
Investigation of a biological repair scheme

Vincent Danos1, Jérôme Féret2, Walter Fontana3, Russell Harmer4, and Jean
Krivine3

1 University of Edinburgh
2 INRIA, École Normale Supérieure

3 Harvard Medical School
4 CNRS, Université Paris-Diderot

Abstract. This note details an interaction pattern for the allocation of a
scarce biological resource where and when it is needed. It is entirely based
on a mass action stochastic dynamics. Domain-domain binding plays a
crucial role in the design of the pattern which we therefore present using
a rule-based approach where binding is an explicit primitive. We also a
use a series of refinements, starting from a very simple interaction set,
which we feel gives an interesting and intuitive rationale for the working
of the final repair scheme.

1 Introduction

What is a scheme the reader will ask. As we understand it in this paper, a
scheme or a pattern is a set of interactions between biological agents (we use
the neutral term agent throughout this paper, but one can think of them as
idealised proteins) which has a noteworthy property and which one can study
and recognise under various guises in various systems. A well-known example is
that of a reversible covalent modification system that can be made to behave,
under well-chosen conditions, as an ultra-sensitive switch [1]. Another related
one is that of an autophosphorylating kinase that shows bistable behaviour and
can be used as a memory [2]. Importantly, the often non-intuitive kinetic and
topological aspects of biological schemes are integral to their functioning. As
such, they differ from static network motifs à la Alon [3] which are singled out
because of their statistical properties, not their dynamical ones.

Consider a scheme where an agent X that can be activated by two upstream
‘input’ agents I1, I2, and can in turn activate two downstream ‘output’ ones O1,
O2. Suppose that in the sole presence of I1 only O1 gets significantly activated.
From these simple premisses one can obtain a wide range of behaviour. Specifi-
cally, I2 can be made to completely override the effect of I1, meaning that when
I2 is present the only significant amount of downstream activity is that of O2 ir-
respective of the presence of I1. However this is only when the interaction rates,
copy numbers (eg X must be saturated by the inputs Is), and binding interfaces
(eg X must use a different binding interface for the inputs Is and for the outputs
Os) are well chosen. Thus the corresponding static motif would retain very little
of the information on which the scheme hinges, it would be too abstract a view



on it. Indeed many behaviours can be extracted even from the basic feed-forward
motif [4] (see also Ref. [5] for an extensive discussion of the under-determination
of motifs).

The situation is similar for the scheme we will define in this note. One has a
target agent T that sporadically decays into a bad state. Repair is provided by
an agent K, but in some rare cases also needs a helper agent H. The question is
how to allocate this scarce and scarcely needed repair resource H so that repair
proceeds efficiently. In a world of centralised computations, to get that resource
when and where it is needed is a trivial question, as one can just order the Hs
to go where they are needed. Our scheme offers a distributed computational
solution that relies entirely on mass action (ie on chance collisions). Incidentally,
this pattern was taken form a larger model where it is combined with the setting
up of a transient memory to obtain what one might call and error-correcting
mechanism.5 Indeed schemes will often be combined in a biological situation to
obtain interesting effects. We are not addressing here the interesting and difficult
question of how schemes should be composed, though.

There comes the question of what notation or language to use to represent
and study such schemes. As said, they often use in a crucial fashion the dynamics
of domain-domain binding -which means both the kinetic aspects of binding and
the topological constraints induced by the agents’ domain structures which may
or may not allow simultaneous binding. There is a recent and growing recogni-
tion that such structural detail matters in the statistics of the static properties
of protein networks [6]. We believe the same broadly holds for the understanding
of their dynamics and have developed in the Kappa project [7] a simple notation
for binding which is particularly useful for combinatorial situations (as eg in
cellular signalling) and which we will use here. Note that Kappa is one of the
few languages to propose such a direct notation (see also the BNG language [8]).
Basic interactions are expressed as rules -not as reactions as in the traditional ap-
proach using differential equations or Petri nets, or as agent-centric interactions
as in process-algebraic approaches [9].

