École Jeunes Chercheuses et Jeunes Chercheurs en Informatique Mathématiques

Rule-based Modeling **Static analysis**

Jérôme Feret

DIENS (ÉNS, CNRS, INRIA, PSL)

kappalanguage.org

Friday, the 23rd of June, 2023

In this talk...

We illustrate the following concepts:

- Galois connections:
 - the upper closure operator $\gamma \circ \alpha$,
 - the lower closure operator $\alpha \circ \gamma$;
- soundness:
 - the abstraction forgets no behavior;
- completeness:
 - sufficient conditions that ensure the absence of false positive;

on an abstraction of the reachable connected components in a site-graph rewriting language.

Overview

- 1. Introduction
- 2. Abstraction: Local views
- 3. Completeness: false positives?
- 4. Local fragment of Kappa
- 5. Conclusion

Signaling Pathways

Eikuch, 2007

Contact map

Causal traces

ODE semantics

ODE semantics

What will happen if more Shc(s) is put in the system?

ODE semantics

EGF pathway (reduced ODEs / with 10 times more of Shc(s))

Jérôme Feret

Friday, the 23rd of June, 2023

Crowding effect

Jérôme Feret

Friday, the 23rd of June, 2023

Early EGF example

Properties of interest

- 1. Show the absence of modeling errors:
 - detect dead rules;
 - detect overlapping rules;
 - detect non exhaustive interactions;
 - detect rules with ambiguous molecularity.
- 2. Get idiomatic description of the networks:
 - capture causality;
 - capture potential interactions;
 - capture relationships between site states;
 - simplify rules.
- 3. Allow fast simulation:
 - capture accurate approximation of the wake-up relation.

Overview

- 1. Introduction
- 2. Abstraction: Local views
- 3. Completeness: false positives?
- 4. Local fragment of Kappa
- 5. Conclusion

Concrete semantics

A rule is a symbolic representation of a multi-set of reactions.

For instance, the rule:

within a model with the following signature:

denotes the following two reactions:

Set of reachable chemical species

Let $\mathcal{R} = \{R_i\}$ be a set of rules.

Let *Species* be the set of all chemical species ($C, c_1, c'_1, \ldots, c_k, c'_k, \ldots \in Species$). Let *Species*₀ be the set of initial chemical species.

We are interested in $Species_{\omega}$ the set of all chemical species that can be constructed in one or several applications of the reactions induced by the rules in \mathcal{R} , starting from the set $Species_0$ of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Inductive definition

We define the mapping \mathbb{F} as follows:

$$\mathbb{F}: \left\{ \begin{array}{ll} \wp(Species) & \to \wp(Species) \\ X & \mapsto X \cup \left\{ \begin{array}{c} c'_j \\ c_1, \dots, c_m \to_{R_k} c'_1, \dots, c'_n \end{array} \right\} \right.$$

The set $\wp(Species)$ is a complete lattice. The mapping \mathbb{F} is an extensive \cup -complete morphism.

We define the set of reachable chemical species as follows:

$$Species_{\omega} = \bigcup \Big\{ \mathbb{F}^n(Species_0) \ \Big| \ n \in \mathbb{N} \Big\}.$$

Galois connection

Let *Local_view* be the set of all local views.

Let $\alpha \in \wp(Species) \rightarrow \wp(Local_view)$ be the function that maps any set of chemical species into the set of their local views.

The set $\wp(Local_view)$ is a complete lattice. The function α is a \cup -complete morphism.

Thus, it defines a Galois connection:

$$\wp(Species) \xleftarrow{\gamma}{\alpha} \wp(Local_view).$$

(The function γ maps a set of local views into the set of complexes that can be built with these local views).

Jérôme Feret

$\gamma \circ \alpha$

 $\gamma \circ \alpha$ is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?

$\alpha \circ \gamma$

 $\alpha \circ \gamma$ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

One more question

 $\alpha \circ \gamma$ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

Abstract reactions

Abstract counterpart to ${\mathbb F}$

We define \mathbb{F}^{\sharp} as:

$$\mathbb{F}^{\sharp}: \left\{ \begin{array}{ll} \wp(Local_view) & \to \wp(Local_view) \\ Y & \mapsto Y \cup \left\{ \mathcal{N}_{j} \middle| \begin{array}{l} \exists R_{k} \in \mathcal{R}, \mathcal{N}_{1}, \dots, \mathcal{N}_{m} \in Y, \\ \mathcal{N}_{1}, \dots, \mathcal{N}_{m} \rightarrow_{R_{k}}^{\sharp} \mathcal{N}_{1}, \dots, \mathcal{N}_{n} \end{array} \right\}.$$

We have:

- \mathbb{F}^{\sharp} is extensive;
- \mathbb{F}^{\sharp} is monotonic;
- $\mathbb{F} \circ \gamma \stackrel{\cdot}{\subseteq} \gamma \circ \mathbb{F}^{\sharp};$
- $\mathbb{F}^{\sharp} \circ \alpha = \alpha \circ \mathbb{F} \circ \gamma \circ \alpha$ (we will see later why).

