
Groupe de travail

Analysis of Mobile Systems
by Abstract Interpretation

Jérôme Feret
École Normale Supérieure

�� � �� � ��� � � � � 	 �
� � � � ���
�
 �

16/06/2005

Introduction I

We propose a unifying framework to design

� automatic,

� sound,

� approximate,

� decidable,

semantics to abstract the properties of mobile systems.

Our framework is model-independent:

� �

we use a META-language to encode mobility models,

� �

we design analyses at the META-language level.

We use the Abstract Interpretation theory.

Jérôme Feret, LIENS 2 16/06/2005

Introduction II

We focus on reachability properties.
We distinguish between recursive instances of components.

We design three families of analyses:

1. environment analyses capture dynamic topology properties
(non-uniform control flow analysis, secrecy, confinement, � � �)

2. occurrence counting captures concurrency properties
(mutual exclusion, non exhaustion of resources)

3. thread partitioning mixes both dynamic topology and concurrency prop-
erties
(absence of race conditions, authentication, � � �).

Jérôme Feret, LIENS 3 16/06/2005

Example: non-standard configuration

(Server

�

Client

�

gen!

�

[]

�

email � !

�

[data �]

�

email �!
�

[data �])

�
��������������������������������	

��������������������������������

�
� �

�

port � � �

port� �

�
� �

gen � � �

gen� �

port � � �
port� �

�
� id

�
��

add � � �

email� id � �

info � � �

data� id � �

�
� id

�
��

add � � �

email� id � �

info � � �

data� id � �

�
� id ��

�

gen � � �

gen� �

�
���������������������������������

���������������������������������

Jérôme Feret, LIENS 4 16/06/2005

Overview

1. Abstract Interpretation

2. Environment analysis

3. Occurrence counting analysis

4. Thread partitioning

5. Conclusion

Jérôme Feret, LIENS 5 16/06/2005

A network

Client
Resource Server

Jérôme Feret, LIENS 6 16/06/2005

Generic environment analysis

� �

Abstract the relations among the marker and the names of threads at
each program point.

For any finite subset

� � �

,

� � Id � � � � �

Label � Id

� � � ����
	 Atom

�
� �

The abstract domain

 �

is then the set:

 � �
� � �

Atom

�
� �� �

related to � � �

by the concretization �:

� �� � � � � ��� � id�
� ��� � � �

id�
� ��� � � �� � �� � ��

�

Jérôme Feret, LIENS 7 16/06/2005

Abstract communication

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

?

� � � � ��
�	�
 �� � � � � ��
�	� � �

Environment Property

Relational Information

Variable Property

Synchronization Constraint

Jérôme Feret, LIENS 8 16/06/2005

Extending environments

� � � � ��
�	�
 �� � � � � ��
�	� � �

Environment Extension

Environment Property

Relational Information

Variable Property

Synchronization Constraint

Jérôme Feret, LIENS 9 16/06/2005

Synchronizing environments

� � � � ��
�	�
 �� � � � � ��
�	� � �

Environment Property

Environment Extension

Relational Information

Variable Property

Synchronization Constraint

Jérôme Feret, LIENS 10 16/06/2005

Propagating information

� � � � ��
�	�
 �� � � � � ��
�	� � �

Environment Property

Environment Extension

Relational Information

Variable Property

Information closure

Jérôme Feret, LIENS 11 16/06/2005

Generic primitives

We only require abstract primitives to:

1. extend the domain of the environments,

2. gather the description of the linkage of the syntactic
agents,

3. synchronize variables,

4. compute information closure,

5. separate the descriptions,

6. restrict the domain of the environments.

Jérôme Feret, LIENS 12 16/06/2005

Control flow analysis

Detect the origin of the channels that are communicated to variables.
Abstract relationship between the history of threads that open channels and
the history of threads that receive these channels.

Let Id

�

be an abstract domain of properties about marker pairs.

�

Id

� � Id

� � � � Id
� �

Atom

�
� � � � Label � Id

�

� � � � � � is the set of marker/environment pairs

�

id�
� �

such that:

��� � �
�

� � � � � ��� � id �
� � � �

id� id �
��� �

Id

� � � � � � � � � �
�

Jérôme Feret, LIENS 13 16/06/2005

Abstract molecules

Given: � �

Id

� Id

�
� � � � � � Id

�
�

The domain Molecule

�
� ��� �� � �� � � � is the set of all 5-tuples

��
�

�
�

�

�
� 	 � where:

� � �
 ��� � � Atom

�
�� ;

� � � � � ��
� � � � � � � � �� ��
� � �� � �

(constrained variables);

� �� � � � � � � �

is a partition of

�

(equality constraints);

� �� � � �

(disequality constraints);

� the map 	� � � � Label

� � Id

�
�

(marker relations).