As we will see below, the presentation of the scheme dynamics as a set of
rules not only allows for a crisp description, but also allows one to derive the
scheme by a succession of rule refinements, starting from a very basic model. We
believe this derivation illuminates the function of our interaction pattern and
demonstrates the relevance of refinement as an explanatory force (see Ref. [10]
for more examples, and a rigourous account of refinement).

We postpone the discussion of the significance of the notion of refinement,
and how one can think of it in relation to the actual evolution of protein net-
works, to the concluding remarks, and start with an informal presentation of our
representational language Kappa (§2), and an outline of the paper (§3).

5 A model of epigenetic information maintenance, unpublished work in collaboration
with Arndt Benecke.

2



2 Kappa, briefly

Kappa is a fully implemented stochastic calculus of binding and modification
that addresses the modelling of fine-grained regulation in biological systems.6
The unique construct known to Kappa is called an agent (usually meant to rep-
resent a protein), a name (eg identifying the corresponding protein) and a set of
sites (eg the protein binding domains and modifiable amino-acids). Each site can
carry a value, generally used to represent post-translational modifications. The
set of values taken by the sites of an agent is commonly called the agent internal
state, and an event that modifies the agent internal state is called a modification.
Agents can also use sites to bind other agents -with the key restriction that a site
can be used to bind at most one other site at a time. Often the modification of
an agent results from another agent binding and modifying it. This is a natural
way to represent, for instance, the basic interaction of a substrate with a kinase
(as in the example right below).

Events such as binding, unbinding, and modification are described by rules
specifying under which condition they may happen. This places Kappa in the
family of rule-based modelling languages; another member of this small family
is the BNG language. Rules have rates, and following the mass action principle,
the likelihood that a given rule applies to a particular system x is proportional to
the number of its instances in x multiplied by its rate, aka the rule’s activity. The
accompanying time advance is on average inverse to the cumulated activity of
all rules operating on x. So Kappa is a quantitative framework. The particular
case where agents have no sites, and therefore cannot be bound or modified
is equivalent to stochastic Petri nets (aka flat chemical reactions, or multiset
rewriting). In the presence of sites however, the underlying rewriting theory is
richer and is best seen as a kind of stochastic graph rewriting (this point of view
is developed in Ref. [10]).

Kappa uses concurrency concepts to dissect the intricate causation mecha-
nisms one finds in protein networks [7]. Tracking down the fate of an agent and
accessing the fine causal structure that produces an event of interest is useful as
we will see below. In our particular example another interest of using Kappa is
that we can derive it by a succession of refinements.

Before we turn to describing our strategy to derive our scheme, let us begin
with a simple kinase and substrate example to explain the notation we use and
illustrate the notion of refinement.

2.1 An example

Consider a kinase K, and T its target, and suppose T has two phosphorylatable
sites x and y; one can decompose each phosphorylation event in a triplet of
elementary ones 1) K binds its target T at site x or y, 2) K may (but need not)
phosphorylate the site to which it is bound, 3) K dissociates from T.
6 The Kappa implementation includes a graphical interface, is free for academic usage,

and can be obtained at support@plectix.com.

3



This translates in the following rules (three per sites in T):

K(a), T(x)→ K(a1), T(x1)
r1 := K(a1), T(x1)→ K(a), T(x)
K(a1), T(x1

u)→ K(a1), T(x1
p)

K(a), T(y)→ K(a1), T(y1)
K(a1), T(y1)→ K(a), T(y)
r2 := K(a1), T(y1

u)→ K(a1), T(y1
p)

In the textual notation we are using here, internal states are shown as subscripts
u (unphosphorylated) and p (phosphorylated) to the sites they are attached to;
bonds are represented as shared superscripts across agents to indicate the two
endpoints of a link. The number chosen to name a link is irrelevant, as long as
it is unique. A double arrow indicates a reversible rule. The left hand side of a
rule specifies a condition to trigger the rule, while the right hand side specifies
the various changes occurring as a consequence of applying the rule. Thus the
third reaction says that when K is bound to T at x, x may be phosphorylated.

