threads the label of which is in L \LI, thus with
respect with Def. 6.2.7, we obtain that ΠΦM ,ΦN

C (Cn) = ΠΦM ,ΦN

C (Cn−1),

since ΠΦM ,ΦN

C (Cn−1) = Ap, we conclude that ΠΦM ,ΦN

C (Cn) = Ap. 2

C.1. IN THE π-CALCULUS 323

The following lemma establishes some soundness conditions:

Lemma C.1.3. Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non standard computation se-
quence, with C0 ∈ C e

0 (S). We consider the following computation sequence:

Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0)...(Aap,Uap,Fap).

Then, ∀(P, id,E) ∈Cn with lab(P) 6∈LI:

1. ∀x ∈ fn(P), we have ΦN (E(x)) ∈Up;

2. ΦM (lab(P), id) ∈ Fp.

Proof. These two properties are easily proved by induction on n.

1. (a) in the case that n = 0, we have p = 0; let (P, id,E) be a thread in C0

with lab(P) 6∈ LI; we have C0 ∈ C e
0 (S), let x be a free name in P;

since lab(P) 6∈ LI, we have x 6∈ NI; then E(x) = ΠΦM ,ΦN

N
(x,ε) =

ΦN (x,ε) ∈ en = U0;

(b) we suppose that there exists n0 ∈N such that Prop. C.1.3.(1) is satisfied
for any n smaller than n0. We now prove this property for n = n0 +1:
let (P, id,E) in Cn0+1 with lab(P) 6∈LI, and x be a free name in P; we
denote (y, idy) = E(x);

• in the case that there exists j smaller than n0 such that (P, id,E)
in C j: by the induction hypothesis, there exists o smaller than p
such that ΦN (E(x)) ∈Uo ⊆Up;

• in the case that y 6∈NI, we have ΦN (E(x)) ∈ en = U0 ⊆Up;

• otherwise we necessarily have λn0+1 ∈ ((L \LI)×LI), and there
exists a thread t = (z! j[z1, ...,zn]P, idt ,Et) ∈ Cn0 \Cn0+1 such that
E(x) ∈ {Et(zl) | l ∈ J1;nK}, so by definition of Up, we get that
ΦN (E(x)) ∈Up.

2. (a) in the case that n = 0, we have p = 0 and Fp = {tn | n ∈ N},
so ΦM ({(lab(P), id) | (P, id,E) ∈C0, lab(P) 6∈LI})⊆ Fp;

(b) we suppose that there exists n0 ∈N such that Prop. C.1.3.(2) is satisfied
for any n smaller than n0. We now prove this property for n = n0 +1:
let (P, id,E) in Cn0+1 with lab(P) 6∈LI;

• in the case that (P, id,E) ∈ Cn0 and λn0+1 ∈ (L \LI)
2: we have

ΦM (lab(P), id) ∈ Fp, by the induction hypothesis;

324 APPENDIX C. CONTEXT APPROXIMATION

• in the case that (P, id,E) ∈Cn0 and λn0+1 6∈ (L \LI)
2: we know

by the induction hypothesis that ΦM (lab(P), id) ∈ Fp−1, then the
marker ΦM (lab(P), id) is also in Fp, otherwise we would have
(P, id,E) ∈Cn0 \Cn0+1, which is absurd;

• in the case that (P, id,E) 6∈ Cn0 , we have ΦM (lab(P), id) ∈
Fp, otherwise there would exist an integer i < p such that
ΦM (lab(P), id) ∈ Fi \Fi+1, and so there would exist an integer
j < n0 + 1 such that (P, id,E) ∈ C j \C j+1 which is in contradic-
tion with the fact that (P, id,E) ∈Cn0+1 thanks to Prop. 2.2.1.

So in any case, we have ΦM (lab(P), id) ∈ Fp. 2

Theorem 6.2.8. (Soundness) Let τ = C0 . . .Cn be a non standard computation
sequence of the following closed system:

S = (ν c1) . . .(ν ck)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl)),

with C0 ∈ C e
0 (S). Then Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0) . . .(Ap,Up,Fp) is

a non standard computation sequence of the open system SI and (A0,U0,F0) ∈
C o

0 (S).

Proof. Soundness is ensured by construction: we prove Thm. 6.2.8 by induction
on the length of the computation sequence:

1. First, we prove that (A0,U0,F0) ∈ C o
0 (S): we have C0 ∈ C e

0 (S); so C0 ∈
β (S ,ε, /0); so by definition of β , we have C0 ∈ {A∪B | A ∈ β (SI,ε, [cik 7→
(cik ,ε)]), B ∈ β (Sc,ε, [c jk 7→ (c jk ,ε)])}; then we decompose C0 into A∪B
with A ∈ β (SI,ε, [cik 7→ (cik ,ε)]) and with B ∈ β (Sc,ε, [c jk 7→ (c jk ,ε)]).
Moreover, we have A0 = ΠΦM ,ΦN

C (C0) = ΠΦM ,ΦN

C (A)∪ΠΦM ,ΦN

C (B); since

ΠΦM ,ΦN

C (B) = /0, we have A0 = ΠΦM ,ΦN

C (A). Thanks to Lem. C.1.1, since
A ∈ β (SI,ε, [cik 7→ (cik ,ε)]), we obtain A0 ∈ β (SI,ε, [cik 7→ ΦN (cik ,ε)]);
so, since ΦN : (N ×M → en), we obtain the fact that A0 ∈
⋃

{β (SI,ε,E) | E ∈ fn(P)→ en}; then since U0 = en and F0 = {tn | n ∈N},
we obtain, by definition of C o

0 , that (A0,U0,F0) ∈ C o
0 (S).

2. Now, we assume that Thm. 6.2.8 is satisfied for any non standard computa-
tion sequence τ containing at most n computation steps, and we prove that
it is also satisfied for any non standard computation sequence τ of contain-

ing n + 1 computation steps: let τ = C0 . . .Cn
λ
−→ e Cn+1 be a non stan-

dard computation sequence of length n + 1; by the induction hypothesis

C.1. IN THE π-CALCULUS 325

Πτ(SI,ΦM ,ΦN)(C0 . . .Cn) is a non standard computation sequence of the
open system SI, which we may denote:

(A0,U0,F0) . . .(Aap ,Uap,Fap)

then we discuss several cases depending of λ = (i, j):

(a) in the case that λ ∈ (L \LI)
2: by definition of Πτ(SI,ΦM ,ΦN),

Πτ(SI,ΦM ,ΦN)(τ) = Πτ(SI,ΦM ,ΦN)(C0 . . .Cn); so
Πτ(SI,ΦM ,ΦN)(τ) is a non standard computation sequence
of the open system SI;

(b) in the case that λ ∈ L 2
I and

λ
−→ e is a communication rule: there

exist two threads t? = (y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in Cn

which satisfy that E?(y) = E!(x) and λ = (i, j), and two continua-
tions Cont? ∈ β (P, id?,E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!) such that
Cn+1 = (Cn \{t?; t!})∪Cont?∪Cont!; we have:







































(Πλ (t?),Πλ (t!)) ∈ (Ap)
2 (thanks to Lem. C.1.2 and since (i, j) ∈L 2

I),

ΠΦM ,ΦN

N
(E?(y)) = ΠΦM ,ΦN

N
(E!(x)) (since E?(y) = E!(x)),

ΠΦM ,ΦN

t (Cont?) ∈ β (P,ΠΦM

M
(id?),E ′?) (thanks to Lem. C.1.1),

where E ′? = [x 7→ΠΦM ,ΦN

N
(E?[yk 7→ E!(xk)](x))]

ΠΦM ,ΦN

t (Cont!) ∈ β (Q,ΠΦM

M
(id!), [x 7→ΠΦM ,ΦN

N
(E!(x))]),

(thanks to Lem. C.1.1);

so (Ap,Up,Fp)
λ
(Ap \ {ΠΦM ,ΦN

t (t?);ΠΦM ,ΦN

t (t!)} ∪

ΠΦM ,ΦN

t (Cont?)∪ΠΦM ,ΦN

t (Cont!),Up,Fp); then since Πλ (λ) = λ ,

we may conclude that (Ap,Up,Fp)
Πλ (λ)
(ΠΦM ,ΦN

C (Cn+1),Up,Fp);

(c) in the case that λ ∈ L 2
I and

λ
−→ e is a replication rule: there ex-

ist two threads t? = (∗y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in Cn

which satisfy that E?(y) = E!(x) and λ = (i, j), and two continuations
Cont? ∈ β (P,N((i, j), id?, id!),E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!)
such that Cn+1 = (Cn \ {t!})∪Cont? ∪Cont!; since (i, j) ∈ L 2

I , we

326 APPENDIX C. CONTEXT APPROXIMATION

have ΠΦM

M
(N((i, j), id?, id!)) = N((i, j),ΠΦM

M
(id?),Π

ΦM

M
(id!)); then:



















































(Πλ (t?),Πλ (t!)) ∈ (Ap)
2 (thanks to Lem. C.1.2 and since (i, j) ∈L 2

I),

ΠΦM ,ΦN

N
(E?(y)) = ΠΦM ,ΦN

N
(E!(x)) (since E?(y) = E!(x)),

ΠΦM ,ΦN

t (Cont?) ∈ β (P, id∗,E∗) (thanks to Lem. C.1.1),

where id∗ = N((i, j),ΠΦM

M
(id?),Π

ΦM

M
(id!))

and E∗ = [x 7→ΠΦM ,ΦN

N
(E?[yk 7→ E!(xk)](x))],

ΠΦM ,ΦN

t (Cont!) ∈ β (Q,ΠΦM

M
(id!), [x 7→ΠΦM ,ΦN

N
(E!(x))])

(thanks to Lem. C.1.1);

so we have (Ap,Up,Fp)
λ
(Ap \ {ΠΦM ,ΦN

t (t!)}∪ΠΦM ,ΦN

t (Cont?)∪

ΠΦM ,ΦN

t (Cont!),Up,Fp); then since Πλ (λ) = λ , we may conclude

that (Ap,Up,Fp)
Πλ (λ)
(ΠΦM ,ΦN

C (Cn+1),Up,Fp);

(d) in the case that i ∈ LI, j 6∈ LI and
λ
−→ e is a communication rule:

there exist two threads t? = (y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in
Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two continua-
tions Cont? ∈ β (P, id?,E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!) such that
Cn+1 = (Cn \{t?; t!})∪Cont?∪Cont!; we have:







































Πλ (t?) ∈ Ap (thanks to Lem. C.1.2 and since i ∈LI),

ΠΦM ,ΦN

N
(E?(y)) = ΠΦM ,ΦN

N
(E!(x)) ∈Up (since E?(y) = E!(x),

and thanks to Lem. C.1.3.(1)),

ΠΦM ,ΦN

t (Cont?) ∈ β (P,ΠΦM

M
(id?),E ′?) (thanks to Lem. C.1.1),

where E ′? = [x 7→ΠΦM ,ΦN

N
(E?[yk 7→ E!(xk)](x))]

{ΠΦM ,ΦN

N
(E!(xk))} ⊆Up (thanks to Lem. C.1.3.(1));

so (Ap,Up,Fp)
(i,0)
(Ap \ {ΠΦM ,ΦN

t (t?)}∪ΠΦM ,ΦN

t (Cont?),Up,Fp);

since Πλ (λ) = (i,0), (Ap,Up,Fp)
Πλ (λ)
(ΠΦM ,ΦN

C (Cn+1),Up,Fp);

(e) in the case that i ∈LI, j 6∈LI and
λ
−→ e is a replication rule: there

exist two threads t? = (∗y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in Cn

which satisfy that E?(y) = E!(x) and λ = (i, j), and two continuations
Cont? ∈ β (P,N((i, j), id?, id!),E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!)

