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Modeling signaling pathway

• A cell measures (i.e. checks thresholds, integrates, compares) the con-
centration of some proteins in order to make decisions.

• Many proteins (enzymes, receptors, transport molecules) are involved.
They interact by binding with each other and activating each other.

• We want to track the evolution of some species:

• There is a combinatorial blow-up.
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Why using modelling tools ?

• Use a concise high-level description of what happens;

• Share parts of models;

• Derive quantitative models automatically:

-- run benchs of simulations,
-- modify initial conditions,
-- update/modify the model at no cost;

• Use static analysis tools in order to check the consistency of a model:

-- dead rules detection,
-- control detection (which site controls which binding),
-- wrong species detection.
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A complex
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A unbinding/binding Rule
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E(r), R(l,r) ←→ E(r!1), R(l!1,r)
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Internal state
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R(Y1∼u,l!1), E(r!1) ←→ R(Y1∼p,l!1), E(r!1)
Jérôme Feret 9 January, 2008



Don’t care, Don’t write
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A contextual rule
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R(Y1∼u,r!_) → R(Y1∼p,r)
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Creation/Suppression
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R(r!1), R(r!1) → R(r)
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Set of reachable complexes

Let R = {Ri} be a set of rules.
Let Complex be the set of all complexes (C, c1, c ′1, . . . , ck, c

′
k, . . . ∈ Complex).

Let Complex0 be the set of initial complexes.
We write:

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

whenever:

1. there is an injection of the lhs of Rk in the solution c1, . . . , cm;

2. the (injection/rule) produces the solution c ′1, . . . , c
′
n.

We are interested in Complexω the set of all complexes that can be con-
structed in one or several applications of rules in R starting from the set
Complex0 of initial complexes.

(We do not care about the number of occurrences of each complex).
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Inductive definition

We define the mapping F as follows:

F :


℘(Complex) → ℘(Complex)

X 7→ X ∪

{
c ′j

∣∣∣∣ ∃Rk ∈ R, c1, . . . , cm ∈ X,c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}
.

The set ℘(Complex) is a complete lattice.
The mapping F is an extensive ∪-complete morphism.

We have:
Complexω =

⋃{
Fn(Complex0)

∣∣ n ∈ N
}
.
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Local views
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α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connexion

Let Local_view be the set of all local views.

Let α ∈ ℘(Complex)→ ℘(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set ℘(Local_view) is a complete lattice.
The function α is a ∪-complete morphism.

Thus, it defines a Galois connexion:

℘(Complex) −−→←−−
α

γ

℘(Local_view).

(The function γ maps a set of local views into the set of complexes that can
be built with these local views).
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Abstract rules
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Abstract counterpart to F

We define F] as:

F] :


℘(Local_view) → ℘(Local_view)

X 7→ X ∪

{
lv ′j

∣∣∣∣ ∃Rk ∈ R, lv1, . . . , lvm ∈ X,lv1, . . . , lvm →]
Rk

lv ′1, . . . , lv
′
n

}
.
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Soundness

We have:

1. (℘(Complex),⊆,∪) and (℘(Local_view),⊆,∪) are chain-complete par-
tial orders;

2. ℘(Complex) −−→←−−
α

γ

℘(Local_view) is a Galois connexion;

3. F ∈ ℘(Complex)→ ℘(Complex) and F] ∈ ℘(Local_view)→ ℘(Local_view)
are extensive and monotonic mappings;

4. F ◦ γ
.

⊆ γ ◦ F];

So:

1. both lfpx0F and lfpα(x0)
F] exist,

2. lfpx0F ⊆ γ(lfpα(x0)
F]).
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for the early EGF cascade (356 complexes);

• for the early FGF cascade (709 698 complexes);

• for the EGF cascade with RAS-ERK activation (' 1.8 ∗ 1018 complexes);

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Swap-closure
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Swap-closure
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Local set of complexes

Let X ⊆ Complex be a set of complexes,

The following assertions are equivalent:

1. X = γ(α(X))

2. X is closed upon swap.

In such a case, we say that X is local.

As a consequence:

1. Any assembling of views in α(X) can be extended in a close complex in
γ(α(X));

2. We have F] ◦ α = α ◦ F ◦ γ ◦ α.

Jérôme Feret 24 January, 2008



When is there no false positive ?

We have:

1. (℘(Complex),⊆,∪) and (℘(Local_view),⊆,∪) are chain-complete par-
tial orders;

2. (℘(Complex),⊆) −−→←−−
α

γ

(℘(Local_view),⊆) is a Galois connexion;

3. F : ℘(Complex)→ ℘(Complex) is an extensive and monotonic map;

4. F] ◦ α = α ◦ F ◦ γ ◦ α

So:
lfpx0F ∈ γ(℘(Complex))⇐⇒ lfpx0F = γ(lfpα(x0)

F]).
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Local fragment of Kappa

If:
1. initial agents are not bound;

2. rules are atomic;

3. rules are local (only agents that interact are tested);

4. binding rules do not interfere i.e. if both:

• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:

• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. assembled complexes are acyclic;
then:

Complexω = γ(α(Complexω)).
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Non local systems

Complex0
∆
= R(a∼u)

Rules ∆
=


R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)


R(a∼u!1),R(a∼u!1) ∈ Complexω
R(a∼p!1),R(a∼p!1) ∈ Complexω
But R(a∼u!1),R(a∼p!1) 6∈ Complexω.
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Non local systems

Complex0
∆
= A(a∼u),B(a∼u)

Rules ∆
=


A(a∼u),B(a∼u) → A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1) → A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1) → A(a∼u!1),B(a∼p!1)


A(a∼u!1),B(a∼p!1) ∈ Complexω
A(a∼p!1),B(a∼u!1) ∈ Complexω
But A(a∼p!1),B(a∼p!1) 6∈ Complexω.
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Program transformation

• we have a syntactic criterion in order to ensure that the set of reachable
complexes of a kappa system is local;

• we use program transformations to help systems satisfying this crite-
rion;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable complexes;
-- add some rules that are in the transitive closure of the system.
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Example

Initial rule:

R(l!2,r),R(l!1,r),E(r!1),E(r!2)→ R(l!3,r!1),R(l!2,r!1),E(r!2),E(r!3)

Decontextualized rule:

R(l!_,r),R(l!_,r)→ R(l!_,r!1),R(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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Conclusion

• A scalable static analysis to abstract the reachable complexes.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable complexes;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of complexes);
-- on the fly flat rule generation (for large/unbounded set).
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Future works

• Refine the analysis (and completeness criteria).

-- Deal with locations.
-- Deal with cycles.
-- Shape analysis.

• Quantitative analysis.

-- Can we lift the local-view abstraction to stochastic/differential se-
mantics ?

-- Which information do we obtain ?

• Semi-quantitative abstractions.

-- Can we design abstract domains to discover semi-quantitative prop-
erties (i.e. overshoot detection) ?
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