Importantly, the sites of an agent need not all be present in a rule, eg in the
first rule above, T does not mention y. Likewise, if a site is mentioned at all, its
internal state may be left unspecified, eg in the same first rule one does not say
whether x in T is phosphorylated or not. This is the trivial but crucial ‘don’t care,
don’t write’ convention: only the conditions bearing on the application of a rule
need to be represented. Not to put to fine a point on it, the agility of the rule-
based approach relies entirely on the ability to trigger events based on partial
conditions, an ability that ordinary methods do not have, and process-algebraic
methods only partially have (for a more extensive account of the rule-based
accrued flexibility see Ref. [11]). Technically partial matches rely on a suitable
notion of site graph morphism [10].

2.2 Variants

Another point worth noticing is that Kappa’s fine-grained notation forces one to
make one’s mechanistic choices explicit. Let us consider a few possible variants
(among many) of the rules above:

K(a1), T(x1, yu)→ K(a1), T(x1, yp)
r′
1 := K(a1), T(x1

p)→ K(a), T(xp)
r′
2 := K(a1), T(x?

p, y
1
u)→ K(a1), T(x?

p, y
1
p)

The first rule extends the modification capacities of K by allowing it to modify
T at site y while being bound at x (when y is free); one sometimes say K is
processive in this case. The second rule r′

1 allows K to dissociate from T at x
only when x is modified. The third rule r′

2 forces the modification order, that is
to say y can only be modified after x is; it introduces a new notation, using a ?
superscript on x to mean that x can be free or not -all that counts is that x is
modified.

4



One can combine the above variants, and exchange the roles of x, and y to
obtain a rather large set of variations on what is presumably the simplest scheme,
ie covalent modification. These various choices are just as key to the dynamics as
rule rates are. As said in the introduction access to this fine-grained description
is crucial to the definition of a scheme.

The variant rules r′
1, r′

2 have in common that they are more specific than
respectively r1, and r2. For instance, r′

1 now ensures that K does not let go
of its substrate too early, whereas this was possible according to the original
dissociation rule r1. By setting a high rate r′

1 one could also make sure it does
let go of the substrate fast when it has been modified. (Presumably one will find
cases where selection has led to the evolution of such smart enzymes.)

The substitution of r1 with the smarter r′
1, or r2 with r′

2 are simple exam-
ples of refinement, whereby a rule is replaced with one or more rules that are
more specific than the initial rule. While working out in full generality when a
refinement is neutral [10], ie when it preserves the underlying dynamics, is not
easy, for the simple refinements we need here, an intuitive understanding of the
notion will be enough.

3 Outline

Now that we have a better idea of the language we will use, let us explain how
we organise the derivation and study of our pattern in the next section (§4).

We first consider a model where:
- a target agent T1(k) has one site k which can be in one of two internal states,
written T1(kyes), and T1(kno) (as in §2, internal states are shown as subscripts);
- damage happens to T1 which means its unique site can spontaneously switch
or decay from the ‘yes’ to the ‘no’ state: T1(k?

yes)→ T1(k?
no)

- damage can be subsequently repaired by an agent K.
(Remind that the superscript ? in the rule above indicates that this event

may happen irrespective of whether k is bound or free.)
In order to calibrate the model and measure how well it is doing, we observe

how many T1s are free in the ‘yes’ state, and how many of these are ‘sleeping’
-meaning they are in the correct ‘yes’ state but still bound to K. It is rather easy
then to build a basic model that works to our satisfaction in terms of efficiency,
ie how fast T1 is repaired, and this concludes our first step.

The next step consists in perturbing the initial model by introducing a variant
T2 of our initial target agent T1. This new agent T2 will have the same rules as T1
except for repair. Specifically, we will suppose that in order to repair T2, K needs
to be bound to a helper agent H. Intuitively one can think of T2 as being more
fragile or needing more work to be put back in the correct ‘yes’ state. Obviously,
if no rule could sense the T1, T2 distinction the behaviour would be unchanged,
but precisely the postulated fragility of T2 introduces such a distinction.