C.1. IN THE π-CALCULUS 327

such that Cn+1 = (Cn \{t!})∪Cont?∪Cont!; we have:



























































Πλ (t?) ∈ Ap (thanks to Lem. C.1.2 and since i ∈LI),

ΠΦM ,ΦN

N
(E?(y)) = ΠΦM ,ΦN

N
(E!(x)) ∈Up (since E?(y) = E!(x)

and thanks to Lem. C.1.3.(1)),

ΠΦM ,ΦN

t (Cont?) ∈ β (P, id∗,E∗), (thanks to Lem. C.1.1),

where id∗ = N((i,0),ΠΦM

M
(id?),ΦM (j, id!))

and E∗ = [x 7→ΠΦM ,ΦN

N
(E?[yk 7→ E!(xk)](x))],

{ΠΦM ,ΦN

N
(E!(xk))} ⊆Up (thanks to Lem. C.1.3.(1)),

ΦM (j, id!) ∈ Fp (thanks to the Lem. C.1.3.(2));

so (Ap,Up,Fp)
(i,0)
(Ap ∪ΠΦM ,ΦN

t (Cont?),Up,Fp \ {ΦM (j, id!)});
then since we gave Πλ (λ) = (i,0), we may conclude that

(Ap,Up,Fp)
Πλ (λ)
(ΠΦM ,ΦN

C (Cn+1),Up,Fp \{ΦM (j, id!)});

(f) in the case that i 6∈ LI, j ∈ LI and
λ
−→ e is a communication rule:

there exist two threads t? = (y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in
Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two continua-
tions Cont? ∈ β (P, id?,E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!) such that
Cn+1 = (Cn \{t?; t!})∪Cont?∪Cont!; we have:































Πλ (t!) ∈ Ap (thanks to Lem. C.1.2 and since j ∈LI),

ΠΦM ,ΦN

N
(E!(y)) = ΠΦM ,ΦN

N
(E?(x)) ∈Up (since E?(y) = E!(x)

and thanks to Lem. C.1.3.(1)),

ΠΦM ,ΦN

t (Cont!) ∈ β (Q,ΠΦM

M
(id!), [x 7→ΠΦM ,ΦN

N
(E!(x))),

(thanks to Lem. C.1.1);

so (Ap,Up,Fp)
(0, j)
(Ap \{ΠΦM ,ΦN

t (t!)}∪ΠΦM ,ΦN

t (Cont!),Up∪

{ΠΦM ,ΦN

N
(E!(xk))},Fp); since Πλ (λ) = (0, j), we may conclude that:

(Ap,Up,Fp)
Πλ (λ)
(ΠΦM ,ΦN

C (Cn+1),Up∪{ΠΦM ,ΦN

N
(E!(xk))},Fp);

(g) in the case that i 6∈LI, j ∈LI and
λ
−→ e is a replication rule: there

exist two threads t? = (∗y?i[y]P, id?,E?) and t! = (x! j[x], id!,E!) in Cn

which satisfy that E?(y) = E!(x) and λ = (i, j), and two continuations
Cont? ∈ β (P,N((i, j), id?, id!),E?[yi 7→ xi]) and Cont! ∈ β (Q, id!,E!)

328 APPENDIX C. CONTEXT APPROXIMATION

such that Cn+1 = (Cn \{t?; t!})∪Cont?∪Cont!; we have:






























Πλ (t!) ∈ Ap (thanks to Lem. C.1.2 and since j ∈LI),

ΠΦM ,ΦN

N
(E!(y)) = ΠΦM ,ΦN

N
(E?(x)) ∈Up, (since E?(y) = E!(x)

and thanks to Lem. C.1.3.(1)),

ΠΦM ,ΦN

t (Cont!) ∈ β (Q,ΠΦM

M
(id!), [x 7→ΠΦM ,ΦN

N
(E!(x))]),

(thanks to Lem. C.1.1);

so (Ap,Up,Fp)
(0, j)
(Ap \{ΠΦM ,ΦN

t (t!)}∪ΠΦM ,ΦN

t (Cont!),Up∪

{ΠΦM ,ΦN

N
(E!(xk))},Fp); since Πλ (λ) = (0, j), we get

(Ap,Up,Fp)
Πλ (λ)
(Ap+1,Up∪{ΠΦM ,ΦN

N
(E!(xk))},Fp).

C.1.3 Completeness

Then, we introduce a lemma to help proving the completeness of the context in-
dependent semantics.

Lemma C.1.4. Let S∗ be a closed system of the following form:

(ν c)(SI(ci1, ...,cip) |Sc(c j1, ...,c jq)),

we denote by LI the set of the label occurring in SI. Let τ = C0 −→e
∗Cn be a non

standard computation sequence, with C0 ∈ C e
0 (S) and ΦM : L ×M →{tn | n ∈

N} and ΦN : N ×M → en be two one-to-one maps, then:

1. for any marker id occurring in a state of the computation sequence τ such
that id matches N((i, j), id?, id!), we have:

• i ∈LI =⇒

{

either id? = ε,

or id? matches N((i′, j′), id’?, id’!) where i′ ∈LI;

• j ∈LI =⇒

{

either id! = ε,

or id! matches N((i′, j′), id’?, id’!) where i′ ∈LI;

2. let id1 and id2 be two markers occurring in a state of the computation se-
quence τ such that ΠΦM

M
(id1) = ΠΦM

M
(id2), then id1 = id2;

3. let c1 and c2 be two names in N ×M occurring in a state of the computa-
tion sequence τ such that ΠΦM ,ΦN

N
(c1) = ΠΦM ,ΦN

N
(c2), then c1 = c2.

C.1. IN THE π-CALCULUS 329

Proof. 1. Prop. (1) can be proved using both the fact that:

(a) if the label i of a thread t is in the set LI, then either its marker is ε ,
or there exists a marker i′ such that the syntactic agent labeled with i′

contains the sub-term labeled with i, and that the marker of the thread
t is necessarily of the form N((i′, j), id?, id!) where i′ ∈LI,

(b) a marker of the form N((i, j), id?, id!) can be created only when a
thread the label of which is i and the marker of which is id? inter-
acts with a thread the label of which is j and the marker of which is
id!;

2. Prop. (2) can be proved by induction over the height of the markers; this
induction only uses Prop. (1) and the fact that the subtree of a marker oc-
curring in a state of τ necessarily occurs in a previous state of τ;

3. Prop. (3) follows from Prop. (2) and the fact that whenever a channel name
has been opened by a restriction in SI, its marker is also the marker of a
former thread the label of which is in LI.

Theorem 6.2.9. (Completeness) Let τ ′ be the non standard computation se-
quence of an open system SI, that we denote by:

(C0,U0,F0)
(i1, j1)
. . .

(in, jn)
(Cn,Un,Fn),

where (C0,U0,F0) ∈ C o
0 (SI).

Then, there exists:

• a closed system S∗ = (ν c)(SI(ci1, . . . ,cin) |Sc(c j1, . . . ,c jl)),

• two one-to-one functions ΦN and ΦM ,

• a non standard computation sequence τ of the system S∗,

such that Πτ(SI,ΦM ,ΦN)(τ) = τ ′.

We will prove the following stronger result:

Proposition C.1.5. Let τ ′ be the non standard computation sequence of an open
system SI, defined as follows:

(A0,U0,F0)
(i1, j1)
. . .

(in, jn)
(An,Un,Fn),

where (A0,U0,F0) ∈ C o
0 (SI). Let LI ⊆L be the subset of the labels occurring in

SI and NI ⊆N be the subset of the names occurring in name restrictions of SI.
Then there exists:

330 APPENDIX C. CONTEXT APPROXIMATION

• a closed system of the form:

S∗ = (ν unsafe)(ν x1) . . .(ν xp)
(unsafe![x1] | . . . | unsafe![xp] |SI(xi1, . . . ,xin) |Sc(unsafe))

where

Sc =(ν new)
(new | repli
| spy0 | . . . | spyn

| spoil0 | . . . | spoiln
| new![]
)

and

– new := ∗new?[]((ν channel)(unsafe![channel] | new![]))

– repli := ∗unsafe?[x](unsafe![x] | unsafe![x])

– spyi := ∗unsafe?[c]c?[y1, . . . ,yi](unsafe![y1] | . . . | unsafe![yi])

– spoili := ∗unsafe?[c]unsafe?[x1] . . .unsafe?[xi]c![x1, . . . ,xi]

• a non standard computation sequence τ of the closed system S∗,

• two into maps ΦN and ΦM , such that:

– ΦN :

{

(y, idy)

∣

∣

∣

∣

y 6∈NI, ∃(P, id,E) ∈
⋃

Ci, lab(P) ∈LI,
∃x ∈ fn(P), E(x) = (y, idy)

}

→ en;

– ΦM :

{

id

∣

∣

∣

∣

∃(P,N((i,0), id?, id!),E) ∈
⋃

Ci,
lab(P) ∈LI

}

→{tn |n ∈ N}.

such that:

1. Πτ(SI,ΦM ,ΦN)(τ) = τ ′1;

2. for any unsafe name (x, idx) ∈ Un, that occurs in a state of τ ′, there ex-
ists a thread in the last state of τ of the form (unsafe![y], id,E) with
ΠΦM ,ΦN

N
(E(y)) = (x, idx).

1we make abusively no distinction neither between ΦN and any one-to-one extension of it
defined over the set N ×M , nor between ΦM and any one-to-one extension of it defined over
the set M

C.1. IN THE π-CALCULUS 331

Proof. We prove Prop. C.1.5 by induction on the length of the computation se-
quence τ ′:

1. in the case that τ ′ is of the form (A0,U0,F0) ∈ C o
0 (SI), there exists

E ∈ fn(SI)→ en such that A0 ∈ β (SI,ε,E); we also have U0 = en and
F0 = {tn | n ∈ N};
we take ΦM : /0 → {tn | N}; we denote by e1,. . . ,eu the elements of
the set {E(x) | x ∈ fn(SI)}, we take ΦN : {cik | k ∈ J1;uK} → en, such
that for any k ∈ J1;uK, we have ΦN (cik) = ei; thanks to Lem. C.1.1,
we have β (SI,ε,E) = ΠΦM ,ΦN

C (β (S∗,ε,Φ−1
N
◦E)); so we may choose

C0 ∈ β (S∗,ε,Φ−1
N
◦E) such that A0 = ΠΦM ,ΦN

C (C0);

• we have (A0,U0,F0) = Πτ(SI,ΦM ,ΦN)(C0);

• for any unsafe name (x, idx) ∈ U0 occurring in A0, there ex-
ists by construction a thread of the form (unsafe![y], id,E) with
ΠΦM ,ΦN

N
(E(y)) = (x, idx);

2. in the case that τ ′ is of the form (A0,U0,F0) . . .(Ap−1,Up−1,Fp−1)
λ
#

(Ap,Up,Fp); we assume by the induction hypothesis that there exist:

• a non standard computation sequence τ = C0 . . .Cn of the closed sys-
tem S∗ such that C0 ∈ C e

0 (S∗),

• two into maps ΦN and ΦM , such that:

– ΦN :







(y, idy)

∣

∣

∣

∣

∣

∣

y 6∈NI, ∃(P, id,E) ∈
⋃

Ci,
lab(P) ∈LI,
∃x ∈ fn(P), E(x) = (y, idy)







→ en,

– ΦM :

{

id

∣

∣

∣

∣

∃(P,N((i,0), id?, id!),E) ∈
⋃

Ci,
lab(P) ∈LI

}

→{tn |n ∈ N};

such that:

• Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0) . . .(Ap−1,Up−1,Fp−1);

• for any unsafe name (x, idx) ∈ Un that occurs in a state of τ ′, there
exists a thread in the last state of τ of the form (unsafe![y], id,E) with
ΠΦM ,ΦN

N
(E(y)) = (x, idx).

