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Abstract

This problem investigates the impact of structural symmetries on the stochastic behavior of Kappa
models. Structural symmetries emerge from equivalence relationships among pairs of sites. That is to
say sites having exactly the same capabilities of interaction. We will consider two case studies. In the
first one, we introduce a model in which two sites have the same capabilities of interaction in any context.
In the second one, we examine a model in which two sites have the same capabilities of interaction only
when a third one is activated. We study the impact of these symmetries under the lens of forward
bisimulations (which enable to quotient the underlying transition system by discarding the difference
between symmetric states) and backward bisimulations (which highlight statistical invariants).

1 Weighted transition systems

Firstly, we introduce the notion of weighted transition systems for describing Markov chains. To make the
things simpler, we consider finite Markov chains with discrete time evolution (finite DTMC) only.

Definition 1.1 A weighted transition system is a pair (Q,w) where Q is a finite set of elements, called
states, and w is a function mapping every pair of states to a non negative real numbers (in Rxq) such that
for every state g € Q, the sum 3, ,.ow(q,q') is equal to 1.

In fact, for every state ¢, the function mapping every state ¢’ to the real value w(q,q’) is the finite
probability distribution for the next state of the system. Whenever w(q,q’) = 0 we say that there is no
transition from the state ¢ to the state ¢/, otherwise we say that there is a transition from the state ¢
to the state ¢’ with probability w(q,q’). An example of weighted transition system is depicted in Fig. 1.
States are described as ellipses labeled by names whereas transitions are denoted as edges labelled with their
probabilities.

We assume until the rest of the section that we are given (Q,w) a weighted transition system.

Definition 1.2 (Trace) A (finite) trace is a finite sequence of elements of the set Q.
The length of a trace is the number of states minus 1.

The probability of the trace T = (¢i)o<i<n 18 defined as follows:

P(7 | qo) = n w(gi—1, ).

1<isn

As a direct consequence, a trace has probability 0 whenever it contains two consecutive states not related
by any transition. Moreover, we notice that traces of length 0 have probability 1.
Now we define the notion of flow between two sets of states.

Definition 1.3 (Flow) The flow FLOW(X, X') from a set of states X < Q into a set of states X' < Q is
defined as follows:

FLoW(X,X) 2 Y w(g,q).
qeX,q'eX’
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Figure 1: A weighted transition system.

2 Bisimulation over weighted transition system

2.1 Reminder on equivalence relations

The goal of this section is to introduce several notions of equivalence between the states of a weighted
transition system. Our goal is to lump the states of the system accordingly.

Definition 2.1 (relation) A (binary) relation over a set X is a subset of X?2.

Whenever R is a relation over a set X, the notation ¢ R ¢’ stands for (¢,q’) € R.

Definition 2.2 (equivalence relation) A relation R over a set X is an equivalence relation whenever it
is reflerive, symmetric, and transitive.
That is to say that, for every x,y,z € X:

o (reflexivity) x R x;
o (symmelry) xt Ry = y R x;
o (transitivity) [t Ry ry R z= xR z].
Definition 2.3 An equivalence relation is usually denoted as ~. Given an equivalence relation ~ over a set

X and an element x € X, the set of elements 2’ such that © ~ x’ is called the ~-equivalence class of the
element x and is denoted as [x].. The set of ~-equivalence classes is denoted as X..

2.2 Forward bisimulation

Now we study the notion of forward bisimulation which enables to lump the states of a weighted transition
system.



Definition 2.4 (Forward bisimulation) Let (Q,w) a weighted transition system and ~ be an equivalence
relation over the set Q.

The relation ~ is called a forward bisimulation over the weighted transition system (Q,w) if and only if
for every q,q',q" such that g ~ ¢', the following equation:

FLow({g}, [¢"]~) = FLow({'}, [¢"]~)

is satisfied.

Question 1 (**) Propose the largest forward bisimulation ~ over the weighted transition systems depicted
in Fig. 1 such that the state x is ~-equivalent to no other state.
That is to say that the relation ~ should satisfy the following properties:

1. ~ is a forward bisimulation over the weighted transition system depicted in Fig. 1;

2. [a]. = {a};

3. for every two states q,q € Q and for every forward bisimulation ~' over the weighted transition system
depicted in Fig. 1 such that [x] = {z}, we have ¢ ~' ¢ = q ~ ¢'.

Question 2 (*) Let (Q,w) a weighted transition system and ~ a forward bisimulation over Q. Show that
there exists a weighted transition system (QFf, w') such that both following properties are satistified:

1. the states of the new weighted transition system are the ~-equivalence class of the initial one (i.e. QF =

[Q]~);

2. for every trace 7% = (C;)o<i<n in the new weighted transition system and any initial state ¢* € Cy, the
probability (in the new weighted transition system) of the trace T is equal to the sum of the probabilities
(in the former weighted transition system) of the traces (¢;)o<i<n Such that qo = ¢* and ¢; € C; for
every i between 1 and n.

2.3 Backward bisimulation

Now we study the notion of backward bisimulation which highlights statistical invariants about the time
evolution of the state distribution of the underlying weighted transition system.

Definition 2.5 (Backward bisimulation) Let (Q,w) a weighted transition system and ~ be an equiva-
lence relation over the set Q.
The relation ~ is called a backward bisimulation if and only if for every q,q',q" such that ¢ ~ ¢, the
following equation:
FLOW([¢"]~, {¢}) = FLow([¢"]~, {d'})

is satisfied.

