
The Arithmetic-Geometric Progression
Abstract Domain?

Jérôme Feret

DI, École Normale Supérieure, Paris, FRANCE
jerome.feret@ens.fr

Abstract We present a new numerical abstract domain. This domain
automatically detects and proves bounds on the values of program vari-
ables. For that purpose, it relates variable values to a clock counter.
More precisely, it bounds these values with the i-th iterate of the func-
tion [X 7→ α×X+β] applied on M , where i denotes the clock counter and
the floating-point numbers α, β, and M are discovered by the analysis.
Such properties are especially useful to analyze loops in which a variable
is iteratively assigned with a barycentric mean of the values that were
associated with the same variable at some previous iterations. Because
of rounding errors, the computation of this barycenter may diverge when
the loop is iterated forever. Our domain provides a bound that depends
on the execution time of the program.

Keywords: Abstract Interpretation, static analysis, numerical domains.

1 Introduction

A critical synchronous real-time system (as found in automotive, aeronautic,
and aerospace applications) usually consists in iterating a huge loop. Because
practical systems do not run forever, a bound on the maximum iteration number
of this loop can be provided by the end-user or discovered automatically. The full
certification of such a software may require relating variable values to the number
of iterations of the main loop. It is especially true when using floating-point
numbers. Some computations that are stable when carried out in the real field,
may diverge because of the rounding errors. Rounding errors are accumulated at
each iteration of the loop. When expressions are linear and when the evaluation
of expressions does not overflow, the rounding errors at each loop iteration are
usually proportional to the value of the variables. Thus the overall contribution
of rounding errors can be obtained by iterating a function of the form [X 7→
α × X + β]. Then by using the maximum number of iterations we can infer
bounds on the values that would normally have diverged in the case of an infinite
computation.

We propose a new numerical abstract domain that associates with each vari-
able the corresponding coefficients α and β and the starting value M . This
? This work was partially supported by the ASTRÉE RNTL project.

V ∈ V, I ∈ I
E := I | V | I × V + E
P := V = E | skip | tick | if (V ≥ 0) {P} else {P} | while (V ≥ 0) {P} | P ; P

Figure 1. Syntax.

framework was fully implemented in OCaml [7] and plugged into an existing
analyzer [1,2]. We use this analyzer for certifying a family of critical embedded
softwares, programs ranging from 70,000 to 379,000 lines of C.

Outline. In Sect. 2, we present the syntax and semantics of our language. In
Sect. 3, we describe a generic abstraction for this language. In Sect. 4, we define
a numerical abstract predomain that relates arithmetic-geometric constraints
with sets of real numbers. In Sect. 5, we enrich an existing analysis so that it
can deal with arithmetic-geometric constraints. In Sect. 6, we refine our analysis
to deal with more complex examples. In Sect. 7, we report the impact of the
arithmetic-geometric progression domain on the analysis results.

2 Language

We analyze a subset of C without dynamic memory allocation nor side-effect.
Moreover, the use of pointer operations is restricted to call-by reference. For the
sake of simplicity, we introduce an intermediate language to describe programs
that are interpreted between the concrete and an abstract level. Data structures
have been translated by using a finite set of abstract cells (see [2, Sect. 6.1]).
Non-deterministic branching over-approximates all the memory accesses (array
accesses, pointer dereferencing) that are not fully statically resolved. Further-
more, floating-point expressions have been conservatively approximated by lin-
ear forms with real interval coefficients. These linear forms include both the
rounding errors and some expression approximations (see [9]). We also suppose
that the occurrence of runtime errors (such as floating-point overflows) can be
described by interval constraints on the memory state.

Let V be a finite set of variables. Let clock 6∈ V be an extra variable which
is associated with the clock counter. The clock counter is explicitly incremented
when a command tick is executed. The system stops when the clock counter
overflows a maximum value which is defined by the end-user. We denote by I
the set of all real number intervals (including R itself). We define inductively
the syntax of programs in Fig. 1. We denote by E the set of expressions E. We
describe the semantics of these programs in a denotational way. An environment
(ρ ∈ V∪{clock} → R) denotes a memory state. It maps each variable, including
the clock variable, to a real number. We denote by Env the set of all environ-
ments. The semantics of an expression E is a function (|E|) ∈ Env → I mapping
each environment to an interval. Given a maximum value mc for the clock, the
semantics of a program P is a function JP Kmc ∈ Env → ℘(Env) mapping each
environment ρ to the set of the environments that can be reached when applying
the program P starting from the environment ρ. Returning a set of environments
allows the description of both non-determinism and program halting (when the

(|I|)(ρ) = I, (|V |)(ρ) = {ρ(V)}
(|I × V + E|)(ρ) = {b× ρ(V) + a | a ∈ (|E|)(ρ), b ∈ I}
JV = EKmc(ρ) = {ρ[V 7→ x] | x ∈ (|E|)(ρ)}
JskipKmc(ρ) = {ρ}

JtickKmc(ρ) =

{
{ρ[clock 7→ ρ(clock) + 1]} if ρ(clock) < mc

∅ otherwise

Jif (V ≥ 0) {P1} else {P2}Kmc(ρ) =

{
JP1Kmc(ρ) if ρ(V) ≥ 0

JP2Kmc(ρ) otherwise

Jwhile (V ≥ 0) {P}Kmc(ρ) = {ρ′ ∈ Inv | ρ′(V) < 0}
where Inv = lfp

(
X 7→ {ρ} ∪

(⋃
{JP Kmc(ρ′) | ρ′ ∈ X, ρ′(V) ≥ 0}

))
JP1; P2Kmc(ρ) =

⋃
{JP2Kmc(ρ′) | ρ′ ∈ JP1Kmc(ρ)}

Figure 2. Concrete semantics.

clock has reached its maximum value). The functions (| |) and J Kmc are defined
by induction on the syntax of programs in Fig. 2. Loop semantics requires the
computation of a loop invariant, which is the set of all environments that can be
reached just before the guard of this loop is tested. This invariant is well-defined
as the least fixpoint of a ∪-complete endomorphism1 f ∈ ℘(Env) → ℘(Env).
Nevertheless, such a fixpoint is usually not computable, so we give a decidable
approximate semantics in the next section.