We proceed by case analysis according to the kind of the next computation
step:

(a) in the case that (Ap−1,Up−1,Fp−1)
λ
(Ap,Up,Fp) is a communi-

cation rule: there exist two threads t? = (y?i[y]P, id?,E?) and t! =

332 APPENDIX C. CONTEXT APPROXIMATION

(x! j[x]Q, id!,E!) with E?(y) = E!(x), two continuations Cont? ∈
β (P, id?,E?[yi 7→ E!(xi)]) and Cont! ∈ β (Q, id!,E!) such that Ap =

(Ap−1 \ {t?; t!})∪Cont? ∪Cont!; moreover, we have ΠΦM ,ΦN

C (Cn) =

Ap−1, so by definition of ΠΦM ,ΦN

C the state Cn contains two threads

t ′? = (y?i[y]P, id′?,E
′
?) and t ′! = (x! j[x]Q, id′!,E

′
!) with ΠΦM

M
(id′?) = id?,

ΠΦM

M
(id′!) = id!, ΠΦM ,ΦN

N
◦E ′? = E? and ΠΦM ,ΦN

N
◦E ′! = E!; thanks

to Lem. C.1.1, there also exist Cont′? ∈ β (P, id′?,E
′
?[yk 7→ E ′!(xk)])

and Cont′! ∈ β (Q, id′!,E
′
!) such that ΠΦM ,ΦN

C (Cont′?) = Cont? and

ΠΦM ,ΦN

C (Cont′!) = Cont!;
we set Cn+1 = (Cn \{t ′?; t ′!})∪Cont′?∪Cont′!;

• thanks to Lem. C.1.4.(3), since E?(y) = E!(x), we have E ′?(y) =

E ′!(x); so we have Cn
λ
−→e Cn+1; moreover ΠΦM ,ΦN

C (Cn+1) = Ap;

so Πτ(SI,ΦM ,ΦN)(C0 . . .Cn
λ
−→ e Cn+1) = τ ′;

• the last computation step of τ ′ does not involve unsafe name

and the computation step Cn
λ
−→ e Cn+1 does not consume any

thread of the form (unsafe![y], id,E); so by the induction hypoth-
esis, we get that for any unsafe name (x, idx) ∈Un occurring in a
state of τ ′, there exists a thread in the last state of τ of the form
(unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = (x, idx);

(b) in the case that (Ap−1,Up−1,Fp−1)
λ
(Ap,Up,Fp) is a resource

replication; there are two threads t? = (∗y?i[y]P, id?,E?) and t! =
(x! j[x]Q, id!,E!) with E?(y) = E!(x), two continuations Cont? ∈
β (P,N((i, j), id?, id!),E?[yi 7→ E!(xi)]) and Cont! ∈ β (Q, id!,E!) such
that Ap = (Ap−1 \ {t!}) ∪ Cont? ∪ Cont!; moreover, we have

ΠΦM ,ΦN

C (Cn) = Ap−1, so by definition of ΠΦM ,ΦN

C there exist two
threads t ′? = (∗y?i[y]P, id′?,E

′
?) and t ′! = (x! j[x]Q, id′!,E

′
!) in Cn with

ΠΦM

M
(id′?) = id?, ΠΦM

M
(id′!) = id!, ΠΦM ,ΦN

N
◦E ′? = E? and ΠΦM ,ΦN

N
◦

E ′! = E!; moreover we have ΠΦM

M
(N((i, j), id′?, id

′
!)) = N((i, j), id?, id!);

thanks to Lem. C.1.1, there also exist two continuations Cont′! ∈
β (Q, id′!,E

′
!) and Cont′? ∈ β (P,N((i, j), id′?, id

′
!),E

′
?[yk 7→ E ′!(xk)]) such

that the properties ΠΦM ,ΦN

C (Cont′?) = Cont? and ΠΦM ,ΦN

C (Cont′!) =
Cont! are satisfied;
we set Cn+1 = (Cn \{t ′!})∪Cont′?∪Cont′!:

• thanks to Lem. C.1.4.(3), since E?(y) = E!(x), we have E ′?(y) =

E ′!(x); so we have Cn
λ
−→e Cn+1; moreover ΠΦM ,ΦN

C (Cn+1) = Ap;

so Πτ(SI,ΦM ,ΦN)(C0 . . .Cn
λ
−→ e Cn+1) = τ ′;

C.1. IN THE π-CALCULUS 333

• the last computation step of τ ′ does not involve unsafe name

and the computation step Cn
λ
−→ e Cn+1 does not consume any

thread of the form (unsafe![y], id,E); so by the induction hypoth-
esis, we get that for any unsafe name (x, idx) ∈Un occurring in a
state of τ ′, there exists a thread in the last state of τ of the form
(unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = (x, idx);

(c) in the case that (Ap−1,Up−1,Fp−1)
λ
(Ap,Up,Fp) is a spied commu-

nication: there is a thread t! = (x! j[x1, . . . ,xk]Q, id!,E!) with E!(x) ∈
Up−1, a continuation Cont! ∈ β (Q, id!,E!) such that Ap = (Ap−1 \
{t!})∪Cont!, and Up = Up−1∪{E!(xi) | i∈ J1;kK}; moreover, we have
ΠΦM ,ΦN

C (Cn) = Ap−1, so there exists a thread t ′! = (x! j[x]Q, id′!,E
′
!) in

Cn with ΠΦM

M
(id′!) = id! and ΠΦM ,ΦN

N
◦E ′! = E!; thanks to Lem. C.1.1,

there also exists Cont′! ∈ β (Q, id′!,E
′
!) such that ΠΦM ,ΦN

C (Cont′!) =
Cont!; thanks to the induction hypothesis, there exists a thread
tc = (unsafe![c], idc,Ec) in Cn, such that ΠΦM ,ΦN

N
(Ec(c)) = E!(x);

we first use the resource repli to replicate the thread tc: we ob-
tain a configuration Cn+1 = Cn \ {tc} ∪ {t ′c; t ′′c } where t ′c matches
(unsafe![c], id’c,E ′c) and t ′′c matches (unsafe![c], id′′c ,E

′′
c) with E ′c(c) =

E ′′c (c) = Ec(c); we then replicate the resource spyk by consuming the
thread t ′c, and obtain the configuration Cn+2 =Cn+1 \{t ′c}∪{ts}, where
ts matches (c?[y1, . . . ,yk](unsafe![y1] | . . . | unsafe![yk]), ids,Es) with
Es(c)=Ec(c); we have ΠΦM ,ΦN

N
(Es(c)) = ΠΦM ,ΦN

N
(E ′!(x)); so thanks

to Lem. C.1.4.(3), we deduce that Es(c) = E ′!(x); thus we perform the
communication between the thread t ′! and ts to obtain the configura-
tion Cn+3 = (Cn+2 \ {ts; t ′!})∪Cont′!∪{t

′
ui
| i ∈ J1;kK}, where each t ′ui

matches (unsafe![yi], id′i,E
′
i) with E ′i(yi) = E ′!(xi).

• the computation sequence Cn −→ e
∗ Cn+2 does not in-

volve any thread of SI; by Lem. C.1.2, we have
ΠΦM ,ΦN

C (Cn+2) = Ap−1; we conclude that ΠΦM ,ΦN

C (Cn+3) =

Ap; moreover Cn+2
i′, j
−→ e Cn+3 with i′ 6∈ LI; so

Πτ(SI,ΦM ,ΦN)(C0 . . .Cn+2
(i′, j)
−→ e Cn+3) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ:

– in the case that (u, idu) = E!(x), t ′′c is a thread of Cn+3 and
matches (unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = E!(x);

– in the case that (u, idu) = E!(xi), tui is a thread of Cn+3 and
matches (unsafe![yi], id,E) which satisfies ΠΦM ,ΦN

N
(E(yi))=

ΠΦM ,ΦN

N
(E ′!(xi)); so ΠΦM ,ΦN

N
(E(yi)) = E!(xi);

334 APPENDIX C. CONTEXT APPROXIMATION

– otherwise there is necessarily a thread in Cn which matches
(unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = (x, idx) and this

thread is still in Cn+3.

(d) in the case that (Ap−1,Up−1,Fp−1)
λ
(Ap,Up,Fp) is a spoiled com-

munication: there is a thread t? = (y?i[y1, . . . ,yk]P, id?,E?) with E?(y)∈
Up−1 (we set (u0, id0) = E?(y)), there is a channel name (ui, idi) ∈
Up−1 for each i ∈ J1;kK, and a continuation Cont? ∈ β (P, id?,E?[yi 7→
(ui, idi)]) such that Ap = (Ap−1 \ t?)∪Cont?, and Up = Up−1; more-
over, we have ΠΦM ,ΦN

C (Cn) = Ap−1, so there exists a thread t ′? =

(y? j[y]P, id′?,E
′
?) in Cn with ΠΦM

M
(id′?) = id? and ΠΦM ,ΦN

N
◦ E ′? =

E?; we first deal with the names that the context sends into the
system SI for the first time: for each element (ui, idi) of the set
{(ui, idi) | i ∈ J1;kK} that does not occur in any state of τ , we cre-
ate a new unsafe name using the resource new, as the result we
get a fresh name (channel, idchani) and, since (ui, idi) is necessarily
in en, we extend the definition of ΦN with ΦN (channel, idchani) =
(ui, idi); we obtain a state Cn+1 and an updated into map ΦN ,
such that there exists a thread tci = (unsafe![c], idci ,Eci) in the state
Cn+1 such that ΠΦM ,ΦN

N
(Eci(c)) = (ui, idi), for each i ∈ J0;kK; we

then use the resource repli to replicate the threads tci until we ob-
tain a configuration Cn+2 = (Cn+1 \ {tci | i ∈ J0;kK}) ∪ {t ′ci

| i ∈
J0;kK}∪ {t ′′ci

| 0 ∈ J1;kK} where t ′ci
matches (unsafe![c], id′ci

,E ′ci
) and

t ′′ci
matches (unsafe![c], id′′ci

,E ′′ci
) with E ′ci

(c) = E ′′ci
(c) = Eci(c) such

that the threads t ′ci
and t ′′ci

are all distinct from each other; we then
replicate the resource spoilk by consuming the thread t ′c0

, and ob-
tain the configuration Cn+3 = (Cn+2 \ {t ′c0

})∪{ts}, where ts matches
(unsafe?[x1] . . .unsafe?[xk]c![x], ids,Es) with Es(c) = Ec0(c); we then
use successively the threads t ′ci

to obtain a configuration Cn+4 =
(Cn+2 \ {t ′ci

| i ∈ J0;kK})∪ {tm}, where tm matches (x0![x], idm,Em)
with Em(xi) = E ′′ci

(c), for each i ∈ J0;kK; moreover the thread t ′? =

(y? j[y]P, id′?,E
′
?) is in Cn+4 with ΠΦM

M
(id′?) = id?, ΠΦM ,ΦN

N
◦ E ′? =

E?, and ΠΦM ,ΦN

N
(E ′′ci

(c)) = (ui, idi), for each i ∈ J1;kK; thanks to
Lem. C.1.1, there also exists Cont′? ∈ β (P, id′?,E

′
?[yi 7→ E ′′ci

(c)]) such

that ΠΦM ,ΦN

C (Cont′?) = Cont?; thus we perform the communication
between the thread t ′? and tm to obtain the configuration Cn+5 =
Cn+4 \{t ′?; tm}∪Cont′?.