As we will see, this second step can presented by ways of refinement. Under
quite general conditions it will break down the repair mechanism, the reason for
this being that Hs are distributed uniformly across Ks and will have no reason to

5



be where they are needed, ie with these particular Ks that happen to bind a T2
and not a T1. In fact, the smaller the fraction of T2 and the more their necessary
helpers H will be ‘diluted’.

So the next and last step aims at repairing the repair system. One cannot
order an H to go where it is needed, however it is entirely possible to trap it
there and have it stay longer. To do so, it suffices to refine the rule in charge of
the dissociation of the KH bond and modulate its rate depending on whether K is
bound to a T2 (low rate) or not (high rate, including the case K is not bound to a
target). With this counter-refinement one obtains the pattern we are interested
in. No central scheduling mechanism directs Hs to T2s, the refinement just makes
the places in need of an H stickier. Yet this purely local trick works just as well as
a centralised one would. It is an altogether different (and interesting) question
to know whether this construct is also something one can engineer in vivo.

4 The scheme

With our plan in place we can turn to the next section. All the code presented
there is written in the syntax of the tool we use to examine the behaviour of our
succession of models, and can be used as is. For this to be possible we switch now
to a pure ascii notation, whereas so far we had used more mathematical notations
with internal states as subscripts and bindings as exponents. Hopefully the slight
change of syntax will feel natural.

4.1 A simple repair model

To begin with we have three agents K(t, h), H(k), T1(k) with the interaction rules
shown below. Stochastic rule rates are indicated on the right of each rule.7

K(t!1),T1(k!1) -> K(t),T1(k) @ 100
K(t),T1(k) -> K(t!1),T1(k!1) @ 1
K(t!1),T1(k~no!1) -> K(t!1),T1(k~yes!1) @ 50

T1(k~yes?) -> T1(k~no?) @ 1

K(h!1),H(k!1) -> K(h),H(k) @ 500
K(h),H(k) -> K(h!1),H(k!1) @ 10

One recognises the first three rules as a simple modification triplet, where neither
the association, nor the dissociation rule are smart in the sense of the preceding
discussion (§2.2). The fourth rule expresses T1’s spontaneous decay. At this stage
H plays no role, and is just a passive bystander that may bind K as specified in
the last two rules. Not however, while the KH binding has the same equilibrium
constant has that of the KT one, we have this binding more labile by using higher
on- and off-rates. This will play a role in the implementation of our scheme.
7 Remind that a stochastic bimolecular rate γ is related to its intensive deterministic

analogue as γAV = k where V is a volume and A is Avogadro’s number.

6



As initial conditions we pick:

%init: 10 * (K(h,t))
%init: 10 * (H(k))
%init: 100 * (T1(k~yes))

As for observables, meaning the objects that we want the simulation to keep
track of, as said in §3, we pick the free T1(kyes), the sleeping ones T1(kyes) where
T1 is bound on k and yet in a proper internal state, and K(h ) the number of Ks
bound to an H -an observable which allows us to monitor the saturation of K on
its H side (of which more later):

%obs: T1(k~yes)
%obs: T1(k~yes!_)
%obs: K(h!_)

This completes the definition of our first model and with this choice of pa-
rameters, we find that at steady state about 60% of the T1s are repaired and
free (Fig. 1). The remainder of the T1s can be considered as being under repair,
including those 5% T1s that are already repaired but not yet released by K.

To ease the reading by reducing variance, copy numbers are rescaled by a
factor of 10 in all plots (and bimolecular rates compensated accordingly).

Fig. 1. A run of the simple repair model (rescale 10, 500 data points): about 60% of
the T1s are free and in the ‘yes’ state; about another 5% are yet to be released; finally
about 30% of the Ks are bound to an H.

7



4.2 Introducing T2

We now take a strict duplicate of T1 which we call T2 with identical rules. To do
this we could use a refinement introducing a fictitious site of T1 with an internal
state telling whether the agent is a T1, or a T2. (In general, one can encode agent
names as internal states that no rule can ever change.)