Soundness

Theorem 1 Let:

- 1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \cup)$ be chain-complete partial orders;
- 2. $D \stackrel{\gamma}{\longleftrightarrow} D^{\sharp}$ be a Galois connection;
- 3. $\mathbb{F} \in D \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ be monotonic mappings such that: $\mathbb{F} \circ \gamma \stackrel{\cdot}{\subseteq} \gamma \circ \mathbb{F}^{\sharp}$;
- 4. $X_0 \in D$ be an element such that: $X_0 \subseteq \mathbb{F}(X_0)$;

Then:

- 1. both $Ifp_{X_0}\mathbb{F}$ and $Ifp_{\alpha(X_0)}\mathbb{F}^{\sharp}$ exist,
- 2. $Ifp_{X_0}\mathbb{F} \subseteq \gamma(Ifp_{\alpha(X_0)}\mathbb{F}^{\sharp}).$

Overview

- 1. Introduction
- 2. Abstraction: Local views
- 3. Completeness: false positives?
- 4. Local fragment of Kappa
- 5. Conclusion

From views to species

For any $X \in \wp(Local_view)$, $\gamma(X)$ is given by a rewrite system: For any $lv \in X$, we add the following rules:

I and semi-links are non-terminal. I is the initial symbol.

Jérôme Feret

Make the demo for egf
 Make the demo for fgf
 Make the demo for Global invariants

Which information is abstracted away ?

Our analysis is exact (no false positive):

- for EGF cascade (356 chemical species);
- for FGF cascade (79080 chemical species);
- for SBF cascade (around 10^{19} chemical species).

We know how to build systems with false positives...

...but they seem to be biologically meaningless.

This raises the following issues:

- Can we characterize which information is abstracted away?
- Which is the form of the systems, for which we have no false positive ?
- Do we learn something about the biological systems that we describe ?

Which information is abstracted away?

Theorem 2 We suppose that:

- 1. (D, \subseteq) be a partial order;
- 2. $(D^{\sharp}, \sqsubseteq, \sqcup)$ be chain-complete partial order;
- 3. $D \stackrel{\gamma}{\longleftrightarrow} D^{\sharp}$ be a Galois connection;
- 4. $\mathbb{F} \in D \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ are monotonic;
- **5.** $\mathbb{F} \circ \gamma \stackrel{\cdot}{\subseteq} \gamma \circ \mathbb{F}^{\sharp}$;
- 6. X_0 , *inv* $\in D$ such that:
 - $X_0 \subseteq \mathbb{F}(X_0) \subseteq \mathbb{F}(inv) \subseteq inv$,
 - $\mathit{inv} = \gamma(\alpha(\mathit{inv}))$,
 - and $\alpha(\mathbb{F}(\mathit{inv})) = \mathbb{F}^{\sharp}(\alpha(\mathit{inv}));$

Then, $I\!f\!p_{\alpha(X_0)}\mathbb{F}^{\sharp}$ exists and $\gamma(I\!f\!p_{\alpha(X_0)}\mathbb{F}^{\sharp}) \subseteq I\!n\!v$.

Proof I/III

We know (eg. see transfinite itterations) that:

- 1. *Ifp* $_{\alpha(X_0)} \mathbb{F}^{\sharp}$ exists;
- 2. there exists an ordinal δ such that $I\!f\!p_{\alpha(X_0)}\mathbb{F}^{\sharp} = \mathbb{F}^{\sharp\delta}(\alpha(X_0))$.

Proof II/III

Let us show that $\gamma(Ifp_{\alpha(X_0)}\mathbb{F}^{\sharp}) \subseteq inv$.

Let us prove instead by induction over δ that $\mathbb{F}^{\sharp\delta}(\alpha(X_0)) \sqsubseteq \alpha(inv)$.