We describe two toy examples.

Example 1. The first example iterates the computation of a barycentric mean:
at each loop iteration, a variable is updated with a barycentric mean among its
current value and two previous values.

V = R; B1 = R; B2 = R; X = 0; Y = 0; Z = 0;
while (V ≥ 0) {

V = R; B1 = R; B2 = R;
if (B1 ≥ 0) {Z = Y ; Y = X} else {skip};
if (B2 ≥ 0) {

X = I; Y = I; Z = I}
else {

X = IX ×X + IY × Y + IZ × Z + Iε};
tick}

where I ∈ I, εi > 0 for any i ∈ {X;Y ;Z; 0}, 0 < α < 0.5,
IX = [1− 2× α− εX ; 1− 2× α + εX], IY = [α− εY ;α + εY],
IZ = [α− εZ ;α + εZ], and Iε = [−ε0; ε0].

More precisely, initialization values range in the interval I. The parameter α is a
coefficient of the barycentric mean. The parameters εX , εY , and εZ encode the
rounding errors relative respectively to the variables X, Y , and Z in the compu-
tation of the barycentric mean. The parameter ε0 encodes the absolute rounding
error. The three variables X, Y , and Z allow the recursion (X is associated with

1 In fact, we only use the monotonicity of f .

the current value, Y is associated with the last selected value and Z is associated
with the previous selected value) and the three variables V , B1, and B2 allow
non-deterministic boolean control. The variable V allows stopping the loop iter-
ation. The variable B1 allows the selection of a recursive value which consists in
shifting the variables X, Y , and Z. The variable B2 allows the choice between
a reinitialization or an iteration step: a reinitialization step consists in assigning
the variables X, Y , and Z with some random values in the interval I, whereas
an iteration step consists in updating the variable X with the barycentric mean
between its current value and the last two selected values. Because of round-
ing errors, the value associated with the variable X cannot be bounded without
considering the clock. Therefore, we can prove that this value is bounded by
[X 7→ ((1+εX +εY +εZ)×X)+ε0](mc)(MI), where MI is the least upper bound
of the set {|x| | x ∈ I}. This bound can be discovered using the arithmetic-
geometric domain presented in this paper. It is worth noting that the domains
that deal with digital stream processing [6] do not help because the value of the
variable Y is not necessarily the previous value of the variable X: such domains
can only approximate relations of the form on = f(on−1, ..., on−p, in−1, ..., in−q)
where (in) is the input stream and (on) is the output stream.

Example 2. The second example iterates a loop where a floating point is first
divided by a coefficient α > 0 and then multiplied by the coefficient α.

V = R; B1 = R; B2 = R; X = 0;
while (V ≥ 0) {

V = R; B1 = R; B2 = R;
if (B1 ≥ 0) {X = I1} else {skip};
X = [1

α − ε1; 1
α + ε1]×X + [−ε2; ε2];

if (B2 ≥ 0) {X = I2} else {skip};
X = [α− ε3;α + ε3]×X + [−ε4; ε4];
tick}

where εi > 0, for any i ∈ {1; 2; 3; 4}, α > 0, and I1, I2 ∈ I.
More precisely, initialization values range in the intervals I1 and I2. The

parameter α is a coefficient of the example. The parameters ε1 and ε3 encode
relative rounding errors and the parameters ε2 and ε4 encode absolute rounding
errors. The variable X contains the value that is divided and multiplied. The
three variables V , B1, and B2 allow boolean control. The variable V allows
stopping the loop iteration. The variable B1 allows the reinitialization of the
variable X before the division, the variable B2 allows its reinitialization before
the multiplication. Because of rounding errors, the value associated with the
variable X cannot be bounded without considering the clock. Therefore, we
can prove that this value is bounded by [X 7→ (1 + a) × X + b](mc)(MI) where
a = α × ε1 + 1

α × ε3 + ε1 × ε3 and b = ε2 × (α + ε3) + ε4, and MI is the least
upper bound of the set {|x| | x ∈ I1 ∪A} with A = { y

ε1+
1
α

| y ∈ I2}. This bound
can be discovered using the arithmetic-geometric domain.

3 Underlying Domain

We use the Abstract Interpretation framework [3,4,5] to derive a generic approx-
imate semantics. An abstract domain Env] is a set of properties about memory
states. Each abstract property is related to the set of the environments which
satisfy it via a concretization map γ. An operator t allows the gathering of
information about different control flow paths. The primitives assign, guard,
and tick are sound counterparts to concrete assignments, guards, and clock
ticks. To effectively compute an approximation of concrete fixpoints, we intro-
duce an iteration basis ⊥, a widening operator O, and a narrowing operator M.
Several abstract domains collaborate and use simple constraints to refine each
other. We introduce two domains of simple constraints. The domain of interval
V ∪ {clock} → I and the domain of absolute value ordering ℘(V2). The inter-
val constraints encoded by a map ρ] ∈ V ∪ {clock} → I are satisfied by the
environment set γI(ρ]) = {ρ ∈ Env | ρ(X) ∈ ρ](X), ∀X ∈ V ∪ {clock}}. The
constraints encoded by a subset R ⊆ V2 are satisfied by the environment set
γabs(R) =

⋂
(X,Y)∈R{ρ ∈ Env | |ρ(X)| ≤ |ρ(Y)|}. The primitives range and

abs capture simple constraints about the values that are associated with vari-
ables by weakening the abstract elements of Env]. These constraints are useful
in refining the arithmetic-geometric progression domain. Conversely, a primi-
tive reduce uses the range constraints that have been computed by the other
domains in order to refine the underlying domain.