Jérôme Feret, LIENS 14 16/06/2005

Several trade-offs

1. 0-cfa (

�

-CFA): Id

�
� � �
�

��

,
[Nielson et al.:CONCUR’98], [Hennessy and Riely:HLCL’98].

2. Confinement (CONF): Id

�
� � �
� ��

��

,
[Cardelli et al.:CONCUR’00].

3. Algebraic comparisons: we use the product between regular approxi-
mation and relational approximation.
We can tune the complexity:

� by capturing all numerical relations (GLOB �), or only one relation
per literal (LOC �), where

�� � ��� ��

,

� by choosing the set of literals among Label (

� � �

) or Label

�

(

� � �

).

Jérôme Feret, LIENS 15 16/06/2005

Regular approximation

We approximate the shape of the markers which may be associated to chan-
nel names linked to variables, and syntactic components, without relations
among them.

We use the following abstract domain:� �� � � � �� � � � �� � � � � �
true;false

�

.

� � � � �
�

�
�

� �

is defined by � � � � � � � � � � � � ��� � � � � ��� � � �

where:

� � � � � � � �� � �
	 � �
�

� 	 � � � � 	 � � � �

,

� � � � � � � �� � �
	 � �
�

� 	 � � � � 	�� � � ��

,

� ��� � � � � �� � �
	 � �� � �
�

�
� �� �
� 	
�

�
�

�
�

�� � � � �
� � �� ��

,

� ��� � � � � �� � � � � ��
.

Jérôme Feret, LIENS 16 16/06/2005

Comparison between channel and agent
markers

We capture affine relationship among the occurrence number of litterals in-
side markers.
Two trade-offs:

1. Component-wise (LOC �):
For each litteral, we compute an affine system that describes number of
occurrence of this litteral in each marker.
ex: Id

�
� �� � �� � � �� � � � � ��

2. Global (GLOB �):
we associate a variable for each litteral and each component and com-
pute affine relationships among these variable.

Jérôme Feret, LIENS 17 16/06/2005

Abstract semantics hierarchy

GLOB �

LOC �

GLOB

��

�

-CFA

CONF

GLOB �
GLOB

��

LOC �

LOC

��

LOC

��

where � � �

means that there exists � � � � �

,
such that for any system S,

� �

S

� �� �� 	

S

� � 	 �

Jérôme Feret, LIENS 18 16/06/2005

Example: 0-CFA

Jérôme Feret, LIENS 19 16/06/2005

Non uniform property

We detect that threads at program point 2 have the following shape:

�� ��� � � � � � � � � � �
	 � � � �
�

add �� �

email�
��� � � � � � � � � � �

info �� �

data� ��� � � � � � � � � � �

Jérôme Feret, LIENS 20 16/06/2005

Example: non-uniform result

Jérôme Feret, LIENS 21 16/06/2005

uniform analysis VS non uniform analysis

Jérôme Feret, LIENS 22 16/06/2005

Example: the ring of processes

(� make)(� edge)(� first)
(�make?

�

[last](�next)
(edge!

�

[last ,next]
| make!

�

[next])
| �make?

�

[last](edge!

�

[last,first])
| make!

�

[first]) first

� �

� � � �

edge edge

edge

edge

� � �
�

� � � � � � � �
�

� �

Jérôme Feret, LIENS 23 16/06/2005

Example: Algebraic properties

Jérôme Feret, LIENS 24 16/06/2005

Example

We detect that:

�
��	

��

��� � �� � �

�
� � �

�
� � � �

�

� � �
�

� � �
� _�

� � � � ��� �
� � �

�
� � � �

�

� � �
�

� � � � � �

�

answer

�� � �
�

� �
�

�� �
�

� � �
�

� � � �
�

� � �
�

� � �
�

� � �
�

� � �
�

� � ��
�

� � �
�

� � �
� _

�

� �

rep

� �
� _�

�	
�

� �
�

� � �
�

� � �
�

� � ��
�

� � �
�

� � �
�

�

rep � � �
data�

� � �
�

� � ��
�

� � �
�

� � � � � � �

We deduce that each packet exiting the server has the following structure:

answer

�
�

 � �
�

� � ��
�

 � �
�

� � � �

data�

 � �

�
� � ��

�

 � �
�

� � � �

 � �
�

� � ��
�

 � �
�

� � �

 �
�

�� �
�

 � �
�

� � ��
�

 � �
�

� � �

Jérôme Feret, LIENS 25 16/06/2005

Limitations

Two main drawbacks:

1. we only prove equalities between Parrikh’s vectors, some more work is
needed in order to prove equalities of words;

2. we only capture properties involving comparison between channel name
and agent markers:

(� make)(� edge)(� first)(� first)
(�make?