- If $Y \in D^{\sharp}$ is an element such that $Y \sqsubseteq \alpha(inv)$, $\mathbb{F}^{\sharp}(Y) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(inv))$ (\mathbb{F}^{\sharp} is mon) $\mathbb{F}^{\sharp}(\alpha(inv)) = \alpha(\mathbb{F}(inv))$ (assumption) $\alpha(\mathbb{F}(inv)) \sqsubseteq \alpha(inv)$. (α is mon and *inv* is a post) Thus: $\mathbb{F}^{\sharp}(Y) \sqsubseteq \alpha(inv)$
- If Y_i ∈ D^{#I} is a chain of elements such that Y_i ⊑ α(*inv*) for any i ∈ I, then, ⊔Y_i ⊑ α(*inv*) (lub).

So: $\mathbb{F}^{\sharp\delta}(\alpha(X_0)) \sqsubseteq \alpha(inv)$.

Proof III/III

We have:

 $\mathbb{F}^{\sharp\delta}(\alpha(X_0)) \sqsubseteq \alpha(inv).$

Since γ is monotonic:

 $\gamma(\mathbb{F}^{\sharp\delta}(\alpha(X_0))) \subseteq \gamma(\alpha(\operatorname{inv})).$

But, by assumption, $\gamma(\alpha(inv)) = inv$. Thus,

 $\gamma(\mathbb{F}^{\sharp\delta}(\alpha(X_0))) \subseteq inv.$

When is there no false positive ?

Theorem 3 We suppose that:

- 1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ are chain-complete partial orders;
- 2. $(D, \subseteq) \xrightarrow{\gamma} (D^{\sharp}, \sqsubseteq)$ is a Galois connection;
- 3. \mathbb{F} : $D \rightarrow D$ is a monotonic map;
- 4. X_0 is a concrete element such that $X_0 \subseteq \mathbb{F}(X_0)$;
- **5.** $\mathbb{F} \circ \gamma \stackrel{\cdot}{\subseteq} \gamma \circ \mathbb{F}^{\sharp}$;
- **6.** $\mathbb{F}^{\sharp} \circ \alpha = \alpha \circ \mathbb{F} \circ \gamma \circ \alpha$.

Then:

- $Ifp_{X_0}\mathbb{F}$ and $Ifp_{\alpha(X_0)}\mathbb{F}^{\sharp}$ exist;
- $Ifp_{X_0}\mathbb{F} = \gamma(\alpha(Ifp_{X_0}\mathbb{F})) \iff Ifp_{X_0}\mathbb{F} = \gamma(Ifp_{\alpha(X_0)}\mathbb{F}^{\sharp}).$

We need to understand under which assumptions $Ifp_{X_0}\mathbb{F} = \gamma(\alpha(Ifp_{X_0}\mathbb{F}))$.

Jérôme Feret

Local set of chemical species

Definition 1 We say that a set $X \in \wp(Species)$ of chemical species is local if and only if $X \in \gamma(\wp(Local_view))$.

(ie. a set X is local if and only if X is exactly the set of all the species that are generated by a given set of local views.)

Swapping relation

We define the binary relation $\stackrel{\text{SWAP}}{\sim}$ among tuples $Species^*$ of chemical species. We say that $(C_1, \ldots, C_m) \stackrel{\text{SWAP}}{\sim} (D_1, \ldots, D_n)$ if and only if:

Swapping closure

Theorem 4 Let $X \in \wp(Species)$ be a set of chemical species.

The two following assertions are equivalent:

- 1. $X = \gamma(\alpha(X));$
- **2.** for any tuples $(C_i), (D_j) \in Species^*$ such that:
 - $(C_i) \in X^*$,
 - and $(C_i) \stackrel{\mathsf{SWAP}}{\sim} (D_j);$

we have $(D_j) \in X^*$.

Proof (easier implication way)

lf:

- $X = \gamma(\alpha(X))$,
- $(C_i)_{i\in I}\in X^*$,
- and $(C_i)_{i\in I} \overset{\mathsf{SWAP}}{\sim} (D_j)_{j\in J};$

Then:

```
we have \alpha(\{C_i \mid i \in I\}) = \alpha(\{D_j \mid j \in J\}) (because (C_i) \stackrel{\text{SWAP}}{\sim} (D_j))
and \alpha(\{C_i \mid i \in I\}) \subseteq \alpha(X) (because (C_i) \in X^* and \alpha mon);
so \alpha(\{D_j \mid j \in J\}) \subseteq \alpha(X);
so \{D_j \mid j \in J\} \subseteq \gamma(\alpha(X)) (by def. of Galois connections);
so \{D_j \mid j \in J\} \subseteq X (since X = \gamma(\alpha(X)));
so (D_i)_{i \in J} \in X^*.
```

Proof: more difficult implication way

For any $X \in \wp(Local_view)$, $\gamma(X)$ is given by a rewrite system: For any $Iv \in X$, we add the following rules:

I and semi-links are non-terminal. I is the initial symbol.