Definition 1 (Generic abstraction). An abstraction is defined by a tuple
(Env], γ,t,assign,guard,tick,⊥,O,M,range,abs,reduce) such that:

1. Env] is a set of properties;
2. γ ∈ Env] → ℘(Env) is a concretization map;
3. ∀a, b ∈ Env], γ(a) ∪ γ(b) ⊆ γ(a t b);
4. ∀a ∈ Env], X ∈ V, E ∈ E , ρ ∈ γ(a), JX = EKmc(ρ) ⊆ γ(assign(X = E, a));
5. ∀a ∈ Env], X ∈ V ∪ {clock}, I ∈ I,
{ρ ∈ γ(a) | ρ(X) ∈ I} ⊆ γ(guard(X, I, a));

6. ∀a ∈ Env], {ρ[clock 7→ ρ(clock) + 1] | ρ ∈ γ(a)} ⊆ γ(tick(a));
7. ∀a ∈ Env], ρ] ∈ (V ∪ {clock} → I), γ(a) ∩ γI(ρ]) ⊆ γ(reduce(ρ], a));
8. O is a widening operator such that: ∀a, b ∈ Env], γ(a) ∪ γ(b) ⊆ γ(aOb);

and ∀k ∈ N, ρ1, ..., ρk ∈ (V ∪ {clock} → I), (ai) ∈ (Env])N, the se-
quence

(
aO

i

)
defined by aO

0 = r(a0) and aO
n+1 = r(aO

n Oan+1) with r = [X 7→
reduce(ρk, X)] ◦ ... ◦ [X 7→ reduce(ρ1, X)], is ultimately stationary;

9. M is a narrowing operator such that: ∀a, b ∈ Env], γ(a) ∩ γ(b) ⊆ γ(aMb);
and ∀k ∈ N, ρ1, ..., ρk ∈ (V ∪ {clock} → I), (ai) ∈ (Env])N, the sequence(
aM

i

)
defined by aM

0 = r(a0) and aM
n+1 = r(aM

n Man+1), with r = [X 7→
reduce(ρk, X)] ◦ ... ◦ [X 7→ reduce(ρ1, X)], is ultimately stationary;

10. ∀a ∈ Env], γ(a) ⊆ γI(range(a)) and γ(a) ⊆ γabs(abs(a)).

Least fixpoint approximation is performed in two steps [4]: we first com-
pute an approximation using the widening operator; then we refine it using the
narrowing operator. More formally, let f be a monotonic map in ℘(Env) →

℘(Env) and (f] ∈ Env] → Env]) be an abstract counterpart of f satisfying
∀a ∈ Env], (f ◦ γ)(a) ⊆ (γ ◦ f])(a). It is worth noting that the abstract coun-
terpart f] is usually not monotonic with respect to the partial order v] that is
defined by a v] b ⇐⇒ γ(a) ⊆ γ(b). The abstract upward iteration (CO

n) of f] is
defined by CO

0 = ⊥ and CO
n+1 = CO

n Of](CO
n). The sequence (CO

n) is ultimately
stationary and we denote its limit by CO

ω . Then the abstract downward iteration
(DM

n) of f] is defined by DM
0 = CO

ω and DM
n+1 = DM

n Mf](DM
n). The sequence

(DM
n) is ultimately stationary and we denote its limit by DM

ω . We define2 lfp](f])
by the limit DM

ω of the abstract downward iteration of f]. We introduce some
lemmas in order to prove that lfp(f) ⊆ γ(DM

ω):

Lemma 1. We have f(γ(CO
ω)) ⊆ γ(CO

ω).

Proof. Since CO
ω is the limit of the upward-iteration, we have CO

ω = CO
ω Of](CO

ω).
By Def. 1.(8) of the widening, we obtain that γ(f](CO

ω)) ⊆ γ(CO
ω). By soundness

of f], we also have f(γ(CO
ω)) ⊆ γ(f](CO

ω)). So f(γ(CO
ω)) ⊆ γ(CO

ω). �

Lemma 2. For all a ∈ ℘(Env) and x ∈ Env], we have:

a ⊆ γ(x) =⇒ a ∩ f(a) ⊆ γ(xMf](x)).

Proof. Let a ∈ ℘(Env) and x ∈ Env] such that a ⊆ γ(x). Since f is monotonic,
we have f(a) ⊆ f(γ(x)). Then by soundness of f], we have f(γ(x)) ⊆ γ(f](x)).
Thus f(a) ⊆ γ(f](x)). So a ∩ f(a) ⊆ γ(x) ∩ γ(f](x)). By Def. 1.(9), we have
γ(x) ∩ γ(f](x)) ⊆ γ(xMf](x)). We conclude that a ∩ f(a) ⊆ γ(xMf](x)). �

Lemma 3. For all a ∈ ℘(Env), we have:

f(a) ⊆ a =⇒ f(f(a) ∩ a) ⊆ f(a) ∩ a.

Proof. Let a ∈ ℘(Env) such that f(a) ⊆ a. We have f(a) ∩ a = f(a). Since f is
monotonic, we have f(f(a)) ⊆ f(a). We conclude that f(f(a)∩ a) ⊆ f(a)∩ a.�

Lemma 4 (transfinite kleenean iteration). For all a ∈ ℘(Env), we have:

f(a) ⊆ a =⇒ lfp(f) ⊆ a.

Theorem 1. We have lfp(f) ⊆ γ(DM
ω).

Proof. We introduce the sequence (un) that is defined by u0 = γ(CO
ω) and

un+1 = un ∩ f(un) for any n ∈ N. We can prove by induction that ∀n ∈ N,
we have:

1. un ⊆ γ(DM
n);

2. f(un) ⊆ un.

2 lfp](f]) is an approximation of the concrete least fixpoint; it may not be a least
fixpoint of the abstract counterpart f] which is not supposed to be monotonic.