Equivalently, we just copy the rules:

K(t!1),T2(k!1) -> K(t),T2(k) @ 100
K(t),T2(k) -> K(t!1),T2(k!1) @ 1
K(t!1),T2(k~no!1) -> K(t!1),T2(k~yes!1) @ 50

T2(k~yes?) -> T2(k~no?) @ 1

We also need to make room for our variant agent in the new initial state (K,
H remain as before at 10 each). We choose here to divide evenly the population
into 50% of T1s and T2s.

%init: 50 * (T1(k~yes))
%init: 50 * (T2(k~yes))

We add the following new observable

%obs: T2(k~yes)

As expected (Fig. 2) nothing changes and the evolution of T2 is similar to
that of T1 modulo a rescale (inducing somewhat wider fluctuations).

4.3 T2’s specific H-mediated repair

Now is the time where we change our rule set significantly as we replace the
above T2 repair rule with the following:

K(t!1,h!_),T2(k~no!1) -> K(t!1,h!_),T2(k~yes!1) @ 50

whereby we specify that in order for K to be able to repair T2, K must be bound
to the helper agent H. This constitutes a (non neutral) refinement (the other case
where K is free on h is assigned a zero rate). Note that in the actual formulation
of the rule, it suffices to state that K is bound on its h site, since only H binds
there. This convenient abbreviation would not work if other agents could bind K
at h.

As a result we observe a sharp degradation of T2’s repair (Fig. 3).
Importantly, the behaviour obtained here depends on whether K is saturated

by H, or in other words on how high the probability that a given K is bound to a
T is. To monitor this probability we have added the number of bound Hs in each
plot. This probability depends only on the equilibrium dissociation rate of the K
and H binding and their initial copy numbers H and K. If it is 1, then T1 and T2
are again indistinguishable, since T2 only behaves differently when H is absent,
so T2 will be repaired just as well as T1. If it is 0, then T2 will never be repaired.

8



Fig. 2. The repair model with T2 added (rescale 10, 500 data points): since no rule
distinguishes T1 and T2: nearly 60% of the T2s are free and repaired at steady state just
as for the T1s; one sees wider fluctuations because of the population divide.

Fig. 3. The third repair model where T2’s repair is H-dependent (rescale 10, 500 data
points): less than 20% of the T2s are in the ‘yes’ state.

9



With our specific choices one has roughly 20% of the K bound to an H, so K is far
from being saturated on its H binding site. Even in such intermediate conditions
T2(kyes) goes down steeply -which will make the rescue (to come next) more
spectacular. One might say that Hs do not find T2s, and there is a ‘stochastic
dilution’ effect.

4.4 Repairing T2’s repair

To counter the stochastic dilution of the repair process all one needs is a re-
finement of the KH dissociation rule. Specifically, we replace that unconditional
dissociation rule with the following three rules:

K(h!1,t),H(k!1) -> K(h,t),H(k) @ 1000
K(h!1,t!2),H(k!1),T1(k!2) -> K(h,t!2),H(k),T1(k!2) @ 1000
K(h!1,t!2),H(k!1),T2(k!2) -> K(h,t!2),H(k),T2(k!2) @ 0.001

We are trying to trap H when a T2 stands on the other site of K. Thus H will
reside longer where it is needed. In the other cases, that is when K is either free
on t, or bound to a T1, we increase the dissociation rate so that T2s do not linger.
The fact that we have chosen early on high on- and off-rates for the KH binding
enhances the efficiency of this strategy, since H will explore quickly its potential
partners until it finds one that is engaged in the repair of a T2.

With the above refinement and rate manipulation, one obtains a far more
efficient repair rate for T2, as one can see on Fig. 4. It is important to note that
this is not obtained by pushing the KH binding into saturation; indeed, as one
can also see, the occupancy rate of Hs has not increased.

In a biological situation, presumably T2 will have a function which it can only
perform when in its correct ‘yes’ state, and the additional availability afforded
by the refinements above could make all the difference.