Proof (more difficult implication way)

We suppose that X is close with respect to $\stackrel{\text{SWAP}}{\sim}$. We want to prove that $\gamma(\alpha(X)) \subseteq X$.

We prove, by induction, that any open complex that can be built by gathering the views of $\alpha(X)$, can be embedded in a complex in *X*:

- By def. of α , this is satisfied for any local view in $\alpha(X)$;
- This remains satisfied after unfolding a semi-link with a local view;
- This remains satisfied after binding two semi-links.

Initialization

Unfolding a semi-link

Unfolding a semi-link

Friday, the 23rd of June, 2023

Binding two semi-links

Consequences

Let $Y \in \wp(Local_view)$) be a set of local views such that $\alpha(\gamma(Y)) = Y$.

- 1. Each open complex *C* built with the local views in *Y* is a sub-complex of a close complex C' in $\gamma(Y)$. (by replacing *X* by $\gamma(Y)$ in the previous proof)
- 2. When considering the rewrite system that computes $\gamma(Y)$, any partial rewriting sequence can be completed in a successful one.

Thus:

(a) $\gamma(Y)$ is finite if and only if the grammar has a finite set of prefixes (and the latter is decidable);

(b) We have $\mathbb{F}^{\sharp} \circ \alpha = \alpha \circ \mathbb{F} \circ \gamma \circ \alpha$.

Overview

- 1. Introduction
- 2. Abstraction: Local views
- 3. Completeness: false positives?
- 4. Local fragment of Kappa
- 5. Conclusion

Outline

We have proved that:

- if the set $Species_{\omega}$ of reachable chemical species is close with respect swapping $\stackrel{\text{SWAP}}{\sim}$,
- then the reachability analysis is exact (i.e. $Species_{\omega} = \gamma(Ifp_{\alpha(Species_0)}\mathbb{F}^{\sharp})$).

Now we give some sufficient conditions that ensure this property.

Sufficient conditions

Whenever the following assumptions:

- 1. initial agents are not bound;
- 2. rules are atomic;
- 3. rules are local:
 - only agents that interact are tested,
 - no cyclic patterns (neither in lhs, nor in rhs);
- 4. binding rules do not interfere i.e. if both:
 - A(a{m}[.],S),B(b{n}[.],T) \rightarrow A(a{m}[1],S),B(b{n}[1],T)
 - and A(a{m'}[.],S'),B(b{n'}[.],T') \rightarrow A(a{m'}[1],S'),B(b{n'}[1],T'),

then:

- A(a{m}[.],S),B(b{n'}[.],T') \rightarrow A(a{m}[1],S),B(b{n'}[1],T');
- 5. chemical species in $\gamma(\alpha(Species_{\omega}))$ are acyclic,

are satisfied, the set of reachable chemical species is local.

Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this property:

- We consider tuples of complexes in which the same kind of links occur twice.
- We want to swap these links.
- We introduce the history of their computation.
- There are several cases...

First case (I/V)

First case (II/V)

just before the links are made

First case (III/V)

we suppose we can swap the links

First case (IV/V)

Then, we ensure that further computation steps:

- are always possible;
- have the same effect on local views;
- commute with the swapping relation $\stackrel{\text{SWAP}}{\sim}$.

First case (V/V)

Second case (I/II)

we assume that the chemical species *C* is acyclic

Second case (II/II)

Sufficient conditions

Whenever the following assumptions:

- 1. initial agents are not bound;
- 2. rules are atomic;
- 3. rules are local:
 - only agents that interact are tested,
 - no cyclic patterns (neither in lhs, nor in rhs);
- 4. binding rules do not interfere i.e. if both:
 - A(a{m}[.],S),B(b{n}[.],T) \rightarrow A(a{m}[1],S),B(b{n}[1],T)
 - and A(a{m'}[.],S'),B(b{n'}[.],T') \rightarrow A(a{m'}[1],S'),B(b{n'}[1],T'),

then:

- A(a{m}[.],S),B(b{n'}[.],T') \rightarrow A(a{m}[1],S),B(b{n'}[1],T');
- 5. chemical species in $\gamma(\alpha(Species_{\omega}))$ are acyclic,

are satisfied, the set of reachable chemical species is local.