JV = EK]
mc(a) = assign(V = E, a)

JskipK]
mc(a) = a

JtickK]
mc(a) = guard(clock, [0; mc],tick(a))

Jif (V ≥ 0) {P1} else {P2}K]
mc(a) = a1 t a2,

where

{
a1 = JP1K]

mc(guard(V, [0;+∞[, a))

a2 = JP2K]
mc(guard(V,]−∞; 0[, a))

Jwhile (V ≥ 0) {P}K]
mc(a) = guard(V,]−∞; 0[, Inv]),

where Inv] = lfp]
(
X 7→ a t JP K]

mc(guard(V, [0;+∞[, X))
)

JP1; P2K]
mc(a) = JP2K]

mc(JP1K]
mc(a))

Figure 3. Abstract semantics.

– When n = 0: by definition, we have u0 = γ(CO
ω) = γ(DM

0) and thanks to
Lemma 1, we have f(u0) ⊆ u0.

– We now suppose there exists n ∈ N such that un ⊆ DM
n and f(un) ⊆ un.

1. We have un+1 = un ∩ f(un) and un ⊆ γ(DM
n). By Lemma 2, we have

un+1 ⊆ γ(DM
n Mf](DM

n)). By definition of DM
n+1, we obtain that un+1 ⊆

γ(DM
n+1).

2. We have f(un+1) = f(un ∩ f(un)) and f(un) ⊆ un. By Lemma 3, we
obtain that f(un+1) ⊆ un+1.

Then let n ∈ N be a natural such that DM
ω = DM

n . We have un ⊆ γ(DM
ω) and

f(un) ⊆ un. By lemma 4, we have lfp(f) ⊆ γ(DM
ω). �

The abstract semantics of a program is given by a function (J K]
mc ∈ Env] →

Env]) in Fig. 3. Its soundness can be proved by induction on the syntax:

Theorem 2. For any program P , environment ρ, abstract element a, and max-
imum clock value mc, we have:

ρ ∈ γ(a) =⇒ JP Kmc(ρ) ⊆ γ
(
JP K]

mc(a)
)
.

4 Arithmetic-geometric progressions

4.1 Affine transformations

We introduce, as follows, the family of the affine transformations (f [a, b]) that
is indexed by two non-negative real parameters a and b:

f [a, b] :

{
R+ → R+

X 7→ a×X + b

Lemma 5. Let a1, a2, b1, b2, X1, X2 be non-negative real numbers in R+.
If a1 ≤ a2, b1 ≤ b2, and X1 ≤ X2, then f [a1, b1](X1) ≤ f [a2, b2](X2).

4.2 Arithmetic-geometric progression in the real field

We introduce the predomain DR of all the 5-tuples of non-negative real num-
bers. The predomain DR is ordered by the product order vDR . Intuitively,3 an
element (M,a, b, a′, b′) of this predomain encodes an arithmetic-geometric pro-
gression. The real M is a bound on the initial value of the progression. The
affine transformation f [a′, b′] over-approximates the composition of all the affine
transformations that can be applied to a value between two consecutive clock
ticks. Finally, the affine transformation f [a, b] over-approximates the composi-
tion of all the affine transformations that have been applied to a value since the
last clock tick.

Thus, given a clock value vc ∈ N, we can define the concretization γvc
DR

(d) of
such a tuple d = (M,a, b, a′, b′) ∈ DR by the set of all the elements X ∈ R such
that |X| ≤ f [a, b]

(
(f [a′, b′])(vc) (M)

)
. We now define some primitives to handle

the elements of DR:

1. The join operator tDR applies the maximum function component-wise. The
soundness of the operator tDR is established by Thm. 3, as follows:

Theorem 3. For any vc ∈ N,

γvc
DR

(d1) ∪ γvc
DR

(d2) ⊆ γvc
DR

(d1 tDR d2).

Proof. By Lem. 5. �

2. The primitive affineDR
computes a linear combination among some elements

of DR. Let n ∈ N∗ be a positive natural,4 let (di) = (Mi, ai, bi, a
′
i, b
′
i) ∈ Dn

R
be a family of elements in DR, let (αi) ∈ (R \ {0})n be a family of real
coefficients that are all distinct from 0, and let β ∈ R be a real coefficient.
We define the element affineDR

((αi, di), β) ∈ DR by (g(Mi), a∞ × α′, |β| +
g(bi), a′∞, g(b′i)) where:
– a∞ = max{|ai| | 1 ≤ i ≤ n}, a′∞ = max{|a′i| | 1 ≤ i ≤ n},
– α′ =

∑
1≤i≤n

|αi| and

– the function g : Rn → R maps each family (xi) of n real numbers into
the real number defined by

∑
1≤i≤n

|αi×xi|
α′ .

The soundness of the primitive affineDR
is established by Thm. 4, as follows:

Theorem 4. Let vc ∈ N be a natural and (Xi) ∈ Rn be a non-empty family
of reals such that for any i such that 1 ≤ i ≤ n, we have Xi ∈ γvc

DR
(di). Then

we have: ∑
1≤i≤n

αi ×Xi + β

 ∈ γvc
DR

(
affineDR

((αi, di), β)
)
.

3 In Sect. 6 we forget this intuition to get a more expressive domain.
4 The approximation of affine constants has an ad-hoc handling (Cf. Sect. 5.3).

Proof. By Lemma 5, by replacing αi with α′×αi

α′ , by expanding f [a, b](vc),
and by applying the triangular inequality. �

3. The primitive tickDR ∈ DR → DR simulates clock ticks. It maps any element
d = (M,a, b, a′, b′) ∈ DR into the element (M, 1, 0,max(a, a′),max(b, b′)) ∈
DR. Thus, just after the clock tick, the arithmetic-geometric progression that
has been applied since the last clock tick is the identity. The progression
between two clock ticks is chosen by applying the worst case among the
progression between the last two clock ticks, and the progression between
any other two consecutive clock ticks. The soundness of this operator is
established by Thm. 5 as follows:
Theorem 5 (clock tick). Let vc ∈ N be a natural. Then we have:

γvc
DR

(d) ⊆ γvc+1
DR

(tickDR(d))

Proof. By Lemma 5. �

For the sake of accuracy, we get a more precise definition of the primitive
tickDR in Sect. 6, by forgetting the intuitive meaning of the elements of DR.