5 Conclusion

In the repair scheme we have presented, one has a repair agent K which can
recognise different targets, and bring a helper H to to participate in the process
for some specific targets. The question is how to get the said helper where it is
needed. An easy solution would be to saturate K, in a manner vaguely reminiscent
of a Swiss knife, but this begs the question of whether there is perhaps a more
elegant and parsimonious solution, where the knife would self-assemble only
where and when needed. Indeed, there is one which we have shown in this note,
and which one could compare to a stochastic ratchet. This pattern of interaction
could extend further than the particular confines of the problem we meant to
elucidate in this note -clearly.

With the careful derivation of this scheme, we have made a numerical case
for our initially informal intuition, ie we have shown it made numerical sense.
This is one of the traditional role of modelling in biology, to strengthen one’s
assumptions by putting them to numerical test. This we have done purely by

10



Fig. 4. The last repair model obtained by refining KH dissociation: nearly 50% of the
T2s are free and repaired, which is better than before (Fig. 3), and nearly as good as
in the original model (Fig. 2). Take note that there is no significant increase in the H
binding to K (lower red curve).

simulations, and it would be very interesting to pursue this investigation with a
more mathematically grounded approach. Perhaps with a set suitable simplifying
assumptions one could have an entirely analytical approach of the problem,
which would greatly help to understand how the several parameters at play
(rates and copy numbers) impinge on the efficiency of our scheme. In particular,
with a purely numerical construction as the one we offered here, it is unclear how
the scheme behaves if one changes the fractions of the various repair targets.

As said in the introduction, this scheme was placed in combination with
others in a simple model of an aspect of epigenetic repair. In this larger model
the helper H stochastic dilution is even more of a problem since non repairing
the target on time compromises a temporary memory and leads to permanent
mistakes, not just inefficiencies. An interesting consequence of the above investi-
gation is that we have an example where very labile binding (meaning with high
off- and on-rates) of the repair agent K to its target is crucial. It has already been
observed that key dissociation rates in epigenetic repair are higher than would
seem reasonable. It may be that one will observe labile fast diffusing agents as
well.

Finally, another point worth noticing is that the scheme was derived by a
succession of refinements. In so doing we may also have given some substance
to the idea that this scheme can be rather easily ‘evolved’ by variation and
subsequent selection. This is a question that we wish to return to in the future.

11



References

1. Goldbeter, A., Koshland, D.: An Amplified Sensitivity Arising from Covalent Mod-
ification in Biological Systems. Proceedings of the National Academy of Sciences
78(11) (1981) 6840–6844

2. Lisman, J.E.: A mechanism for memory storage insensitive to molecular turnover:
a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A 82(9) (1985
May) 3055–3057

3. Alon, U.: Network motifs: theory and experimental approaches. Nat Rev Genet
8(6) (2007) 450–461

4. Wall, M.E., Dunlop, M.J., Hlavacek, W.S.: Multiple functions of a feed-forward-
loop gene circuit. J Mol Biol 349(3) (2005 Jun 10) 501–514

5. Mazurie, A., Bottani, S., Vergassola, M.: An evolutionary and functional assess-
ment of regulatory network motifs. Genome Biol 6(4) (2005) R35

6. Yeates, T.O., Beeby, M.: Proteins in a small world. Science 314(5807) (2006)
1882–1883

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling
of cellular signalling. In Caires, L., Vasconcelos, V., eds.: Proceedings of the 18th

International Conference on Concurrency Theory (CONCUR’07). Volume 4703 of
Lecture Notes in Computer Science. (Sep 2007) 17–41

8. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of
early events in epidermal growth factor receptor signaling that accounts for com-
binatorial complexity. BioSystems 83 (January 2006) 136–151

9. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters (2001)

10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling,
symmetries, refinements. In Springer, ed.: FMSB 2008. Volume 5054 of LNBI. (Jun
2008) 103–122

11. Danos, V.: Agile Modelling of Cellular Signalling. Computation in Modern Science
and Engineering, Volume 2, Part A 963 (2007) 611–614

12