• the computation sequence Cn −→ e
∗ Cn+4 does not involve thread

of SI, by Lem. C.1.2, we have ΠΦM ,ΦN

C (Cn+4) = Ap−1; then we

C.1. IN THE π-CALCULUS 335

conclude that ΠΦM ,ΦN

C (Cn+5) = Ap; moreover Cn+4
i, j′
−→ e Cn+5

with j′ 6∈LI; so Πτ(SI,ΦM ,ΦN)(C0 . . .Cn+4
(i, j′)
−→ e Cn+5) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ:

– in the case that (u, idu) = (ui, idi) with i ∈ J0;kK, t ′′ci

is a thread of Cn+5 and matches (unsafe![c], id,E) with
ΠΦM ,ΦN

N
(E(c)) = (ui, idi);

– otherwise there is necessarily a thread in Cn which matches
(unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = (x, idx) and this

thread is still in Cn+5.

(e) in the case that (Ap−1,Up−1,Fp−1)
λ
(Ap,Up,Fp) is a spoiled repli-

cation: there is a thread t? = (∗y?i[y1, . . . ,yk]P, id?,E?) with E?(y) ∈
Up−1 (we set (u0, id0) = E?(y)), there are several channel names
(ui, idi) ∈ Up−1, for i ∈ J1;kK, a marker id! ∈ Fp1 and a continua-
tion Cont? ∈ β (P,N((i,0), id?, id!),E?[yi 7→ (ui, idi)]), such that Ap =
Ap−1 ∪Cont!, Up = Up−1 and Fp = Fp−1 \ {id!}; moreover, we have

ΠΦM ,ΦN

C (Cn) = Ap−1, so there exists a thread t ′? = (∗y? j[y]P, id′?,E
′
?)

in Cn with ΠΦM

M
(id′?) = id? and ΠΦM ,ΦN

N
◦E ′? = E?; we first deal with

the names that the context sends into the system SI for the first time:
for each element (ui, idi) of the set {(ui, idi) | i ∈ J1;kK} that does not
occur in any state of τ , we create a new unsafe name using the re-
source new, as the result we get a fresh name (channel, idchani) and,
since (ui, idi) is necessarily in en, we extend the definition of ΦN with
ΦN (channel, idchani)= (ui, idi); we obtain a state Cn+1 and an updated
into map ΦN , such that there exists a thread tci = (unsafe![c], idci,Eci)

in the state Cn+1 such that ΠΦM ,ΦN

N
(Eci(c)) = (ui, idi), for each i ∈

J0;kK; we then use the resource repli to replicate the threads tci until
we obtain a configuration Cn+2 = (Cn+1 \ {tci | i ∈ J0;kK})∪{t ′ci

| i ∈
J0;kK}∪{t ′′ci

| 0 ∈ J1;kK} where t ′ci
matches (unsafe![c], id’ci ,E

′
ci
) and

t ′′ci
matches (unsafe![c], id”ci ,E

′′
ci
) with E ′ci

(c) = E ′′ci
(c) = Eci(c), such

that the threads t ′ci
and t ′′ci

are all distinct from each other; we then
replicate the resource spoilk by consuming the thread t ′c0

, and ob-
tain the configuration Cn+3 = Cn+2 \ {t ′c0

} ∪ {ts}, where ts matches
(unsafe?[x1] . . .unsafe?[xk]c![x], ids, Es) with Es(c) = Ec0(c); we then
use successively the threads t ′ci

to obtain a configuration Cn+4 =
(Cn+2 \ {t ′ci

| i ∈ J0;kK})∪{tm}, where tm matches (x0!sk [x], idm,Em)
with Em(xi) = E ′′ci

(c), for all i ∈ J0;kK; by Prop. 2.2.1 it is the
first time this syntactic component is tagged with the marker idm;
so we extend the definition of ΦM with ΦM (sk, idm) = id!); thus

336 APPENDIX C. CONTEXT APPROXIMATION

we have ΠΦM

M
(N((i,sk), id

′
?, idm)) = N((i,0), id?, id!); moreover the

thread t ′? = (y? j[y]P, id′?,E
′
?) is in Cn+4 with ΠΦM ,ΦN

N
◦E ′? = E?, and

ΠΦM ,ΦN

N
(E ′′ci

(c)) = (ui, idi), for each i ∈ J1;kK; by Lem. C.1.1, there
also exists Cont′? ∈ β (P,N((i,sk), id

′
?, idm),E ′?[yi 7→ E ′′ci

(c))]) such that

ΠΦM ,ΦN

C (Cont′?) = Cont?; thus we perform the communication be-
tween the thread t ′? and tm to obtain the configuration Cn+5 = Cn+4 \
{tm}∪Cont′?.

• the computation sequence Cn −→ e
∗ Cn+4 does not involves thread

of SI, by Lem. C.1.2, we have ΠΦM ,ΦN

C (Cn+4) = Ap−1; we con-

clude that ΠΦM ,ΦN

C (Cn+5) = Ap; moreover Cn+4
i, j′
−→ e Cn+5 with

j′ 6∈LI; so Πτ(SI,ΦM ,ΦN)(C0 . . .Cn+4
(i, j′)
−→ e Cn+5) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ:

– in the case that (u, idu) = (ci, idci , for i ∈ J0;kK, t ′′ci
is a

thread of the state Cn+5 and matches (unsafe![c], id,E) where
ΠΦM ,ΦN

N
(E(c)) = (ui, idi);

– otherwise there is necessarily a thread in Cn which matches
(unsafe![y], id,E) with ΠΦM ,ΦN

N
(E(y)) = (x, idx) and this

thread is still in Cn+5.

C.2 Generalization

The following lemma establishes some soundness conditions:

Lemma C.2.1. Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non standard computation se-
quence, with C0 ∈ C e

0 (S). We consider the following computation sequence:

Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0)...(Ap,Up,Fp).

Then, ∀(P, id,E) ∈Cn with lab(P) 6∈LI:

1. ∀x ∈ fn(P), we have ΦN (E(x)) ∈Un;

2. ΦM (lab(P), id) ∈ Fn.

Proof. These two properties are easily proved by induction on n.

We prove Thm. 6.3.14 that establishes the soundness of the generic context
independent semantics.

C.2. GENERALIZATION 337

Theorem 6.3.14. (Soundness) Let τ = C0 . . .Cn be a non standard computation
sequence of a closed system that encloses the open system SI, with C0 ∈ C0. Then
Πτ(SI,ΦM ,ΦN)(τ) = (A0,U0,F0) . . .(An,Un,Fn) is a non standard computation
sequence of the open system SI and (A0,U0,F0) ∈ C o

0 .

Proof. Soundness is ensured by construction: we prove Thm. 6.3.14 by induction
on the length of the computation sequence:

1. We first prove that (A0,U0,F0) ∈ C o
0 (S): we have C0 ∈ C0; so there

exists continuation ∈ inits such that C0 = launch(continuation,ε, /0). By
definition of launch, we have C0 = {(p,ε, [x 7→ (Es(x),ε)]) | (p,Es) ∈

continuation}. Moreover, we have A0 = ΠΦM ,ΦN

C (C0) = {(p,ε, [x 7→

ΠΦM ,ΦN

L×M
(()Es(x),ε)]) | (p,Es) ∈ continuation, p ∈ L I

p}. So, A0 =

ΠΦM ,ΦN

C (C0) = {(p,ε,E(Es)]) | (p,Es) ∈ continuation, p ∈L I
p}, where:

E(Es) =











Dom(Es) → L ×M

x 7→ (Es(x),ε) if Es(x) ∈NI

x 7→ ΦN ((Es(x),ε)) otherwise.

So, since ΦN : (N ×M → en), we obtain that there exists E0 ∈ V0→ en
such that

A0 ∈ launch({(p,Es|Dom(Es)∩NI
) ∈ continuation | p ∈L

I
p},ε,E0).

Then, since U0 = en and F0 = {tn | n ∈ N}, we obtain, by definition of C o
0 ,

that (A0,U0,F0) ∈ C o
0 .

2. We now assume that Thm. 6.3.14 is satisfied for any non standard compu-
tation sequence τ containing at most q computation steps, and we prove
that it is also satisfied for any non standard computation sequence τ of

containing q + 1 computation steps: let τ = C0 . . .Cq
λ
−→ Cq+1 be a non

standard computation sequence of length q+1; by the induction hypothesis
Πτ(SI,ΦM ,ΦN)(C0 . . .Cq) is a non standard computation sequence of the
open system SI, which we can denote:

(A0,U0,F0) . . .(Aq+1,Uq+1p,Fq+1).

We denote λ = (R,(tk,pik,Ctk),τk), we denote
(tk)1≤k≤n = (pk, idk,Ek)1≤k≤n ∈ Cq and (pik)1≤k≤n =
(sk,(parameterk

l)l,(bdk
l)k,l,constraintsk,continutationk)1≤k≤n. We de-

note R = (n,components,compatibility,v-passing,broadcast).

We have:

338 APPENDIX C. CONTEXT APPROXIMATION

(a) ∀k ∈ J1;nK, tk ∈Cq;

(b) ∀k ∈ J1;nK, exhibit(tk,pik);

(c) ∀k ∈ J1;nK, components(k) = sk;

(d) sync((t1, . . . , tn),(parameterk
l)k,l,constraints) is satisfied.

Moreover, Cq+1 = subs(τ,Cq \ removed_threads∪new_threads) where:

• τ ∈ subs_choice
(

(

tk
)

k ,
(

parameterk
l

)

k,l ,broadcast
)

;

• removed_threads = remove
(

(

tk, type(sk)
)

1≤k≤n

)

;

• new_threads =
⋃

1≤k≤n launch
(

Ctk, id
k
,E

k
)

,

with ∀k ∈ J1;nK:

– Ctk ∈ continuationk;

– id
k
= marker

(

type(sk),
(

pk′ , idk′ ,Ek′
)

1≤k′≤n
,k

)

;

– E
k

is defined as:
vpassing(k,(tk′)1≤k′≤n,(bdk

l)l,(parameterk′
l)k′,l,communications).

• ∀k ∈ J1;n;K, αk = (tk,pik,Ctk)

We denote by Ks the set {i ∈ N | 1≤ i≤ n, t i ∈L I
p} and by Kc = J1;nK\

Ks. For any k ∈ J1;nK, we define:

(a) tk =

{

ΠΦM ,ΦN

t (tk) if k ∈Ks

(0,ΦM (pk, idk), [Si 7→ Ek(parameterk
i)]) otherwise

(b) pi
k
=

{

pik if k ∈Ks

(sk,(Si),(bdk
l)k,l, /0,{ /0}) otherwise

;

(c) ctk =

{

/0 if k ∈Ks

Ctk otherwise
.

We have:

(a) for any k ∈ Ks, ΠΦM ,ΦN

t (tk) ∈ Aq (since pk ∈ L I
p), moreover,

exhibit(ΠΦM ,ΦN

t (tk),pik) (since ΠΦM ,ΦN

L×M
is a bijection).

(b) for any k,k′ ∈ Kc, we have tk ∈∈ CONTEXT_THREAD(U,F) (by

Lem. C.2.1), we have CONTEXT_PARTIAL_INT(pi
k
) (by Def.). we

have idk = id′k =⇒ k = k′ by marker unambiguity, and since ΦM is a
bijection.