Third case (I/III)

Third case (II/III)

Third case (II/III)

$$Species_{0} \stackrel{\Delta}{=} R(a\{u\}[.]) \qquad \leftrightarrow R(a\{p\}[.]) \\ R(a\{u\}[.]), R(a\{u\}[.]) \rightarrow R(a\{v\}[1]), R(a\{u\}[1]) \\ R(a\{p\}[.]), R(a\{u\}[.]) \rightarrow R(a\{p\}[1]), R(a\{p\}[1]) \\ R(a\{p\}[.]), R(a\{p\}[.]) \rightarrow R(a\{p\}[.]), R(a\{p\}[.]) \\ R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]), R(a\{p\}[.]),$$

 $\begin{aligned} &\mathsf{R}(a\{u\}[1]),\mathsf{R}(a\{u\}[1])\in Species_{\omega}\\ &\mathsf{R}(a\{p\}[1]),\mathsf{R}(a\{p\}[1])\in Species_{\omega}\\ &\mathsf{But}\;\mathsf{R}(a\{u\}[1]),\mathsf{R}(a\{p\}[1])\notin Species_{\omega}. \end{aligned}$

$$\begin{array}{l} Species_{0} \stackrel{\Delta}{=} A(a\{u\}[.]), B(a\{u\}[.]) \\ Rules \quad \triangleq \left\{ \begin{array}{l} A(a\{u\}[.]), B(a\{u\}[.]) \rightarrow A(a\{u\}[1]), B(a\{u\}[1]) \\ A(a\{u\}[1]), B(a\{u\}[1]) \rightarrow A(a\{p\}[1]), B(a\{u\}[1]) \\ A(a\{u\}[1]), B(a\{u\}[1]) \rightarrow A(a\{u\}[1]), B(a\{p\}[1]) \end{array} \right\} \end{array} \right\}$$

$\begin{array}{l} \mathsf{A}(a\{u\}[1]), \mathsf{B}(a\{p\}[1]) \in Species_{\omega} \\ \mathsf{A}(a\{p\}[1]), \mathsf{B}(a\{u\}[1]) \in Species_{\omega} \\ \mathsf{But} \ \mathsf{A}(a\{p\}[1]), \mathsf{B}(a\{p\}[1]) \notin Species_{\omega}. \end{array}$

$$\begin{array}{l} Species_0 \stackrel{\Delta}{=} & \mathsf{A}(a\{u\}[.]) \\ \textbf{Rules} \stackrel{\Delta}{=} & \begin{cases} \mathsf{A}(a\{u\}[.]) \leftrightarrow \mathsf{A}(a\{p\}[.]) \\ \mathsf{A}(a\{u\}[.]), \mathsf{A}(a\{p\}[.]) \rightarrow \mathsf{A}(a\{u\}[1]), \mathsf{A}(a\{p\}[1]) \end{cases} \end{array}$$

A(a{u}[1]),A(a{p}[1]) \in Species_{ω} But A(a{p}[1]),A(a{p}[1]) \notin Species_{ω}.

$$Species_{0} \stackrel{\Delta}{=} R(a[.],b[.])$$

Rules
$$\stackrel{\Delta}{=} \{ R(a[.],b[.]), R(a[.]) \rightarrow R(a[.],b[1]), R(a[1]) \}$$

R(a[.],b[2]),R(a[2],b[1]),R(a[1],b[.])∈ Species_{ω} But R(a[1],b[1]) \notin Species_{ω}.

Overview

- 1. Introduction
- 2. Abstraction: Local views
- 3. Completeness: false positives?
- 4. Local fragment of Kappa
- 5. Conclusion

Conclusion

- A scalable static analysis to abstract the reachable chemical species.
- A class of models for which the abstraction is complete.
- Many applications:
 - idiomatic description of reachable chemical species;
 - dead rule detection;
 - rule decontextualization;
 - computer-driven kinetic refinement.
- It can also help simulation algorithms:
 - wake up/inhibition map (agent-based simulation);
 - flat rule system generation (for bounded set of chemical species);
 - on the fly flat rule generation (for large/unbounded set)

Bibliography

- Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97
- Jérôme Feret, Kim Quyên Lý: Reachability Analysis via Orthogonal Sets of Patterns. SASB 2018: 27-48
- Pierre Boutillier, Ferdinanda Camporesi, Jean Coquet, Jérôme Feret, Kim Quyên Lý, Nathalie Théret, Pierre Vignet: KaSa: A Static Analyzer for Kappa. CMSB 2018: 285-291