�

[last](�next)
(edge!

�

[last ,next]
| make!

�

[next])
| �make?

�

[last](edge!
�

[last,first])
| make!

�

[first])
| edge?

�

[� ,�][� �
� �][�

� �
�

first]Ok!

��

[]

we cannot infer that we can never satisfy both guards at the program
points

	

and

�

.

Jérôme Feret, LIENS 26 16/06/2005

Dependency analysis

We describe equality and inequality relations between the names linked to
variables.

Atom

�
� � � �
�
� �

��
��
��
�

�

is a partition of

�

�

is a symetric anti-reflexive relation on

� �

Atom

�
� is related to � � Id � � � � �

Label � Id � � �
by the following concretization

function:

� � � � �
�
� � � � �

id�
� �

��
��
��
�

� �� �
�

� � � � � � � � � � � � � � � �� �

� �
�
� ��� � � � ��� � �
� � � �
�

� � � � � � � ��� �

� �

implicit closure of relations and information propagation.

Jérôme Feret, LIENS 27 16/06/2005

Pair-wise numerical analysis

We compare pair-wisely markers, while partitioning channels in accordance
with the name restrictions having opened them.
Let

�

be a linear form defined on

� �

, for each

� � �
, the domain Atom

�
� is a

pair of function

��
� � � :

� � � � Label � �

Affine subspace of

� ��
�

� � � � � Label

� � � �

Affine subspace of

� ��
�

the concretization � � ��
� � � is given by:

�
��	

��

�

id�
� �

��
��
��
��
��
�

� � � � � ��� � id �
� � � � � � � �
id

��
�

�
� � � �� � � � �

id �
�
�

�
� � � � ��� � � � � � �

� � � � � �� � id �
�

� � � � � � �� �
� id

�
�

� � � � � � � �

id �
�
�

�
� � � �� � � � �

id

�
�

� �
�

�
� � � �� � � � � � � �
�

� � �
� �

Jérôme Feret, LIENS 28 16/06/2005

Global numerical analysis

We abstract relations between all name markers and all names linked to vari-
ables, and the thread markers:
For each

� � �

, we introduce the set of variables:

� � � �� � � �� � � � ��� �� � �
� � �� � �

Label� �� ��
�

The domain Atom

�
� is then the set of the affine relations system among

� �

related to the concrete domain by the following concretization:

� � � � � �
�

	

�

id�
� �

��
��
��
��
�

� � � �
id

�
�

� � � � � � � �� � first

� � � � � � �

� �� � �
� � �

snd

� � � � � � ��

satisfies

�
�

�
�

�

Jérôme Feret, LIENS 29 16/06/2005

Reduction

Global

Pair−wise

Shape

Dependency

 PI
=

=
=

=���

��� ���

Jérôme Feret, LIENS 30 16/06/2005

Example

(� make)(� edge)(� first)
(�make?

�

[last](� next) (edge!

�

[last ,next] | make!

�
[next])

| �make?

�

[last](edge!

�

[last,first])
| make!

�

[first])
| edge?

�

[� ,�][� =

��][�
� �

�

first]Ok!

��

[]

we first prove in global abstraction that:

� � � �

satisfies

� � � � � �
�next � �

� � � � �
�last � � next �last

� first �last � � next �last � �

� � � �

satisfies

� next �last � � first �last � �

� first �first � �

Jérôme Feret, LIENS 31 16/06/2005

Example

We then prove in pair-wise analysis that at program point
	

, � and � are
respectively linked to names created by some instance of the restrictions :

1. (� first) and (� first),

2. (� first) and (� next),

3. (� next) and (� next) but distinct instances,

4. (� next) and (� first).

so, the matching pattern

� � � � �

is satisfiable only in the first case !!!