4. The primitive rangeDR
∈ (DR × {[a; b] | a, b ∈ N, a ≤ b}) → I associates

an element of DR and an interval for the clock counter with an interval
range: we define rangeDR

((M,a, b, a′, b′), [mvc;Mvc]) by [−l; l] where l =
max(umclock

, uMclock
) and for any vc ∈ N,

uvc =

{
a× (M + vc× b′) + b if a′ = 1,

a×
(
a′

vc ×
(
M − b′

1−a′

)
+ b′

1−a′

)
+ b otherwise.

The soundness of the primitive rangeDR
is established in Thm. 6 as follows:

Theorem 6. For any vc ∈ N such that mvc ≤ vc ≤ Mvc, we have:

γvc
DR

(d) ⊆ rangeDR
(d, [mvc;Mvc]).

Proof. By studying the sign of (un+1 − un), for any n ∈ N. �

4.3 Representable real numbers

Until now, we have only used real numbers. In order to implement numerical
abstract domains, we use a finite subset F of real numbers (such as the floating-
point numbers) that contains the set of numbers {0, 1} and that is closed under
negation. The set F is obtained by enriching the set F with two extra elements
+∞ and −∞ that respectively describe the reals that are greater (resp. smaller)
than the greatest (resp. smallest) element of F. We denote the set {x ∈ F | x ≥ 0}
by F+ and the set F+∪{+∞} by F+

. The result of a computation on elements of
F may be not in F. So we suppose that we are given a function d e ∈ R → F such
that dxe ≥ x, for any x ∈ R and such that dxe ≤ 0, for any x ≤ 0. The domain F
is related to ℘(R) via the concretization γF that maps any representable number
e into the set of the reals r ∈ R such that |r| < e, moreover we set γF(+∞) = R
and γF(−∞) = ∅.

4.4 Representable arithmetic-geometric constraints

We introduce the predomain DF as the set of the 5-tuples (M,a, b, a′, b′) ∈(
F+

)5

. The order vDF , the concretizations γvc
DF

(for any vc ∈ N), the join
operator tDF , and the clock tick primitive tickDF are respectively defined as
restrictions of the order vDR , the concretizations γvc

DR
, the join operator tDR ,

and the primitive tickDR .
We now update the definition of the linear combination primitive affineDF

and of the reduction primitive rangeDF
:

1. The primitive affineDF
maps each pair ((αi, di), β) where (αi) ∈ Rn (where

n ∈ N∗ is a positive natural), (di) = ((Mi, ai, bi, a
′
i, b
′
i)) ∈ Dn

F , and β ∈ R to
the element:

(g(Mi), da∞ × α′Me , |β|+ g(bi), a′∞, g(b′i))

where:
– a∞ = max{|ai| | 1 ≤ i ≤ n}, a′∞ = max{|a′i| | 1 ≤ i ≤ n},
– sn : Rn → F+

is defined by s0(()) = 0 and sn+1((ai)1≤i≤n+1) =
dsn((ai)1≤i≤n) + dan+1ee.

– α′m = −sn((−|αi|)1≤i≤n), α′M = sn((|αi|)1≤i≤n),
– g : Rn → F+

maps each family (xi) of real numbers into the real number
that is defined by

min
(

max ({|xi| | 1 ≤ i ≤ n}) , sn

(
d|αi| × |xi|e

α′m

))
.

Theorem 7. For any clock value vc ∈ N, we have: ∑
1≤i≤n

αi ×Xi + β

∣∣∣∣∣∣ Xi ∈ γvc
DF

(di)

 ⊆ γvc
DF

(
affineDF

((αi, di), β)
)
.

Proof. By Lemma 5 and Thm. 4. �

Remark 1. We define g as the minimum of two sound results. In the real
field, the second one is more precise. However, it may become less precise
when computing with rounding errors.

2. The interval rangeDF
((M,a, b, a′, b′), [mvc;Mvc]) is given by [−l; l] where:

– l = max(umvc
, uMvc

);
– uvc = dda× vvce+ be;

– vvc =

{
dM + dvc× b′ee if a′ = 1,⌈
c+
1 + c+

2

⌉
otherwise;

–

{
exp−0 = 1, exp−2×n = −dexp−n ×(− exp−n)e ,

exp−2×n+1 = −ddexp−n ×(− exp−n)e × a′e ;

–

{
exp+

0 = 1, exp+
2×n = dexp+

n × exp+
n e ,

exp+
2×n+1 = ddexp+

n × exp+
n e × a′e ;

– c+
1 =

{⌈
exp+

vc×
⌈
M − c−2

⌉⌉
if M ≥ c−2⌈

exp−vc×
⌈
M − c−2

⌉⌉
otherwise;

– c−2 = −
⌈
−b′

d1−a′e

⌉
and c+

2 =
⌈
−b′

da′−1e

⌉
.

Theorem 8. For any clock value vc ∈ [mvc;Mvc], we have:

γvc
DF

(d) ⊆ rangeDF
(d, vc).

Proof. Because ∀vc ∈ N, exp−vc ≤ a′vc ≤ exp+
vc, c+

1 ≥ a′vc×
(
M − b′

1−a′

)
and

c−2 ≤ b′

1−a′ ≤ c+
2 , and by applying Thm. 6. �

Remark 2. In the implementation, we use memoization to avoid computing
the same exponential twice.

4.5 Tuning the extrapolation strategy

Although F is height-bounded, we introduce some extrapolation operators in or-
der to accelerate the convergence of abstract iterations. A widening step consists
in applying an extensive map to each unstable components of the 5-tuples. In
order to let constraints stabilize, we only widen a component when it has been
unstable a given number of times since its last widening. For that purpose, we as-
sociate each representable number in F with a natural that denotes the number of
times it has been unstable without being widened. We suppose that we are given
a natural parameter n and an extensive function f over F. We first define the
widening On

f of two annotated representable numbers (x1, n1), (x2, n2) ∈ F × N
by:

(x1, n1)On
f (x2, n2) =

(x1, n1) if x1 ≥ x2

(x2, n1 + 1) if x1 < x2 and n1 < n

(f(x2), 0) otherwise.