Question 3 (**) Propose the largest backward bisimulation ~ over the weighted transition systems that is
depicted in Fig. 1.
That is to say that the relation ~ should satisfy both following properties:

1. ~ is a backward bisimulation over the weighted transition system depicted in Fig. 1;

2. for every states q and ¢’ and for every backward bisimulation ~' over the weighted transition system
depicted in Fig. 1, we have ¢ ~' ¢ = q ~ ¢ .



Question 4 (***) Let (Q,w) a weighted transition system and ~ a backward bisimulation over Q.

Let g* be a state such that [¢*]~ = {¢*} and n be a natural number.

Show that for every two states q,q' € Q such that q ~ ¢', the probability that the system ends in state q
after n computation steps knowing that it has started in state q* is equal to the probability that the system
ends in that ¢’ after n computations knowing that it has started in state q*.

That is to say that the sum of the probabilities of all the traces of n transitions starting in state ¢* and
ending in state q is equal to the sum of the probabilities of all the traces of n transitions starting in state q*
and ending in state q .

Question 5 (**) Let (Q,w) a weighted transition system and ~ a backward bisimulation over Q.
Let g* be a state such that [¢*]~ = {q*}.
Show that there exists a weighted transition system (QF, w®) such that

1. the states of the new weighted transition system are the ~-equivalence class of the initial one (i.e. QF =

[Q]~)

2. For every trace 7 = (Cy)o<i<n in the new weighted transition system such that Coy = {q*}, the proba-
bility (in the new weighted transition system) of the trace 7% is equal to the sum of the probabilities (in
the former weighted transition system) of the traces (¢;)o<i<n Such that g; € C; for every i between 0
and n.

3 Bisimulations induced by perfect symmetries among pairs of sites
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Figure 2: A set of rules with two interaction sites having the same capabilities of interaction.

In this section, we consider the model that is made of the set of rules given in Fig. 3. In this model, the
role of sites r and [ is intuitively the same. The goal of this section is to investigate what it means with
respect to the set of rules and to extrapolate which bisimulations are induced by this property.

Definition 3.1 The symmetric of an agent is obtained by swapping the states of the sites | and r of this
agent.
In particular:

1. If this agent contains neither the site I, nor the site r, the agent remains unchanged;
If this agent contains the site I, but not the site r, the site | is replaced with the site r;

If this agent contains the site T, but not the site I, the site r is replaced with the site I;

e

If this agent contains both the site | and the site r, the site | takes the former state of the site r while
the site r takes the former state of the site l.

Definition 3.2 The symmetric of a rule is obtained by taking the symmetric of the left hand side and the
symmetric of the right hand side.

Question 6 (*) Show that the symmetric of any rule of the model, is also a rule of the model with the same
rate.



Question 7 (*) Draw the weighted transition system that is induced by the rules of the model.
So as to make this transition system easy to write, we consider only the states made of a single agent.
We recall that, an event e stemming from a state q is defined by a rule r and an embedding from the left
hand side of the rule r into the state q. The propensity of the event e is equal to the rate of the rule. The
state ¢’ that is reached when applying the event is defined by the operational semantics of Kappa. Then the
propability w(q,q’) is defined as the quotient between the sum of the propensities of the events from the state
q to the state ¢' and the sum of the propensities of all the events stemming from the state q.

Question 8 (*) Show that the equivalence relation that gathers states by symmetry-classes induces both a
forward bisimulation and a backward bisimulation.

4 Bisimulations induced by contextual symmetries among pairs of
sites
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Figure 3: A set of rules in which two sites have the same capabilities of interactions only when a third site
is activated.

In this section, we consider the model that is made of the set of rules given in Fig. ?7?7. In this model,
the sites [ and r get sequentially activated/deactivated when the site ¢ is not activated, whereas they get
activated/deactivated in parallel when this site is activated. Intuitively, the sites [ and r have the same
capabilities of interaction only when the site ¢ is activated. Hence the symmetry between the site [ and
r is contextual. The goal of this section is to investigate whether contextual symmetries enjoy the same
properties as uncontextual ones and to adapt the framework accordingly.

Question 9 (*) Show that the symmetric of any rule of the model that requires the site t to be phosphory-
lated, is also a rule of the model with the same rate.

Question 10 (*) Draw the weighted transition system that is induced by the rule of the model.
So as to make this transition system easy to write, we consider the states made only of a single agent.



We consider the equivalence relation ~ that identifies only the two following configurations:

(i.e. any other configuration is the only element of its equivalence class.)

Question 11 (*) Show that the equivalence relation ~ induces both a forward bisimulation and a backward
bisimulation.

Question 12 (*) In the rules given in Fig. 7?7, we propose to replace the rule tp by the following one:

ﬁ tI)’ ﬁ
— @1

Is the relation ~ still a forward bisimulation over the underlying weighted transition system?
Is the relation ~ still a backward bisimulation over the underlying weighted transition system?

Question 13 (*) In the rules given in Fig. 7?7, we propose to replace the rule tu by the following one:

tu,
— Q1

Is the relation ~ still a forward bisimulation over the underlying weighted transition system?
Is the relation ~ still a backward bisimulation over the underlying weighted transition system?

Question 14 (****%) Propose a criterion over the rules and the state space of a Kappa model so as to
ensure that a contextual symmetry among a pair of sites induces a forward bisimulation over the underlying
weighted transition system.

Question 15 (****%) Propose a criterion over the rules and the state space of a Kappa model so as to
ensure that a contextual symmetry among a pair of sites induces a backward bisimulation over the underlying
weighted transition system.
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