C.2. GENERALIZATION 339

(c) ∀k ∈ J1;nK, components(k) = sk;

(d) sync((t1, . . . , tn),(parameterk
l)k,l,constraints) is satisfied.

So the computation step is enabled in the context independent seman-
tics. Then we can apply projection over the sustitution τ . This de-
fine a computation step in the context independent semantics such that:

(Ap,Up,Fp)
(R,(tk,pik,ctk),tau)

(ΠΦM ,ΦN

C (()Cp+1),U ′,F ′). The set U ′ ob-

tained by applying the substitution ΠΦM ,ΦN

SUBS (τ) over the union between U
and the set of values binds to variable of thread context during the interac-
tion. Thus, U ′ = Up+1, the union of U and the channel spied by the system,
by using communication. Moreover, by definition, we get that F ′ = Fp+1.

Appendix D

Abstraction proves

D.1 Environment abstraction

D.1.1 Control flow analysis

D.1.1.1 Atom abstraction

Theorem 8.2.1. These primitives satisfy the soundness assumptions of
Sect. 8.1.1.1.

Proof. Let V ∈℘(V) be a finite set of variables.

• initial environment abstraction: We want to prove that {(ε, /0)} ⊆ γ /0(ε]
/0).

We have ε]
/0 = (εM

1 , /0). Then by soundness of εM
1 , we have ε ∈ γM

1 (εM
1).

Moreover, ∀x ∈ /0, ∀y ∈L , /0(x) = (y, idy) =⇒ (id, idy) ∈ γM
2 (/0(x,y)). We

conclude that {(ε, /0)} ⊆ γ /0(ε]
/0).

• abstract restriction: Let x be a variable in V \V , let l be a label in L and
A = (id], f) be an abstract element in Atom]

V , we want to prove that:

{

(id,E) ∈ EnvM

V∪{x}

∣

∣

∣

∣

(id,E|V) ∈ γV (A),
E(x) = (l, id)

}

⊆ γV∪{x}(ν](x, l,A)).

We denote (id, f) = ν](x, l,A). By definition of ν], we have id = id and

f (y,m) =











f (y,m) if y 6= x

⊥M
2 if x = y and m 6= l

DIAG(PAIR(a,a)) otherwise

. Let (id,E) ∈ EnvM

V∪{x}

be a pair such that (id,E|V) ∈ γV (A) and E(x) = (l, id). By definition of
γV , we have id ∈ γM

1 (id]) and for any x ∈V , E(x) = (y, idy) =⇒ (id, idy) ∈

341

342 APPENDIX D. ABSTRACTION PROVES

γM
2 (f (x,y)). This way, we have id ∈ γM

1 (id
]
). Moreover, let y ∈ V ∪{x}

be a variable. We denote E(y) = (m, idy). We want to prove that (id, idy) ∈
γM

2 (f (y,m)).

1. in the case when y ∈V , we have E(y) = E|V (y) and f (y,m) = f (y,m).
By definition of γM

V , we have (id, idy) ∈ f (y,m). so (id, idy) ∈
γM

2 (f (y,m)).

2. in the case when y = x, we have E(y) = (l, id). By definition, we have
f (y,m) = DIAG(PAIR(a,a)). Then we have id ∈ γM

1 (a). By defini-
tion of PAIR, we have (id, idy) ∈ PAIR(a,a). Thus since id = idy, by
definition of DIAG, we have (id, idy) ∈ f (y,m).

We conclude that
{

(id,E) ∈ EnvM
V∪{x}

∣

∣

∣

∣

(id,E|V) ∈ γV (A),
E(x) = (l, id)

}

⊆ γV∪{x}(ν](x, l,A)).

• abstract garbage collection: Let X be a finite subset of V and A be an
element of Atom]

V , the abstract projection, we want to prove that:

{(id,E|V∩X) ∈ EnvM
X | (id,E) ∈ γV (A)} ⊆ γV∩X(GC](X ,A)).

We denote A = (id], f). We have GC](X ,A) = (id], f|(V∩X)×L). Let
(id,E) ∈ γM

V (A) be a pair. We want to prove that (id,E|V∩X) ∈

γM
V∩X(GC](X ,A)). We have id ∈ γM

1 (id]), by definition of γM
V . Then for

any x ∈V ∩X , we denote E|V∩X(x) = (l, idx). We also have E(x) = (l, idx),
so by definition of γM

V we conclude that (id, idx) ∈ γM
2 (f (x, l)). Thus

(id, idx) ∈ γM
2 (f(V∩X)×L (x, l).

D.1.1.2 Molecule abstraction

Theorem 8.2.2. These primitives satisfy the soundness assumptions of Sect. 8.1.2.

Proof. We prove the soundness of each primitive as follows:

• abstract injection: Let V be a finite set of variables. We want to prove that:

∀A ∈ Atom]
V , γV (A)⊆ γ(V)(INJ](A)).

Let (id,E) be an element in γV (A) We have INJ](A) = ([1 →
A], /0, /0, /0, [/0L → /0]

M
]).

D.1. ENVIRONMENT ABSTRACTION 343

1. For any i ∈ {1}, we have (id,E) ∈ γV ([1→ A](i)).

2. We introduce the map σ that interprets the variables as follows:

σ :

{

(I,1)→ (p, id)

(a,1)→ E(a).

Then

– for any C ∈ /0, we have:

∀x,y ∈C, σ(x) = σ(y);

– for any (C1,C2) ∈ /0, we have:

∀x ∈C1,y ∈C2, σ(x) 6= σ(y).

3. we have γM
/0 ([/0L → /0]

M
](/0L)) = γM

/0 (/0]
M

) =>M

• abstract product: Let m and n be two integers. Let (Ui) ∈ (℘(V))m

and (Vi) ∈ (℘(V))n be two tuples of interfaces. We denote by (Wi) ∈
(℘(V))m+n the tuple of interfaces that is defined by Wi =Ui when 1≤ i≤m
and Wi+m = Vi when 1 ≤ i ≤ n. Let A = (fA,SA,PA,EA,rA) and B =

(fB,SB,PB,EB,rB) be two abstract elements such that A ∈Molecule]
(Ui)1≤i≤m

and B ∈Molecule]
(Vi)1≤i≤n

. We write A•B = (fC,SC,PC,ES,rC). We want to
prove that:

{

(ei)i∈J1;m+nK

∣

∣

∣

∣

(ei)1≤i≤m ∈ γ(Ui)(A)

(ei+m)1≤i≤n ∈ γ(Vi)(B)

}

⊆ γ(Wi)(A•B).

Let (ei)i∈J1;m+nK such that:

(ei)1≤i≤m ∈ γ(Ui)(A)

(ei+m)1≤i≤n ∈ γ(Vi)(B).

For each i ∈ J1;m+nK, we write ei = (idi,Ei).

1. Let k ∈ J1;m+nK be an integer.

– If k ≤ m then we have (ei)1≤i≤m ∈ γ(Ui)(A); so ek ∈ γUk(fA(k));
since both fA(k) = fC(k) and Uk = Wk, we get that ek ∈ γWk fC(k).

– If k > m then we have (ei+m)1≤i≤n ∈ γ(Vi)(A); so ek ∈ γVk−m(fB(k−
m)); since both fB(k−m) = fC(k) and Vk−m = Wk, we get that
ek ∈ γWk fC(k).

344 APPENDIX D. ABSTRACTION PROVES

So ek ∈ γWk fC(k).

2. We introduce the map σA that interprets the variables as follows:

σA :

{

(I,k)→ (pk, idk)

(a,k)→ Ek(a).

We introduce the map σB that interprets the variables as follows:

σB :

{

(I,k)→ (pk+m, idk+m)

(a,k)→ Ek+m(a).

We introduce the map σC that interprets the variables as follows:

σC :

{

(I,k)→ (pk, idk)

(a,k)→ Ek(a).

We introduce σ B→C ∈ B→ {(x,k + m) | x ∈ Vk ∪ {I}} and σC→B ∈
{(x,k +m) | x ∈Vk ∪{I}}→ B as follows:

σ B→C((x,k)) = (x,k +n), ∀x ∈Vk∪{I};
σC→B((x,k +n)) = (x,k), ∀x ∈Vk∪{I}.

Then:

(a) Let C ∈ PC be an equivalence class. Let x,y be two variables in C.
If C ∈ PA, then we have σC(x) = σA(x) = σA(y) = σC(y), since
(pk, idk,Ek)1≤k≤m ∈ γ(Ui)(A). Otherwise, there exists C′ ∈ PB

such that C = {(x,k + m) | (x,k) ∈ C′}. Moreover, we denote
x = (x′,kx +m) and y = (y′,ky +m). We have σC(x) = σB(x′,kx) =
σB(y′,ky) = σC(y), since (idk+m,Ek+m)1≤k≤n ∈ γ(Vi)(B).

(b) Let (C1,C2)∈PC be a disequality constraint. Let x∈C1 and y∈C2

be two variables. If (C1,C2) ∈ EA, then we have σC(x) = σA(x) 6=
σA(y) = σC(y), since (pk, idk,Ek)1≤k≤m ∈ γ(Ui)(A). Otherwise,
there exists (C′1,C

′
2) ∈ EB such that C1 = {(x,k+m) | (x,k) ∈C′1}

and C2 = {(x,k + m) | (x,k) ∈ C′2}. Moreover, we denote x =
(x′,kx + m) and y = (y′,ky + m). We have σC(x) = σB(x′,kx) 6=
σB(y′,ky) = σC(y), since (idk+m,Ek+m)1≤k≤n ∈ γ(Vi)(B).

3. Let us introduce the function t ∈ PC → L that is defined by
t(C) = l when there exists (a,k) ∈ C and a marker id such that
Ek(a) = (l, id) or by t(C) = pk when there exists (I,k) ∈ C. The
same way, let us introduce denote by fM ∈ P →M is defined by

D.1. ENVIRONMENT ABSTRACTION 345

fM (C) = idC when there exists (a,k) ∈ C such that Ek(a) = (lC, idC)
or when there exists (I,k) ∈ C such that idk = idC. Then we have
fM |PA

∈ γM
PA

(rA(t|PA
)), we have fM |{(x,k+m) | 1≤k≤n, x∈Vk∪{I}} ◦

σ B→C ∈ γM
PB

([rB(σC→Bt|{(x,k+m) | 1≤k≤n, x∈Vk∪{I}})]).
By definition of the abstract quotient, we have:
QUOTIENT(σ B→C, fM |{(x,k+m) | 1≤k≤n, x∈Vk∪{I}}) ∈

γM

PB
([rB(σC→Bt|{(x,k+m) | 1≤k≤n, x∈Vk∪{I}})]). Then since,

PA ∩ PB = /0, we have: fM |PC
∈ γM

PC
(rA(t|PA

) ⊗

QUOTIENT(σ B→C, fM |{(x,k+m) | 1≤k≤n, x∈Vk∪{I}})). Thus fM |PC
∈

γM
PC

(rC(t)).

• abstract projections: the primitive PROJ] extracts the description of a thread
from the description of a tuple of threads. Let (Vi) ∈ (℘(V))n be an n-tuple
of interfaces. Let A ∈Molecule]

(Vi)1≤i≤n
be an abstract element. Let k be an

integer such that k ≤ n. We want to prove that:
{

(idk,Ek)
∣

∣

∣
∃(idi,Ei)i ∈ γ(Vi)i

(A)
}

⊆ γVk(PROJ](k,A));

We denote A = (f ,S,P,E,r), f (k) = (a0,b0) and PROJ](k,A) = (a,b). For
any X ∈ S, we denote by C(X) the unique class in P such that X ∈ C(X).
Let (idi,Ei)i ∈ γ(Vi)i

(A), we want to prove that: (idk,Ek) ∈ γVk(PROJ](k,A)):

1. Since (idi,Ei)i ∈ γ(Vi)i
(A), we have (idk,Ek)∈ γVk(f (k)). So (idk,Ek)∈

γM
1 (a0).