A narrowing step refines an arithmetic-geometric constraint with another one if
the last one is smaller component-wise (so that we are sure that this refinement
does not locally lose accuracy). To avoid too long decreasing sequences, we count
the number of times such a refinement has been applied with each constraint.
Thus we associate each constraint with an extra counter.

We then introduce the predomain DLF =
(
F+ × N

)5

× N of annotated con-
straints. The function annotate maps each element d = (M,a, b, a′, b′) ∈ DF to
the annotated element that is defined by (((M, 0), (a, 0), (b, 0), (a′, 0), (b′, 0)), 0) ∈
DLF , where all counters are initialized with the value 0. Conversely the function
remove maps each element (((M,nM), (a, na), (b, nb), (a′, na′), (b′, nb′)), n) ∈ DLF
to the annotation-free element (M,a, b, a′, b′) ∈ DF. We can define the preorder
vDL

F
by a vDL

F
b ⇐⇒ remove(a) vDF remove(b). The monotonic concretization

γDL
F

is defined as the composition γDF ◦ remove.
Extrapolation operators store information about the history of the extrapola-

tion process into the counters of their left argument, whereas the other primitives

reset these counters: we define the union a tDL
F

b by annotate((remove(a)) tDF

(remove(b))), the affine combination affineDL
F
((αi, di), β) by the abstract element

annotate(affineDF
((αi, remove(di)), β)), the abstract clock tick primitive tickDL

F
by the map annotate◦tickDF ◦remove, and the interval constraints rangeDL

F
(d, I)

by the interval map rangeDF
(remove(d), I).

We define extrapolation operators. Let fa, fb, and fM be extensive functions
over the set F; let na, nb, nM , and n be some naturals. The functions fa, fb, and
fM and the naturals na, nb, nM , and n are left as parameters of our extrapolation
strategy. The widening ((M1, a1, b1, a

′
1, b
′
1), n1)ODL

F
((M2, a2, b2, a

′
2, b
′
2), n2) is de-

fined by ((M1O
nM

fM
M2, a1O

na

fa
a2, b1O

nb

fb
b2, a

′
1O

na

fa
a′2, b

′
1O

nb

fb
b′2), 0). The narrowing

(t1, n1)MDL
F
(t2, n2) is then defined by (t2, n1 + 1) in the case when n1 < n and

(t2, n2) vDL
F

(t1, n1), and by (t1, n1) otherwise.

5 Refining an existing abstraction

We now show how we can extend an existing abstraction defined as in Def. 1 so
that it can also deal with arithmetic-geometric constraints.

5.1 Domain extension

Let (Env]
0, γ0,t0,assign0,guard0,tick0,⊥0,O0,M0,range0,abs0,reduce0)

be an abstraction which is called the underlying domain. We build the abstrac-
tion Env] as the Cartesian product Env]

0×(V → DLF ∪{>}). The element > 6∈ DLF
denotes the absence of constraint. The concretization γ : Env] → ℘(Env) maps
each pair (e, f) to the following set of environments:

γ0(e) ∩
{

ρ ∈ Env
∣∣∣ ∀X ∈ V such that f(X) 6= >, ρ(X) ∈ γ

ρ(clock)

DL
F

(f(X))
}

.

Moreover, abstract iterations start with the element ⊥ = (⊥0, [X 7→ >]).

5.2 Refinement operators

The underlying domain and the arithmetic-geometric domain refine each other
when the computation of an abstract primitive requires it. We introduce here
some operators that describe these refinement steps.

The operator r← uses the arithmetic-geometric constraints to refine the un-
derlying domain. Given an abstract element (e, f) ∈ Env] and a subset V ⊆ V
of variables, we define r←((e, f), V) by (reduce0(g, e), f) where g(X) is given
by: {

rangeDL
F
(f(X),range0(e)(clock)) if X ∈ V and f(X) 6= >,

R otherwise.

Conversely, we use the underlying domain to build new arithmetic-geometric
constraints or to refine existing arithmetic-geometric constraints. Let X ∈ V

be a variable, let a, b ∈ F+ be two non negative real parameters, and let
e ∈ Env]

0 be an abstract element of the underlying domain. The variable X
can soundly be associated with the arithmetic-geometric constraint ge(X, (a, b)),
where ge(X, (a, b)) is given by:{

annotate
((⌈

max(0,dl−be)
a

⌉
, a, b, 1, 0

))
if a 6= 0,

annotate ((a, b, 1, 0, l)) otherwise,

where l ∈ F is the least upper bound (in F) of the set {|x| | x ∈ range0(e)(X)}.
We now define the operator r→ which refines arithmetic-geometric constraints

over a set of variables by weakening the range constraints that can be extracted
from the underlying domain. Given an abstract element (e, f) ∈ Env], a subset
A ⊆ V, and a map Γ ∈ A → F+×F+, we define r→((e, f), A, Γ) by (e, f ′) where
f ′(X) is defined by:{

ge(X, Γ (X)) if X ∈ A and either f(X) = >, or ge(X, Γ (X)) vDL
F

f(X),
f(X) otherwise.

5.3 Primitives

Binary operators are all defined in the same way. Let ~ be an operator in
{t,M,O} and let (e1, f1), (e2, f2) be two abstract elements of Env]. Before ap-
plying a binary operator, we refine arithmetic-geometric constraints so that both
arguments constrain the same set of variables: we set for any i ∈ {1, 2}, (e′i, f

′
i) =

(r→((ei, fi), V3−i\Vi, Γ3−i)), where for any i ∈ {1; 2}, Vi = {X | fi(X) 6= >} and
Γi(X) = (a, b) when fi(X) matches (M,a, b, a′, b′). We then apply ~ component-
wise: we set e′′ = e′1~0 e′2; we set f ′′(X) = f ′1(X)~DL

F
f ′2(X) for any X ∈ V1∪V2;

we set f ′′(X) = > for any X ∈ V \ (V1 ∪ V2). After applying a binary operator,
we use the arithmetic-geometric constraints to refine the underlying domain: we
define (e1, f1) ~ (e2, f2) by r←((e′′, f ′′),V).