Jérôme Feret, LIENS 32 16/06/2005

Overview

1. Abstract Interpretation

2. Environment analysis

3. Occurrence counting analysis

4. Thread partitioning

5. Conclusion

Jérôme Feret, LIENS 33 16/06/2005

Example: a 3-port server

clients’
creation

clients

server
two ports

the red client is delayed...

server instances

Jérôme Feret, LIENS 34 16/06/2005

Occurrences counting analysis

�
��������������������������������	

��������������������������������

�
� �

�

port � � �

port� �

�
� �

gen � � �

gen� �

port � � �

port� �

�
� id

�
��

add � � �

email� id � �

info � � �
data� id � �

�
� id

�
��

add � � �
email� id � �

info � � �

data� id � �

�
� id ��

�
gen � � �

gen� �

�
���������������������������������

���������������������������������

Jérôme Feret, LIENS 35 16/06/2005

Abstract transition

 �

 �

� ���
� �

�

Jérôme Feret, LIENS 36 16/06/2005

Abstract domains

We design a domain for representing numerical constraints between

� the number of occurrences of threads

�

(i);

� the number of performed transitions

�

(i,j).

We use the product of

� a non-relational domain:

� �

the interval lattice;

� a relational domain:

� �

the lattice of affine relationships.

Jérôme Feret, LIENS 37 16/06/2005

Interval narrowing

An exact reduction is exponential.
We use:

� Gaussian Elimination:

� � � ��� � �

� � � � � � � � �

� � � � � � �

� 	 � � �

� Interval propagation:

�
��������	

��������

� � � ��� � �

� � � � �� � � �

� � � � �� � � �

� � � � �� � � �

� �

�
��������	

��������

� � � � � � �

� � � � �� � � �

� � � � �� � � �

� � � � �� � � �

� Redundancy introduction:

� � � 	 � � �

� � � � �� � � � � �

�
��	

��

� � � 	 � � �

� 	 � � � � �� � � �

� � � � �� � � �

to get a cubic approximated reduction.

Jérôme Feret, LIENS 38 16/06/2005

Example: non-exhaustion of resources

Jérôme Feret, LIENS 39 16/06/2005

Example: exhaustion of resources

Jérôme Feret, LIENS 40 16/06/2005

Example: mutual exclusion

Jérôme Feret, LIENS 41 16/06/2005

Example: token ring

Jérôme Feret, LIENS 42 16/06/2005

Related works

� Non relational analyses.
[Levi and Maffeis: SAS’2001]

� Syntactic criteria.
[Nielson et al.:SAS’2004]

� Abstract multisets.
[Nielson et al.:SAS’1999,POPL’2000]

� Finite control systems.
[Dam:IC’96],[Charatonik et al.:ESOP’02]

Jérôme Feret, LIENS 43 16/06/2005

Overview

1. Abstract Interpretation

2. Environment analysis

3. Occurrence counting analysis

4. Thread partitioning

5. Conclusion

Jérôme Feret, LIENS 44 16/06/2005

Computation unit

Gather threads inside an unbounded number of dynamically created compu-
tation units.
Then detect mutual exclusion inside each computation unit.

Each thread is associated with a computation unit, which is left as a parame-
ter of:

� the model

� and the properties of interest.

For instance:

� in the �-calculus, the channel on which the input/output action is per-
formed;

� in ambients, agent location and the location of its location
[Nielson:POPL’2000].

Jérôme Feret, LIENS 45 16/06/2005

Thread partitioning

We gather threads according to their computation unit.
We count the occurrence number of threads inside each computation unit.

To simulate a computation step, we require:

� to relate the computation units of:

1. the threads that are consumed;
2. the threads that are spawned.

This may rely on the model structure (ambients) or on a precise envi-
ronment analysis (other models).

� an occurrence counting analysis:
to count occurrence of threads inside each computation unit.

Jérôme Feret, LIENS 46 16/06/2005

Concrete partitioning

�

: a finite set of indice.
We define the set of computation units as:

unit

�
� � � Label � Id �

give-index maps each program point � to a function give-index

��� � � � � � ��� �

.

Given a thread

� � �� � id�
� �

, we define its computation unit � � � � 	 � � � � �

as:

give-unit
� � � � � �� � � � �

give-index

��� � � � � � �
�

Jérôme Feret, LIENS 47 16/06/2005

Abstract computation unit

There may be an unbounded number of computation units.

To get a decidable abstraction, we merge the description of the computation
units that have the same labels.

We define:
UNIT

� �
� � � Label �

The abstraction function:

�

unit

� unit �

UNIT

�

� �� � � � ���� � _

� � � � � � � � ��� ��

maps each computation unit to an abstract one.

