5th International Workshop on Static Analysis and Systems Biology

An algebraic approach for inferring and using symmetries in rule-based models

Jérôme Feret

Département d'informatique de l'école normale supérieure INRIA, ÉNS, CNRS

2014, September 10

Overview

- 1. Context and motivations
- 2. Kappa semantics
- 3. Symmetries in site-graphs
- 4. Symmetric models
- 5. Conclusion

Signalling Pathways

Eikuch, 2007

A gap between two modeling methods

Oda, Matsuoka, Funahashi, Kitano, Molecular Systems Biology, 2005

$$\begin{cases} \frac{dx_{1}}{dt} = -k_{1} \cdot x_{1} \cdot x_{2} + k_{-1} \cdot x_{3} \\ \frac{dx_{2}}{dt} = -k_{1} \cdot x_{1} \cdot x_{2} + k_{-1} \cdot x_{3} \\ \frac{dx_{3}}{dt} = k_{1} \cdot x_{1} \cdot x_{2} - k_{-1} \cdot x_{3} + 2 \cdot k_{2} \cdot x_{3} \cdot x_{3} - k_{-2} \cdot x_{4} \\ \frac{dx_{4}}{dt} = k_{2} \cdot x_{3}^{2} - k_{2} \cdot x_{4} + \frac{\nu_{4} \cdot x_{5}}{p_{4} + x_{5}} - k_{3} \cdot x_{4} - k_{-3} \cdot x_{5} \\ \frac{dx_{5}}{dt} = \cdots \\ \vdots \\ \frac{dx_{n}}{dt} = -k_{1} \cdot x_{1} \cdot c_{2} + k_{-1} \cdot x_{3} \end{cases}$$

Rule-based approach

We use site graph rewrite systems

- 1. The description level matches with both
 - the observation level
 - and the intervention level

of the biologist.

We can tune the model easily.

2. Model description is very compact.

Rule-based models

Complexity walls

2014, September 10

Symmetric sites

• in BNGL or MetaKappa (multiple-occurrences of sites):

• in Formal Cellular Machinery or React(C) (hyper-edges):

Blinov <u>et al.</u>, BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics 2004 Danos <u>et al.</u>, Rule-Based Modelling and Model Perturbation, TCSB 2009 Damgaard <u>et al.</u>, Formal cellular machinery, Damgaard et al., SASB 2011 John et al., Biochemical Reaction Rules with Constraints, ESOP 2011

Other kinds of symmetries: Circular permutations

Other kinds of symmetries: Homogeneous symmetries

Case study

State distribution

Lumpability

Whenever:

$$\begin{cases} 2k_{\bullet,\bullet} = 2k_{\bullet,\bullet} = k_{\bullet,\bullet} \\ k^{d}_{\bullet,\bullet} = k^{d}_{\bullet,\bullet} = k^{d}_{\bullet,\bullet} \end{cases}$$

We can lump the system.

Jérôme Feret

Lumped system

Macrostate distribution

Probability ratios

Probability ratios (wrong initial condition)

Probability ratios (wrong coefficients)

In this talk

An algebraic notion of symmetries over site graphs:

- compatible with the SPO (Single Push-Out) semantics of Kappa;
- with a notion of subgroups of symmetries;
- with a notion of symmetric models.

Some conditions so that symmetries over a model induce

- a forward bisimulation;
- a backward bisimulation.

In this talk, we consider only a side-effect free fragment of Kappa. The full language is handled with in the paper.

Overview

- 1. Context and motivations
- 2. Kappa semantics
- 3. Symmetries in site-graphs
- 4. Symmetric models
- 5. Conclusion

Signature

Site graph

Applying symmetries

We would like to make pairs of symmetries act over push-outs,

whenever they act the same way on preserved agents.

Jérôme Feret

Overview

- 1. Context and motivations
- 2. Kappa semantics
- 3. Symmetries in site-graphs
- 4. Symmetric models
- 5. Conclusion

Symmetries over site graphs

• For any site graph G, we introduce a finite group of symmetries \mathbb{G}_{G} .

• For any site graph G and any symmetry $\sigma \in \mathbb{G}_G$, we introduce the site graph σ .G and we call it the symmetric of G by σ .