We use a heuristics to drive the abstraction of assignments. This heuristics
weakens the precondition to simplify the assigned expression: it takes some vari-
able ranges, some arithmetic-geometric constraints and an expression; it replaces
in the expression some variables with their range. The choice of the variables
that are replaced is left as a parameter of the abstraction. Thus, the heuristics
heu ∈ ((V ∪{clock} → I)× (V → DLF ∪{>}))×E → ((R \ {0}×V)∗×R) maps
each pair ((ρ], f), E) to a pair ((αi, Vi)1≤i≤n, β) that satisfies:

γ((|E|)) ⊆

β +
∑

1≤i≤n

αi × ρ(Vi)

∣∣∣∣∣∣∣
∀ρ ∈ Env such that:
∀X ∈ V, ρ(X) ∈ ρ](X) ∩ γ

ρ(clock)

DL
F

(f(X))
and ρ(clock) ∈ ρ](clock)

 .

Let (e, f) ∈ Env] be an abstract element. We consider several cases when ab-
stracting an assignment X = E:

1. When computing an assignment X = Y with Y ∈ V, we associate the
variable X with any constraint about Y . Thus we set:

assign(X = Y, (e, f)) = (assign0(X = Y, e), f [X 7→ f(Y)]);

2. When computing an assignment X = E where E 6∈ V such that the pair
heu((range0(e), f), E) matches ((), β), we remove any arithmetic-geometric
constraints about X. Thus we set:

assign(X = E, (e, f)) = (assign0(X = E, e), f [X 7→ >]);

3. Otherwise, we denote by ((αi, Vi)1≤i≤n, β) = heu((range0(e), f), E) the ap-
proximation of E by the heuristics. Before the assignment, we use the un-
derlying domain to refine information about the variables (Vi) that occur in
the simplified expression. When such a variable is tied with no arithmetic-
geometric constraint, we build one with arbitrary coefficients for the affine
transformations. We also refine existing constraints without modifying the
coefficients of the affine transformations. Thus we define the element (e′, f ′)
by r→((e, f), {Vi | 1 ≤ i ≤ n}, Γ) where for any i ∈ N such that 1 ≤
i ≤ n, we have Γ (Vi) = (1, 0) if f(Vi) = > (missing constraints) and
Γ (Vi) = (a, b) if f(Vi) = (M,a, b, a′, b′) (existing constraints). Then we ap-
ply the assignment component-wise: we define (e′′, f ′′) by (assign0(X =
E, e′), f [X 7→ affineDL

F
((αi, f

′(Vi)), β)]). At last, we refine the underlying
domain by the new computed constraint: we set assign(X = E, (e, f)) =
r←((e′′, f ′′), {X}).

The abstraction of a clock tick tick(e, f) is defined component-wise by
(tick0(e), f ′) where f ′(X) = tickDL

F
(f(X)) if f(X) 6= > and f ′(X) = > other-

wise. We do not deal directly with guards in the arithmetic-geometric domain.
Nevertheless, if after applying a guard, we can prove in the underlying domain
that the absolute value that is associated with a variable is less than the absolute
value that is associated with another variable, we use this information to refine
arithmetic-geometric constraints. So we define the primitive rabs that refines
arithmetic-geometric constraints, according to absolute value constraints. Given
a relation R ⊆ V2 and a map f ∈ V → DLF ∪ {>}, the map rabs(R, f) ∈ V →
DLF ∪ {>} associates any variable X with a minimal element (for vDL

F
) of the

set ({f(X)} ∪ {f(Y) | (X, Y) ∈ R}) \ {>} if this set is not empty, or with the
element > otherwise. Then the abstract element guard(X, I, (a, f)) is defined
by (guard0(X, I, a), rabs(abs0(guard0(X, I, a)), f)).

In order not to break the extrapolation process, we never refine arithmetic-
geometric constraints after applying an extrapolation operator. Thus we define
reduce(ρ], (e, f)) by (reduce0(ρ], e), f). Moreover, the domain DLF cannot help
in comparing the absolute value of variables, so we set abs(e, f) = abs0(e).
Nevertheless, the domain DLF can refine variable range: we set range(e, f)(X)
by range0(e)(X) ∩ rangeDL

F
(f(X),range0(e)(clock)).

Theorem 9. (Env], γ,t,assign,guard,tick,⊥,O,M,range,abs,reduce)
is an abstraction.

Proof. We sketch the proof of Th. 9: all soundness requirements come from
the soundness of both the underlying domain and the arithmetic-geometric pre-
domain. During an extrapolation iteration (ascending or descending), the set
of arithmetic-geometric constraints (i.e., the set of the variables that are not
mapped into >) is ultimately stationary (since the number of constraints is in-
creasing, whereas V is finite); then each arithmetic-geometric constraint sequence
is ultimately stationary; once the information that refines the underlying domain
is fixed, the underlying domain termination criteria in Def. 1.(8-9) apply. �

6 Dealing with buffers

The definition of the primitive tickDF in Sect. 4.4 implicitly supposes that the
affine transformations that must be captured are fully computed between two
clock ticks. For instance, Ex. 2 can be analyzed accurately because the multipli-
cation and the division are computed in the same loop iteration. We first slightly
modify Ex. 2 so that this atomicity assumption is not satisfied. Then we refine
the primitive tickDF to handle more complex cases precisely.

6.1 Motivating example

Example 3. This example iterates a loop where a floating point is first divided
by a coefficient α > 2 and then multiplied by the coefficient α. Unlike Ex. 2, the
division and the multiplication are not computed in the same iteration of the
loop. At each iteration, the current value of X is multiplied by α and the result
is stored in a buffer (denoted by the variable buffer). The next value for X
is obtained by dividing the value that was in the buffer at the beginning of the
iteration (while the current value of X is stored in a temporary variable tmp).
For the sake of simplicity, we have removed reinitialization branches.