Jérôme Feret, LIENS 48 16/06/2005

Abstract domain

We use:

1. a set of abstract domains:

�

Atom

�
�

�
� � ��

�

Molecule

�
� �� �

�
� �� � �� � � �� �

We also need an extra primitive:
given:

(a)

� �
�

�� � � � ��

, �� Molecule
�

� �� � ,
(b) and

�� � � � � � � Label
�

;

the abstract molecule force-lab
� �

� � �� Molecule

�
� �� � satisfies:

� �

id ��
�

�
��� � � �� � � � � � � � � �
�
�

� ��� �
� fst

� � � � � � � � � � � � � �� � � force-lab

� �
� � � �
�

2. We assume that we are given a numerical domain

	�
� .

Jérôme Feret, LIENS 49 16/06/2005

Abstract domain

Our main domain is a Cartesian product:

� �

part

�
�

� �� �
� Atom

�
� �� �

� � �

UNIT

� � 	
�
�

�

The set �

part

�

ENV� CU

�

contains any configuration
� �� ��� � � � �

that satis-
fies:

1.

� �� ��� �

env

�

ENV

�

;

2. for any computation unit 	 � unit, there exists a function

�� � � � ��� �
� � �
� � ����
�

CU

� �

unit

� 	 � � � �

such that:

� �� � � Card
� � �� � id�
� ��� �

give-unit

��� � id�
� � � 	 � �

�

Jérôme Feret, LIENS 50 16/06/2005

Partition primitives

We define three primitives to take into account computation unit constraints
in the flow analysis.
Given:

1. � �

,

2.

�� �
� �� �� � � ��� ,

3. mol� Molecule

�
� � �� � � � �� � � �,

4. ��

UNIT

�

;

we define:

1. enforcing equality among computation units:

same-unit
� �

�
�
�

�� �
�

� mol

� �
� SYNC

� � �
�

��� �
�

� mol

�
�

where

� � � � �
give-index

��� �
� � � � �

�
� � � � �

give-index

�� � � � � � �
�

� � � �� ��

.

Jérôme Feret, LIENS 51 16/06/2005

2. enforcing disequality among computation units:

� if Card

� � � � �

,

distinct-unit

� �
�

�
�

��� �
�

� mol

� �
� SYNC

� � �
�

��� �
�

� mol

�
�

where:

� � � � �

give-index

��� �
� � � � �

�
� � � � � �

give-index
��� � � � � � �

�
� � � �� �� �

� otherwise,

distinct-unit

� �
�

�
�

�� �
�

� mol

� �
�

� � � �� � � � if
� �� �
� SYNC

� � � � � �
�

��� �
�

� mol

� � �

mol otherwise

where:

� � � � � � � �

give-index
�� �
� � � � �

�
� � � � � �

give-index

��� � � � � � � �� � ;
3. enforcing an abstract computation unit

set-unit
� �

� ��
�� �
�

� mol

� �
� force-lab

� �
� mol

�
�

where

� � � �

give-index

�� �
� � � �

�
�
� � � � � � � �� ��

.

Jérôme Feret, LIENS 52 16/06/2005

Balance molecule

To simulate an abstract computation step,

we compute an abstract molecule that describes:

� both the threads that are interacting;

� and the � threads that are launched;

we also collect any information about the values in computation units:

� each thread is launched in a computation unit. Each value occurring in
this computation unit may either be fresh, or may come from interacting
threads;
(we take into account these constraints in the abstract molecule).

Jérôme Feret, LIENS 53 16/06/2005

Admissible relations

Then, we consider any potential choice for:

1. the equivalence relation among the computation unit of the

� � � �

threads involved in the computation step;

2. abstract computation units associated to each thread.

Each choice induces some constraints about:

� the control flow;

� the number of threads inside computation units;

We use these constraints to:

1. check that this choice is possible;

2. refine control flow and occurrence counting information;

Then, we simulate the computation step.

Jérôme Feret, LIENS 54 16/06/2005

Broadcast communication: Concrete level

At the concrete level, broadcast computation apply a substitution �.

A thread in the computation unit 	 migrate in the computation unit � � 	 .

Thus, during broadcast communication,

� several computation units may be merged,
ex: dissolved ambient;

� several computation units may be renamed,
ex: the son of a dissolved ambient.