– In the case when (I,k) 6∈ S: we have a = a0, so idk ∈ γM
1 (a).

– Otherwise, we have (idi,Ei)i ∈ γ(Vi)i
(A). Let us introduce the

function t ∈ P→L that is defined by t(C) = l when there exists
(x, l) ∈C and a marker id such that El(x) = (l, id) or by t(C) = pl

when there exists (I, l) ∈ C. The same way, let us introduce de-
note by fM ∈ P→M is defined by fM (C) = idC when there
exists (a,k) ∈ C such that Ek(a) = (lC, idC) or when there ex-
ists (I,k) ∈ C such that idk = idC. Since, (idi,Ei)i ∈ γ(Vi)i

(A),

we have fM ∈ γM
P (r(t)). We have idk = fM (C(I,k)). By

soundness of the primitive EXTRACT-SG , we have fM (C(I,k)) ∈
EXTRACT-SGC((I,k))(r(t)). Thus idk ∈ EXTRACT-SGC((I,k))(r(t)).
We can conclude that:

idk ∈ γM
1

(

tM
1 {EXTRACT-SGC((I,k))(r(σ)) | σ ∈ P→L }

)

.

Since idk ∈ γM
1 (a0), we conclude by soundness of the abstract

intersection that idk ∈ γM
1 (a).

346 APPENDIX D. ABSTRACTION PROVES

2. Let x ∈ Vk, we denote (y, idx) = Ek(x). We want to prove that
(idk, idx) ∈ γM

2 (b(x,y)).

(a) In the case when (I,k) ∈ S and (x,k) ∈ S:
– We have (idk, idx) ∈ γM

2 (b0(x,y)), since (idk,Ek) ∈
γM
Vk

(f (k));
– Let us introduce the function t ∈ P→ L that is defined by

t(C) = l when there exists (x, l)∈C and a marker id such that
El(x) = (l, id) or by t(C) = pl when there exists (I, l) ∈ C.
The same way, let us introduce denote by fM ∈ P→M is
defined by fM (C) = idC when there exists (a,k) ∈ C such
that Ek(a) = (lC, idC) or when there exists (I,k)∈C such that
idk = idC. We have t(C((x,k))= y. Since, (idi,Ei)i ∈ γ(Vi)i

(A),

we have fM ∈ γM
P (r(t)). We have idk = fM (C(I,k)) and

idx = fM (C(x,k)). By soundness of the primitive
EXTRACT-PR , we have (fM (C((I,k))), fM (C((x,k)))) ∈
EXTRACT-PRC((I,k)),C((x,k))(r(t)). Thus (idk, idx) ∈
EXTRACT-PRC((I,k)),C((x,k))(r(t)). We can conclude that
the pair (idk, idx) is an element of the set γM

2 (A), where A is
defined as follows:

tM
2

{

EXTRACT-PRC((I,k)),C((x,k))(r(σ))

∣

∣

∣

∣

σ ∈ P→L

σ(C((x,k))) = y

}

.

By soundness of the abstract intersection, we
have (idk, idx) ∈ γM

2

(

uM
2 {b0(x,y);A}

)

, where A =

tM
2

{

EXTRACT-PRC((I,k)),C((x,k))(r(σ))

∣

∣

∣

∣

σ ∈ P→L

σ(C((x,k))) = y

}

.

We conclude that (idk, idx) ∈ γM
2 (b(x,y)).

(b) In the case when (I,k) ∈ S and (x,k) 6∈ S:
– We have (idk, idx) ∈ γM

2 (b0(x,y)), since (idk,Ek) ∈
γM
Vk

(f (k));

– We have idk ∈ γM
1 (a) and idx ∈ >

M
1 . Thus, (idk, idx) ∈

γM
2 (PAIR(a,>M

1)).
Since b(x,y) = uM

2 {PAIR(a,>M
1);b0(x,y)}, we conclude that

(idk, idx) ∈ γM
2 (b(x,y)).

(c) In the case when (I,k) 6∈ S and (x,k) ∈ S:
– We have (idk, idx) ∈ γM

2 (b0(x,y)), since (idk,Ek) ∈
γM
Vk

(f (k));
– Let us introduce the function t ∈ P → L that is defined

by t(C) = l when there exists (x, l) ∈ C and a marker id

D.1. ENVIRONMENT ABSTRACTION 347

such that El(x) = (l, id) or by t(C) = pl when there ex-
ists (I, l) ∈ C. The same way, let us introduce denote by
fM ∈ P→M is defined by fM (C) = idC when there ex-
ists (a,k) ∈C such that Ek(a) = (lC, idC) or when there exists
(I,k)∈C such that idk = idC. We have t(C((x,k)) = y. Since,
(idi,Ei)i ∈ γ(Vi)i

(A), we have fM ∈ γM
P (r(t)). We have idx =

fM (C(x,k)). By soundness of the primitive EXTRACT-SG ,
we have fM (C((x,k))) ∈ EXTRACT-SGC((x,k))(r(t)). Thus
idx ∈ EXTRACT-SGC((x,k))(r(t)). We can conclude that the el-
ement idx belongs to the set γM

1 (A), where A is defined as
follows:

tM
1

{

EXTRACT-SGC((x,k))(r(σ))

∣

∣

∣

∣

σ ∈ P→L

σ(C((x,k))) = y

}

.

Moreover, we have idk ∈ γM
1 (a). By soundness of the abstract

pair, we conclude that the pair idk, idx) is an element of the set
γM

2 (A), where A is defined as follows:

PAIR

(

a,tM
1

{

EXTRACT-SGC((x,k))(r(σ))

∣

∣

∣

∣

σ ∈ P→L

σ(C((x,k))) = y

})

By soundness of the abstract intersection, we have
(idk, idx) ∈ γM

2

(

uM
2 {b0(x,y);A}

)

. We conclude that
(idk, idx) ∈ γM

2 (b(x,y)).
(d) In the case when (I,k) 6∈ S and (x,k) 6∈ S:

– We have (idk, idx) ∈ γM
2 (b0(x,y)), since (idk,Ek) ∈

γM
Vk

(f (k));

– We have idk ∈ γM
1 (>M

1) and idx ∈ >
M
1 . Thus, (idk, idx) ∈

γM
2 (PAIR(>M

1 ,>M
1)).

Since b(x,y) = uM
2 {PAIR(>M

1 ,>M
1);b0(x,y)}, we conclude that

(idk, idx) ∈ γM
2 (b(x,y)).

• abstract extension: Let (Vi)1≤i≤n be an n-tuple of interfaces, let X be a
subset of V × J1;nK and let A be an abstract element in Molecule]

(Vi)
. For

each i ∈ J1;nK, we define the set Ui ⊆ V of variables as Vi \{x | (x, i) ∈ X}
and the set Wi ⊆ V of variables as Vi∪{x | (x, i) ∈ X}. For each i such that
1 ≤ i ≤ n, the set Ui is the set of the variables of the i-th interface that are
kept unchanged whereas the set Wi is the set of the variables of the updated
i-th interface. We want to prove that:






(idi,Ei) ∈Π(EnvM
Wi

)

∣

∣

∣

∣

∣

∣

∃(idi,E ′i) ∈ γ(Vi)(A),

∀i ∈ J1;nK,∀x ∈Ui,
E ′i(x) = Ei(x)







⊆ γ(Wi)(NEW
]
>(X ,A)).

348 APPENDIX D. ABSTRACTION PROVES

Let (idi,Ei) ∈Π(EnvM
Wi

), such that:

∃(idi,E i) ∈ γ(Vi)(A),∀i ∈ J1;nK,∀x ∈Ui,E
′
i(x) = Ei(x)

We denote A = (f ,S,P,E,r) and NEW
]
>(X ,A) = (f ′,S′,P′,E ′,r′).

1. Let k ∈ J1;nK be an integer.
we have (idi,E i)1≤i≤m ∈ γ(Vi)(A); so (idk,Ek) ∈ γVk(f (k));
then idk ∈ γM

1 (fst(f (k))), and for any x ∈ Wi, if x ∈ Ui, then
Ek(x) = Ek(x), so (idk,snd(Ek(x))) ∈ γM

2 (snd(fA(k)(x, fst(Ek(x))))),
then, (idk,snd(Ek(x))) ∈ γM

2 (snd(f ′(k)(x, fst(Ek(x))))); oth-
erwise, snd(f ′(k)(x, fst(Ek(x))) = PAIR(fst(f (k)),>M

1), so
(idk,snd(Ek(x))) ∈ γM

2 (snd(f ′(k)(x, fst(Ek(x))))).
So f ′k ∈ γWk f (k).

2. We introduce the map σ that interprets the variables as follows:

σ :

{

(I,k)→ (pk, idk)

(a,k)→ Ek(a).

We introduce the map σ ′ that interprets the variables as follows:

σ ′ :

{

(I,k)→ (pk, idk)

(a,k)→ Ek(a).

3. for any C ∈ P′, for any (x,k),(y, l) ∈ C, we have x ∈ Uk ∪{I‘}, y ∈
Ul∪{I}), and there exists C′ ∈ P such that (x,k),(y, l)∈C′, so σ ′(x) =
σ ′(y); then, σ(x) = σ ′(x) and σ ′(y) = σ(y), so σ(x) = σ(y).

4. for any (C1,C2) ∈ E, for any ((x,k),(y, l))∈ (C1,C2), we have x ∈Uk,
y ∈ Ul), and there exists C′1,C

′
2 ∈ E ′ such that ((x,k),(y, l)) ∈ E ′, so

σ ′(x) 6= σ ′(y); then, σ(x) = σ ′(x) and σ(y) = σ ′(y), so σ(x) 6= σ ′(y).
5. Let us introduce the function t ∈ P′→L that is defined by t(C) = l

when there exists (a,k) ∈ C and a marker id such that Ek(a) = (l, id)
or by t(C) = pk when there exists (I,k) ∈ C. The same way, let us
introduce denote by fM ∈ P′→M is defined by fM (C) = idC when
there exists (a,k) ∈C such that Ek(a) = (lC, idC) or when there exists
(I,k) ∈ C such that idk = idC. We define t ∈ P→L that is defined
by t(C) = l when there exists (a,k) ∈ C and a marker id such that
Ek(a) = (l, id) or by t(C) = pk when there exists (I,k) ∈C. We have
for any C ∈ P such that C 6⊆ X , t(C\X) = t(C). Thus, γM

P′ (ψ(r(t)))⊆
γM

P′ (r′(t)), where ψ(a) is defined as:

QUOTIENT([C 7→C \X],PROJ({C ∈ P |C 6⊆ X},a)).

D.2. OCCURRENCE COUNTING ABSTRACTION 349

Then fM ∈ γM
P′ (ψ(r(t))), so fM ∈ γM

P′ (r′(t)).

D.2 Occurrence counting abstraction

In this section we give the proof of Thm. 9.2.4 which establishes the soundness of
our occurrence counting analysis.

Theorem 9.2.4. (NVc,vNVc
,tNVc

,⊥NVc
,γNVc ◦ γNVc

,C
NVc
0 , NVc

,∇NVc
) is an

abstraction.