V = R; X = I; tmp = 0; buffer = I;
while (V ≥ 0) {

V = R;
tmp = X;
X = [1

α − ε1; 1
α + ε1]× buffer + [−ε2; ε2];

buffer = [α− ε3;α + ε3]× tmp + [−ε4; ε4];
tick}

where 0 < εi < 1, for any i ∈ {1; 2; 3; 4}, α > 2, and I ∈ I.
Moreover, initialization values range in the intervals I. The parameter α is

a coefficient in the example. The parameters ε1 and ε3 encode relative round-
ing errors, and the parameters ε2 and ε4 encode absolute rounding errors. The
variable V allows stopping the loop iteration.

At the first abstract iteration, before the first clock tick, the variable buffer
is associated with the 5-tuple (M1, a1, b1, 1, 0) where MI is the least upper bound
of the set {|x| | x ∈ I}, a1 = dα + ε3e and b1 = dε4e. After the first clock tick,
it is associated with (M1, 1, 0, a1, b1). At the second abstract iteration, before

the clock tick, the variable X is associated with the 5-tuple (M1, a2, b2, a1, b1)
where a2 =

⌈
1
α + ε1

⌉
and b2 = dε2e. After the second clock tick, the variable

X is associated with the 5-tuple (M1, 1, 0, a1,max(b1, b2)). We notice that the
arithmetic-geometric domain cannot help in bounding the range of the variable
X because of the computation of the exponential (since we have a1 > 2). All
information has been lost when computing the first clock tick in the abstract.

6.2 Refining the domain

To refine the domain, we have to decide at each clock tick which affine computa-
tions are finished. For that purpose, we introduce two parameters βm, βM ∈ F+

very close to 1 and such that βm < 1 < βM . We then consider that an affine
transformation [X 7→ a × X + b] denotes a finished computation if and only if
βm < a < βM . In fact, in the case when a > βM the arithmetic-geometric pro-
gression domain will provide useless range and in the case when a < βm the inter-
val domain can provide accurate range by using widening and narrowing. Thus,
we redefine the element tickDF(M,a, b, a′, b′) by (M,a, 0, a′,max{b, b′}) in the
case when both a 6∈ [βm;βM] and a′ ≥ 1, and by (M, 1, 0,max{a, a′},max{b, b′})
otherwise. This definition still satisfies Thm. 5.

In Ex. 3, after the first clock tick and provided that a1 < βm, the vari-
able buffer is now associated with (M1, a1, 0, 1, b1). At the second abstract
iteration, before the clock tick the variable X is associated with the 5-tuple
(M1, a3, b3, 1, b1) where a3 = ddα + ε3e × a1e and b3 = ε3. Then after the sec-
ond clock tick and provided that a3 < βM , the variable X is associated with
(M1, 1, 0, a3,max(b1, b3)). This constraint is stable and allows the computation
of an accurate range for the variable X.

7 Benchmarks

We tested our framework with three programs of a same family of critical embed-
ded software written in C. For each program we tested the astrée [2] analyzer
with the classical domains (intervals [4], octagons [8], decision trees, and ex-
panded digital filter domains [6]) and without/with the new arithmetic-geometric
domain. For each of these analyses, we report in Fig. 4 the analyzed program size,
the number of global variables, the number of arithmetic-geometric constraints
that are captured by the analysis, the analysis time, the number of iterations
for the main loop, and the number of warnings (in polyvariant function calls).
These results have been obtained on a amd Opteron 248, with 8 Gb of RAM.
In two of the three programs, the arithmetic-geometric progression domain solve
all the remaining false alarms which gives a proof of absence of run-time errors.

8 Conclusion

We have proposed a new numerical domain which relates the value of each vari-
able to a clock counter. It approximates each value by an expression of the form

lines of C 70,000 216,000 379,000

global variables 13,400 7,500 9,000

ari-geo progressions disabled enabled disabled enabled disabled enabled

ari-geo constraints 257 458 634

iterations 53 47 228 64 238 67

average time per iteration 1mn30s 1mn47s 5mn40s 6mn07s 10mn17s 11mn35s

analysis time 1h20mn 1h24mn 21h32mn 6h33mn 40h58mn 12h55mn

warnings 24 0 80 1 189 0

Figure 4. Some statistics.

[X 7→ α×X + β](n)(M), where (M,α, β) are discovered automatically and n is
the maximum value of the clock counter. This approximation is proved correct
and allows us to bound the value of some floating-point variables by using the
program execution time. These bounds cannot be discovered either by ignoring
the clock counter or by just bounding the difference between variable values and
the clock value (c.f. [1]). Our framework allows the full certification of huge criti-
cal embedded softwares. The accuracy gain significantly reduces the exploration
space which leads to an analysis speed-up in some of our examples.
Acknowledgments. We deeply thank the anonymous referees. We also thank
Francesco Logozzo, Enea Zaffanella, and each member of the magic team: Bruno
Blanchet, Patrick Cousot, Radhia Cousot, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The Essence of Compu-
tation: Complexity, Analysis, Transformation., LNCS 2566. Springer-Verlag, 2002.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. PLDI’03.
ACM Press, 2003.

3. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD
thesis, Université Scientifique et Médicale de Grenoble, 1978.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. POPL’77. ACM Press, 1977.

5. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of logic and
computation, 2(4), August 1992.

6. J. Feret. Static analysis of digital filters. In European Symposium on Programming
(ESOP’04), number 2986 in LNCS. Springer-Verlag, 2004.

7. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system, documentation and user’s manual. Technical report, INRIA, 2002.

8. A. Miné. The octagon abstract domain. In Proc. WCRE’01(AST’01), IEEE, 2001.
9. A. Miné. Relational abstract domains for the detection of floating-point run-time

errors. In Proc. ESOP’04, LNCS. Springer, 2004.