Jérôme Feret, LIENS 55 16/06/2005

Broadcast communication: Abstract level

For any abstract computation unit 	 �

,
we collect the set of families

� � ��� � � �

,
such that:

1. for any

�� �

, � �� � UNIT

�

is an abstract computation unit;

2. for any

�� �

,

� �� � �
 �� � is a function;

3. there exists:

(a) a concrete computation unit 	 such that

�

unit

� 	 � � 	 �

,
(b) a family of concrete computation units

� � � �

such that

�

unit

� � � � � � �� ,
such that for any

�� �

,

�� �

:

(a)

� � � � � � �

implies � � � � �
is not replaced by the substitution;

(b)

� � � � � � �

implies � � � � � � �� �
� id

� �

and

� � � Dom

�

broadcast

�

;

4. for any

� ��
� �� �

,

� � �� �
��

� � �
� � � � � � �
� � � � � � � � � � �.

and simulate the corresponding broadcast substitution.

Jérôme Feret, LIENS 56 16/06/2005

Shared-memory example

A memory cell will be denoted by three channel names, cell , read , write:

� the channel name cell describes the content of the cell:
the process cell

� �

data

�

means that the cell cell contains the information
data, this name is internal to the memory (not visible by the user).

� the channel name read allows reading requests:
the process read

� �

port

�

is a request to read the content of the cell, and
send it to the port port,

� the channel name write allows writing requests:
the process write

� �

data
�

is a request to write the information data inside
the cell.

Jérôme Feret, LIENS 57 16/06/2005

Implementation

System : � (� null)(� create

�
�

[d].Allocate(d))

Allocate(d) : �

(� cell)(� write)(� read)
init(cell)

�

read(read,cell)

�

write(write,cell)

�

d

�

[read ;write]

where

� init(cell) : � cell

�

�

[null]

� read(read,cell) : � � read
�

�
[port].cell

�
�

[u](cell

�

�

[u]

�

port

�

�

[u])

� write(write,cell) : � � write

�
�

[data,ack].cell

�
�

[u].(cell

�

�

[data]

�

ack

�

��

[])

Jérôme Feret, LIENS 58 16/06/2005

Absence of race conditions

The computation unit of a thread is the name of the channel on which it per-
forms its i/o action.

We detect that there is never two simultaneous outputs on a channel opened
by an instance of a (� cell) restriction.

Jérôme Feret, LIENS 59 16/06/2005

Other Applications

By choosing appropriate settings for the computation unit, it can be used to
infer the following causality properties:

� authentication in cryptographic protocols;

� absence of race conditions in dynamically allocated memories;

� update integrity in reconfigurable systems.

Jérôme Feret, LIENS 60 16/06/2005

Overview

1. Abstract Interpretation

2. Environment analysis

3. Occurrence counting analysis

4. Thread partitioning

5. Conclusion

Jérôme Feret, LIENS 61 16/06/2005

Conclusion

We have designed generic analyses:

� automatic, sound, terminating, approximate,

� model independent (META-language),

� context independent.

We have captured:

� dynamic topology properties:
absence of communication leak between recursive agents,

� concurrency properties:
mutual exclusion, non-exhaustion of resources,

� combined properties:
absence of race conditions, authentication (non-injective agreement).

Jérôme Feret, LIENS 62 16/06/2005

Future Work I
Enriching the META-language

� symmetric communication (fusion calculus),

� �

theoretical problem;

� term defined up to an equational theory (applied pi),

� �

analyzing cryptographic protocols with XOR;

� higher order communication;

� �

agents may communicate running programs;

� �

agents may duplicate running programs;

� Using our framework to describe and analyze mobility in industrial ap-
plications (ERLANG).

Jérôme Feret, LIENS 63 16/06/2005

Future works II
High level properties

Fill the gap between:

� low level properties captured by our analyses;

� high level properties specified by end-users.

Our goal:

� check some formula in a logic [Caires and Cardelli:IC’2003/TCS’2004]

� still distinguishing recursive instances

� � [Kobayashi:POPL’2001]

Jérôme Feret, LIENS 64 16/06/2005

Future works III
Analyzing probabilistic semantics

In a biological system, a cell may die or duplicate itself. The choice between
these two opposite behaviors is controlled by the concentration of compo-
nents in the system.

� �

a reachability analysis is useless.

� Using a semantics where the transitions are chosen according to prob-
abilistic distributions:

� �

(e.g token-based abstract machines [Palamidessi:FOSSACS’00])

� Existing analyses consider finite control systems
[Logozzo:SAVE’2001,Degano et al.:TSE’2001]

� We want to design an analysis for capturing the probabilistic behavior
of unbounded systems.

Jérôme Feret, LIENS 65 16/06/2005

