MPRI 2.19 Biochemical Programming Rule-based Modeling Causal analysis

Jérôme Feret

DIENS (ÉNS, CNRS, INRIA, PSL)

kappalanguage.org

Monday, the 8th of January, 2024

Causal traces

Challenges

Compute minimal traces up to commutation of concurrent events.

This is parametric with respect to:

- the notion of state
- the notion of event

which can be seen at different levels of abstraction.

The choices of the syntax and of the semantics matter.

The biochemical structure is required

Reactions:

$$A \rightarrow {}^{\bullet}A$$
$$A \rightarrow A^{\bullet}$$
$$A \rightarrow {}^{\bullet}A^{\bullet}$$
$$A^{\bullet} \rightarrow {}^{\bullet}A^{\bullet}$$

Causal traces:

$$\begin{array}{ccc} A & \to & \bullet A \\ A & \to & A^{\bullet} & \to & \bullet A^{\bullet} \end{array}$$

Counters

(Rates depend on the number of sites already phosphorylated)

Without counters:

Commutative events

Two events λ_a and λ_b commute if they satisfies the following commutative diagrams:

• No conflicts:

• No precedence:

Case study

Musical notation

#1 E C	\$1 (2) R	₿1 <i>R</i> ()	#1 	#1 	#2 0 R	#2 R	‡2 ⊙ R	^{#2} <i>R</i> ⊙	#2 • •	
• •	• •									
								• • •	•	
	(
	Υ 			Ŷ	Y			y 		
		O	O	¢	¢	•	O			
↓	↓	↓	, i	, i	↓	↓	. ↓	. ↓	. ↓	

Musical notation

Musical notation

^{#1} E •	$\stackrel{\sharp 1}{\odot} R$	₿1 	#1 	#1 	#20 R	#2 R	^{♯2}	#2 <i>R</i> ©	#2 • • •	
I I		I I			1					
	1		1	1						
Ċ	Ŏ							Ó	Ó	
Ţ	Ţ							Ţ	Ţ	
l l		1	l I		1	i i				
1	φ	1	1	φ	φ			φ		
	1		1	1				1		
		Ŷ	φ	φ	Ŷ	Ŷ	Ŷ			
+	¥	+	+	+	•	•	+	+	+	

Causal flow

First case study: Rules

First case study: Reachability analysis

First case study: Local transition system

- Local traces focus on each agent individually (they forget about the context);
- They show the full transition system for each agent.

Jérôme Feret

First case study: Causal analysis

First case study: Causal analysis

First case study: Causal analysis

- Stories focus on group of individual proteins that interact between each other; (they keep information about the context);
- They focus on the transitions that make progress.

Second case study: Rules

 a_2^-

Second case study: Local transition system

Second case study: Simplicial complexes

Second case study: Causal analysis

Causal analysis

- Reachability analysis provides a limited amount of information:
 - It computes potential configurations for patterns of interest.
 - But, it does not explain how to go from one configuration to another one.
- Causal analysis provides only a summary of the model:
 - It focuses on the events that are necessary in potential scenarios.
 - Maybe use to debugging
 Why the hell is this pattern reachable?