Proof. The tuple (NVc,vNVc
,tNVc

,⊥NVc
,γNVc ◦ γNVc

,C
NVc
0 , NVc

,∇NVc
) satis-

fies Def. 7.2.1:

• Props. (1)(2)(3)(7) are satisfied by our assumptions;

• Prop. (4) is satisfied since both γNVc and γNVc
are monotonic;

• Prop. (5) is satisfied:

• Prop. (6) is satisfied: let v] be an abstract configuration, (u,C) be in the
concretization (γNVc ◦ γNVc

)(v]), λ be a transition label and C be another

configuration such that C
λ
C, we must construct v] such that (u.λ ,C) ∈

γ(v]) and v] λ
 NVc

v].

Let (R,((pk, idk,Ek),pik,Ctk)1≤k≤n) be the pair such that λ =
(R,((pk, idk,Ek),pik,Ctk)1≤k≤n).

Let (pik) = (sk,(parameterk
l)l,(bdk

l)k,l,constraintsk,continuationk)1≤k≤n be

a sequence of partial interactions. We have C
λ
C. So according to Fig. 4.1

on page 62 and Def. 4.4.1 on page 57, we have pik ∈ interaction(pk) and
(pk, idk,Ek) ∈ C for any k ∈ J1;nK. According to Fig. 4.1, there exists τ ∈
subs_choice

(

(

tk
)

k ,
(

parameterk
l

)

k,l ,broadcast
)

, such that:

C = subs(τ,C \ rem_threads∪new_threads)

where:

– subs(τ,C) = {(q, id,τ ◦E) | (q, id,E) ∈C};

– rem_threads = remove
(

(

tk, type(sk)
)

1≤k≤n

)

;

350 APPENDIX D. ABSTRACTION PROVES

– new_threads =
⋃

1≤k≤n launch
(

Ctk, id
k
,E

k
)

,

with ∀k ∈ J1;nK:

∗ id
k
= marker

(

type(sk),
(

pk′ , idk′ ,Ek′
)

1≤k′≤n
,k

)

;

∗ the element E
k is defined as follows:

vpassing(k,(tk′)1≤k′≤n,(bdk
l)l,(parameterk′l)k′,l,communications).

We introduce the configuration D = C \ rem_threads∪new_threads.

We have (u,C) ∈ (γNVc ◦ γNVc
)(v]); so ΠNVc (u,C) ∈ γNVc

(v]);

since (pk, idk,Ek) ∈ C is a sequence of distinct threads, we have
∀k ∈ J1;nK, Card{l | pk = pl} ≤ ΠNVc (u,C)pk; so ΠNVc (u,C) ∈

γNVc
(SYNCNVc

((pk)1≤k≤n,v])); since γNVc
is strict, we can conclude

that SYNCNVc
((pk)1≤k≤n,v]) 6=⊥NVc

;

Now, we define v] as:

SYNCNVc
(t,v])+] Transition+] Launched−] Consumed,

where:

– Transition = 1NVc
(ψ(λ));

– Launched = ∑]
(

βNVc
((continuationk)k))1≤k≤n)

)

;

– Consumed = ∑](1NVc
(pk))k∈{k′ | 1≤k′≤n, type(sk′)6=replication}.

We know that v]αλ (λ)
 NVc

v]. We now prove that (u.λ ,D)∈ (γNVc ◦γNVc
)(v]):

we have D = C \ rem_threads∪ new_threads; thus, the tuple ΠNVc (u.λ ,D)
is equal to:

ΠNVc (u,C)−]ΠNVc (ε,rem_threads)+] ΠNVc (ε,new_threads)+] ΠNVc (λ , /0);

moreover, we have:

1. ΠNVc (u,C) ∈ γNVc
(SYNCNVc

(t,v])), since (u,C) ∈ (γNVc ◦

γNVc
)(SYNCNVc

(t,v]));

2. ΠNVc (ε,rem_threads)∈ γNVc
(consumed) (by using both Prop.9.2.2 on

page 250 and marker unambiguity);

3. ΠNVc (λ , /0) ∈ γNVc
(Transition);

D.2. OCCURRENCE COUNTING ABSTRACTION 351

4. ΠNVc(ε,new_threads) = ∑]
(

(ΠNVc(ε,Ctk))1≤k≤n
)

(by using both
Prop. 9.2.2 and marker unambiguity); then, ΠNVc (ε,Ctk) ∈
γNVc

(χ](Ctk)). Since Ctk ∈ continuationk and by soundness
of the abstract union and of the abstract characteristic func-
tion, we have also: γNVc

(χ](Ctk)) vNVc
γNVc

(βNVc
(continuationk)).

Thus, ΠNVc (ε,Ctk) ∈ γNVc
(βNVc

(continuationk))). By Prop. 9.2.2
and marker unambiguity, we get that: ΠNVc(ε,new_threads) ∈
γNVc

(βNVc
(continuationk));

then, by Prop. 9.2.2 and marker unambiguity, we get that:

ΠNVc (u.λ ,C \ rem_threads∪new_threads) ∈ γNVc
(v]);

since, global substitution does not change neither occurrence number of
threads, nor their program point, we can conclude that ΠNVc (u.λ ,C) ∈
γNVc

(v]); thus,

(u.λ ,C) ∈ (γNVc ◦ γNVc
)(v]).

352 APPENDIX D. ABSTRACTION PROVES

Bibliographie

[1] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proc. POPL’01. ACM Press, 2001.

[2] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols : The spi calculus. In Proc. CCS’97. ACM Press, 1997.

[3] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic proto-
cols : The spi calculus. Information and Computation, 148(1), 1999.

[4] Benjamin Y. Y. Aziz. A static analysis of cryptographic processes : the de-
notational approach. Journal of Logic and Algebraic Programming, special
issue on Modelling and Verification of Cryptographic Protocols, ? ?(? ?), ? ?
to appear.

[5] Benjamin Y. Y. Aziz. A Static Analysis Framework for Security Properties
in Mobile and Cryptographic Systems. PhD thesis, Dublin City University,
2003.

[6] Benjamin Y. Y. Aziz and Geoffrey W. Hamilton. A privacy analysis for the
pi-calculus : The denotational approach. In Proc. SAVE’02, number 94 in
Datalogiske Skrifter. Department of Computer Science, Roskilde University,
2002.

[7] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In
Proc. SAS’02, volume 2477 of Lecture Notes on Computer Science. Springer
Verlag, 2002.

[8] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mau-
borgne, Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer
for large safety-critical software. In Proc. PLDI’03. ACM Press, 2003.

[9] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Control flow analysis for the π-calculus. In Proc. CONCUR’98, LNCS.
Springer-Verlag, 1998.

[10] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Static analysis of processes for no read-up and no write-down. In
Proc. FoSSaCS’99, LNCS. Springer-Verlag, 1999.

353

354 BIBLIOGRAPHIE

[11] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Static analysis for the π-calculus with applications to security. Infor-
mation and Computation, 165, 2000.

[12] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed ambients. In
In Proc. TACS’01, number 2215 in LNCS, pages 38–63. Springer, 2001.

[13] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Access control for
mobile agents : The calculus of boxed ambients. ACM Transactions on Pro-
gramming Languages and Systems, 26(1), 2004.

[14] Luca Cardelli. Brane calculi. In Proc. BIO-CONCUR’03, ENTCS. Elsevier
Science Publishers. to appear.

[15] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient groups and
mobility types. In Proc. TCS’00, LNCS. Springer-Verlag, 2000.

[16] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group
creation. In Proc. CONCUR’00, LNCS. Springer-Verlag, 2000.

[17] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Com-
puter Science, 240(1), 1998.

[18] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models :
Model checking message-passing programs. In Proc. POPL’02. ACM, 2002.

[19] Witold Charatonik, Andrew D. Gordon, and Jean Marc Talbot. Finite-control
mobile ambients. In Proc. ESOP’02, number 2305 in LNCS. Springer-
Verlag, 2002.

[20] Chong-Kan Chiu and Jimmy Ho-Man Lee. Interval linear constraint solving
using the preconditioned interval Gauss-Seidel method. In Proc. ICLP’95,
Logic Programming. The MIT Press, 1995.

[21] Patrick Cousot. Semantic foundations of program analysis. In Program Flow
Analysis : Theory and Applications, chapter 10. Prentice-Hall, Inc., 1981.

[22] Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-
ties of programs. In Proceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, Paris, France, 1976.

[23] Patrick Cousot and Radhia Cousot. Abstract interpretation : a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proc. POPL’77. ACM Press, 1977.

[24] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4), 1992.

[25] Patrick Cousot and Radhia Cousot. Comparing the Galois connec-
tion and widening-narrowing approaches to abstract interpretation. In
Proc. PLILP’92, LNCS. Springer-Verlag, 1992.

BIBLIOGRAPHIE 355

[26] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proc. POPL’78. ACM Press, 1978.

[27] Mads Dam. Model checking mobile processes. Inf. Comput., 129(1) :35–51,
1996.

[28] Vincent Danos and Sylvain Pradalier. Projective brane calculus. In
Proc. CMSB’04, Lecture Notes on Computer Science. Springer Verlag. to
appear.

[29] Nicolaas Govert de Bruijn. Lambda-calculus notation with nameless dum-
mies : a tool for automatic formula manipulation with application to the
Church-Rosser theorem. Indagationes Mathematicae, 34(5), 1972.

[30] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Hand-
book of Theoretical Computer Science, Volume B : Formal Models and Se-
matics (B). Elsevier Science Publishers, 1990.

[31] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols (extended abstract). In Proc. FOCS’81. IEEE Press, 1981.

[32] Jérôme Feret. Abstract interpretation of mobile systems. Journal of Lo-
gic and Algebraic Programming, special issue on pi-calculus, ? ?(? ?), ? ? to
appear.

[33] Jérôme Feret. amb-s.a : a static analyzer for mobile ambients. Prototype,
http://www.di.ens.fr/~feret/prototypes/.

[34] Jérôme Feret. π-s.a : a static analyzer for the π calculus. Prototype,
http://www.di.ens.fr/~feret/prototypes/.

[35] Jérôme Feret. Conception de π-sa : un analyseur statique générique pour le
π-calcul. Graduate thesis, École Polytechnique, september 1999. Electroni-
cally available at http://www.di.ens.fr/~feret/dea/dea.ps.

[36] Jérôme Feret. Confidentiality analysis of mobile systems. In Proc. SAS’00,
number 1824 in LNCS. Springer-Verlag, 2000.

[37] Jérôme Feret. Abstract interpretation-based static analysis of mobile am-
bients. In Eighth International Static Analysis Symposium (SAS’01), number
2126 in LNCS. Springer-Verlag, 2001.

[38] Jérôme Feret. Occurrence counting analysis for the π-calculus. In
Proc. GETCO’00, volume 39.2 of ENTCS. Elsevier Science Publishers,
2001.

[39] Jérôme Feret. Dependency analysis of mobile systems. In Proc. ESOP’02,
number 2305 in LNCS. Springer-Verlag, 2002.

[40] Cédric Fournet. The Join-Calculus : A Calculus for Distributed Mobile Pro-
gramming. PhD thesis, École Polytechnique, Paris, France, 1998.

http://www.di.ens.fr/~feret/prototypes/
http://www.di.ens.fr/~feret/prototypes/
http://www.di.ens.fr/~feret/dea/dea.ps

356 BIBLIOGRAPHIE

[41] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Proc. POPL’96. ACM Press, 1996.

[42] Philippe Granger. Static analysis of linear congruence equalities among va-
riables of a program. In Proc. TAPSOFT’91, LNCS. Springer-Verlag, 1991.

[43] René Rydhof Hansen, Jacob Grydholt Jensen, F. Nielson, and H. Riis Niel-
son. Abstract interpretation of mobile ambients. In Proc. SAS’99, LNCS.
Springer-Verlag, 1999.

[44] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Proc. HLCL’98, volume 16.3 of ENTCS. Elsevier Science
Publishers, 1998.

[45] Matthew Hennessy and James Riely. A typed language for distributed mo-
bile processes. In Proc. POPL’98. ACM Press, 1998.

[46] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the π-
calculus. In Proc. POPL’01. ACM, 2001.

[47] Michael Karr. Affine relationships among variables of a program. Acta
Informatica, 1976.

[48] Cosimo Laneve and Björn Victor. Solos in concert. In Proc. ICALP’99.
Springer-Verlag, 1999.

[49] Cosimo Laneve and Björn Victor. Solos in concert. Mathematical Structures
in Computer Science, 13(5), 2003.

[50] Francesca Levi and Sergio Maffeis. An abstract interpretation framework
for analysing mobile ambients. In Proc. SAS’01, volume 2126 of LNCS.
Springer-Verlag, 2001.

[51] Francesca Levi and Sergio Maffeis. On abstract interpretation of mobile
ambients. Information and Computation, 188(2), 2004.

[52] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients.
In Proc. POPL’00. ACM Press, 2000.

[53] Laurent Mauborgne. ASTRÉE : Verification of absence of run-time error.
In René Jacquart, editor, Building the information Society (18th IFIP World
Computer Congress), pages 384–392. The International Federation for In-
formation Processing, Kluwer Academic Publishers, Aug 2004.

[54] Robin Milner. The polyadic π-calculus : a tutorial. In Proceedings of the In-
ternational Summer School on Logic and Algebra of Specification. Springer-
Verlag, 1991.

[55] Antoine Miné. The octagon abstract domain. In Proc. AST’01 in WCRE’01.
IEEE Press, 2001.

BIBLIOGRAPHIE 357

[56] Antoine Miné. A few graph-based relational numerical abstract domains. In
Proc. SAS’02, LNCS. Springer-Verlag, 2002.

[57] Antoine Miné. Relational abstract domains for the detection of floating-point
run-time errors. In Proc. ESOP’04, LNCS. Springer, 2004.

[58] Antoine Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
École Polytechnique, 2004. to appear.

[59] Flemming Nielson, Hanne Riis Nielson, René Rydhof Hansen, and Ja-
cob Grydholt Jensen. Validating firewalls in mobile ambients. In
Proc. CONCUR’99, LNCS. Springer-Verlag, 1999.

[60] Flemming Nielson, Hanne Riis Nielson, and Henrik Pilegaard. Spatial ana-
lysis of bioambients. In Proc. SAS’04, volume 3148 of Lecture Notes on
Computer Science. Springer Verlag, 2004.

[61] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Normalizable
horn clauses, strongly recognizable relations, and spi. In Proc. SAS’02, vo-
lume 2477 of Lecture Notes on Computer Science. Springer Verlag, 2002.

[62] Flemming Nielson and Helmut Seidl. Control-flow analysis in cubic time.
In Proc. ESOP’01, LNCS. Springer-Verlag, 2001.

[63] Hanne Riis Nielson and Flemming Nielson. Shape analysis for mobile am-
bients. In Proc. POPL’00. ACM Press, 2000.

[64] Rohit J. Parikh. On context-free languages. Journal of the ACM, 13, 1966.

[65] Joachim Parrow and Björn Victor. The fusion calculus : Expressiveness and
symmetry in mobile processes. In Proc. LICS’98, 1998.

[66] Andrew T. Phillips, Nabuko Yoshida, and Susan Eisenbach. A distributed
abstract machine for boxed ambient calculi. In Proc. ESOP’04, volume 2986
of LNCS. Springer-Verlag, 2004.

[67] Sriram K. Rajamani and Jakob Rehof. A behavioral module system for the
π-calculus. In Proc. SAS’01, LNCS. Springer-Verlag, 2001.

[68] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and
Ehud Y. Shapiro. Bioambients : An abstraction for biological compartments.
Theoretical Computer Science, 325 :141–167, 2004.

[69] Jordi Cortadella Robert Clarisó. The octahedron abstract domain. In
Proc. SAS’04, LNCS. Springer-Verlag, 2004.

[70] Davide Sangiorgi. From π-calculus to Higher-Order π-calculus — and back.
In Proc. TAPSOFT’93, lncs. Springer-Verlag, 1993.

[71] Davide Sangiorgi and Andrea Valente. A distributed abstract machine for
Safe Ambients. In Proc. ICALP’01, volume 2076 of LNCS. Springer-Verlag,
2001.

358 BIBLIOGRAPHIE

[72] David N. Turner. The Polymorphic π-Calculus : Theory and Implementation.
PhD thesis, Edinburgh University, 1995.

[73] Arnaud Venet. Abstract interpretation of the π-calculus. In Proc. LO-
MAPS’97, LNCS. Springer-Verlag, 1997.

[74] Arnaud Venet. Automatic determination of communication topologies in
mobile systems. In Proc. SAS’98, LNCS. Springer-Verlag, 1998.

[75] Jan Vitek and Giuseppe Castagna. Seal : A framework for secure mobile
computations. In Proc. IPL’99. Springer-Verlag, 1999.

[76] Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed sys-
tems. In Internet besieged : countering cyberspace scofflaws, pages 319–
355. ACM Press/Addison-Wesley Publishing Co., 1998.

	1 Introduction
	1.1 Motivations
	1.1.1 Mobility models
	1.1.2 Non standard semantics
	1.1.3 Analysis issues

	1.2 Overview
	1.2.1 Non standard semantics
	1.2.2 Meta language
	1.2.3 Context free semantics
	1.2.4 Abstraction interpretation
	1.2.5 Environment approximation
	1.2.6 Occurrence number approximation
	1.2.7 Thread partitioning

	1.3 Related works
	1.3.1 Flow analysis
	1.3.2 Occurrence counting analysis
	1.3.3 Thread partitioning
	1.3.4 Behavioral types
	1.3.5 Modular analysis

	1.4 Outline

	2 Non standard semantics for the -calculus
	2.1 Standard semantics
	2.1.1 Syntax
	2.1.2 Semantics
	2.1.3 Examples

	2.2 Refined semantics
	2.2.1 Fresh name allocation
	2.2.2 Naive semantics
	2.2.3 Strongly bisimilar semantics
	2.2.4 Efficient semantics

	3 Dealing with location
	3.1 Standard semantics for mobile ambients
	3.1.1 Syntax
	3.1.2 Semantics

	3.2 Non standard semantics
	3.3 Related works

	4 Meta language
	4.1 Meta syntax
	4.1.1 Partial interactions
	4.1.2 Rules
	4.1.3 Well-formedness conditions

	4.2 System syntax
	4.2.1 Labeling
	4.2.2 Interfaces
	4.2.3 Partial interactions
	4.2.4 Initial states
	4.2.5 System syntax

	4.3 System configurations
	4.4 Operational semantics
	4.4.1 Primitives
	4.4.2 Transition system

	4.5 Marker and value freshness
	4.5.1 Marker freshness sufficient conditions
	4.5.2 Thread marker freshness
	4.5.3 Fresh values

	4.6 Conclusion

	5 Encoding examples
	5.1 Revisiting the -calculus
	5.1.1 A polyadic -calculus with external choice
	5.1.2 Non standard semantics
	5.1.3 Correspondence

	5.2 Encoding the join-calculus
	5.2.1 Syntax
	5.2.2 Semantics
	5.2.3 Non standard semantics
	5.2.4 Correspondence

	5.3 Encoding the spi-calculus
	5.3.1 Syntax
	5.3.2 Semantics
	5.3.3 Non standard semantics
	5.3.4 Correspondence

	5.4 Revisiting the ambient calculus
	5.4.1 Non standard semantics
	5.4.2 Correspondence

	5.5 Encoding bio-ambients
	5.5.1 Syntax
	5.5.2 Semantics
	5.5.3 Non standard semantics
	5.5.4 Correspondence

	5.6 Extending the framework
	5.6.1 Testing term equalities
	5.6.2 Higher order model encoding
	5.6.3 Encoding the projective brane calculus

	6 Context approximation
	6.1 Introduction
	6.1.1 Three approaches

	6.2 Context independent semantics for the -calculus
	6.2.1 Context approximation
	6.2.2 Open transition system
	6.2.3 Coherence

	6.3 Generalization for the meta language
	6.3.1 Context approximation
	6.3.2 Soundness
	6.3.3 Implementation at the meta language level
	6.3.4 Incompleteness

	6.4 Implementing other context abstractions

	7 Abstract Interpretation
	7.1 Concrete semantics
	7.2 Generic abstraction
	7.2.1 Abstraction definition
	7.2.2 Abstract counterpart
	7.2.3 Extrapolated iterates

	7.3 Abstraction algebra
	7.3.1 Cartesian product
	7.3.2 Reduced domain

	7.4 Comparing abstractions
	7.4.1 Monotonic abstraction
	7.4.2 Local comparison between two abstractions
	7.4.3 Least fixpoint comparison

	8 Environment approximation
	8.1 Generic analysis
	8.1.1 Generic domain
	8.1.2 Molecule abstraction
	8.1.3 Abstract operational semantics
	8.1.4 Abstract operational semantics

	8.2 Control flow analyses
	8.2.1 Generic marker abstraction
	8.2.2 Atom abstraction
	8.2.3 Molecule abstraction
	8.2.4 Combining marker abstractions
	8.2.5 Three control flow analyses
	8.2.6 Prototypes and analysis examples
	8.2.7 Comparing these analyses

	8.3 More precise abstractions
	8.3.1 Dependencies among thread names
	8.3.2 Marker analysis
	8.3.3 Approximated reduced product

	9 Occurrence number approximation
	9.1 Related works
	9.2 Generic analysis
	9.3 Abstract domains
	9.3.1 Interval domain
	9.3.2 Linear equalities domain
	9.3.3 Approximated reduced product

	9.4 Prototypes and analysis examples
	9.4.1 Two prototypes
	9.4.2 Examples
	9.4.3 Implementation issue

	10 Thread partitioning
	10.1 Motivating examples
	10.1.1 Shared-memory with dynamical allocation
	10.1.2 Authentication in protocol

	10.2 Analyzing the content of an ambient
	10.2.1 Abstract domain
	10.2.2 Abstract transition system
	10.2.3 Prototype and analysis example

	10.3 Generalization
	10.3.1 Concrete partitioning
	10.3.2 Abstract partitioning
	10.3.3 Environment and counting domains
	10.3.4 Main domain
	10.3.5 Partitioning primitives
	10.3.6 Abstract operational semantics

	10.4 Applications
	10.4.1 Race-condition analysis for the -calculus
	10.4.2 Authentication analysis for the spi-calculus

	11 Conclusion
	11.1 Contribution
	11.2 Future works
	11.2.1 Implementation
	11.2.2 Proving high level properties
	11.2.3 Extending model expressiveness
	11.2.4 Approximating probabilistic behavior

	A Correspondence proves
	A.1 The standard and the naive semantics
	A.2 The standard and the intermediate semantics
	A.3 The standard and the efficient semantics

	B Marker freshness
	B.1 Thread marker freshness

	C Context approximation
	C.1 In the -calculus
	C.1.1 Trace projection
	C.1.2 Soundness
	C.1.3 Completeness

	C.2 Generalization

	D Abstraction proves
	D.1 Environment abstraction
	D.1.1 Control flow analysis

	D.2 Occurrence counting abstraction

	 Bibliographie