Restricting a symmetry to the domain of an embedding

Restricting a symmetry to the domain of an embedding

Restriction of symmetry to the domain of an embedding

Symmetry VS embedding composition

- $(gf).\sigma = f.(g.\sigma)$
- $\sigma.(gf) = (\sigma.g)((g.\sigma).f)$

Symmetry product VS restriction to embedding domain

- $\varepsilon_F F = F$
- $f.\epsilon_F = \epsilon_E$
- $\epsilon_F f = f$

- $(\sigma' \circ \sigma).F = \sigma'.(\sigma.F)$
- $f.(\sigma' \circ \sigma) = ((f.\sigma).\sigma') \circ (f.\sigma)$
- $(\sigma' \circ \sigma).f = \sigma'.(\sigma.f)$

Symmetries VS rules

 $L \xrightarrow{r} R$

We introduce:

- $\mathbb{G}_{r} \stackrel{\Delta}{=} \{(\sigma_{L}, \sigma_{R}) \in \mathbb{G}_{L} \times \mathbb{G}_{R} \mid f.\sigma_{L} = g.\sigma_{R}\};$
- $(\sigma_L, \sigma_R).r \stackrel{\Delta}{:} \sigma_L.L$ $\sigma_R.R$ (for any $(\sigma_L, \sigma_R) \in \mathbb{G}_r$).

We assume that:

- 1. \mathbb{G}_r is stable upon pairwise product;
- 2. $\sigma.r$ is a rule, for any pair of symmetries $\sigma \in \mathbb{G}_r$ (and we write $r \approx_{\mathbb{G}} \sigma.r$).

Group actions over push-out

Theorem 1 Let r be a rule. The function which maps each pair of symmetries $(\sigma_L, \sigma_R) \in \mathbb{G}_r$ and each push-out of the form:

with $r' \approx_{\mathbb{G}} r$, to the push-out:

is a group action.

Subgroups of symmetries

Theorem 2

If, for any embedding h between two site graphs G and H:

- we have a subset \mathbb{G}'_{G} of \mathbb{G}_{G} ;
- for any symmetry $\sigma \in \mathbb{G}'_{G}$, $\mathbb{G}'_{G} = \mathbb{G}'_{(\sigma,G)}$;
- for any two σ, σ' symmetries in \mathbb{G}'_{G} , $\sigma \circ \sigma' \in \mathbb{G}'_{G}$;
- for any symmetry $\sigma \in \mathbb{G}'_{H}$, $h.\sigma \in \mathbb{G}'_{G}$;

then the groups $(\mathbb{G}'_{\mathsf{G}})$ define a set of symmetries.

Example: Heterogeneous site permutations

Example: Homogeneous site permutations

Overview

- 1. Context and motivations
- 2. Kappa semantics
- 3. Symmetries in site-graphs
- 4. Symmetric models
- 5. Conclusion

Symmetric model

We assume that the model contains atmost one rule per isomorphism class.

A model is G-symmetric if and only if:

- for any rule r in the model and any pair of symmetries $\sigma \in \mathbb{G}_r$, there is (unique) a rule r' in the model that is isomorphic to the rule $\sigma.r$.
- and, with the same notations, we have g(r) = g(r') where:

$$g(r) \stackrel{\Delta}{=} \frac{k(r)}{\textit{card}(\{\sigma \in \mathbb{G}_r \mid \sigma.r \text{ and } r \text{ are isomorphic}\})[\textit{lhs}(r),\textit{lhs}(r)]}.$$

Binding rules

Unbinding rules

Compatible embeddings

An embedding f between two site graphs G and H is said compatible if and only if:

$$\mathbb{G}_{\mathsf{G}} = \{\mathsf{f}.\sigma \mid \sigma \in \mathbb{G}_{\mathsf{H}}\}$$

(that is to say that any symmetry that can be applied to the domain of f can be extended to the image of f).

Compatible embeddings may not be preserved by subgroups of symmetries:

Heterogeneous permutations

Homogeneous permutations

Compatible rules

We say that a rule r is forward-compatible if and only if, for any push-out of the following form:

the embedding g is compatible.

We say that a rule r is backward-compatible if and only if, for any push-out of the following form:

the embedding f is compatible.

Jérôme Feret

39

Quantitative properties

Theorem 3 Let \mathbb{G} be a set of symmetries and \mathcal{M} be a \mathbb{G} -symmetric model. Then:

- if each rule of r is forward compatible, then we can lump the system. (the proof relies on a forward bisimulation)
- 2. if each rule of r is both forward and backward compatible, then the following property:

 $\left[\mathcal{P}(q)[q,q]=\mathcal{P}(\sigma.q)[\sigma.q,\sigma.q],\text{for any state }q\text{ and any symmetry }\sigma\in\mathbb{G}_q\right]$

is an invariant of the system.

(the proof relies on a backward bisimulation)

Overview

- 1. Context and motivations
- 2. Kappa semantics
- 3. Symmetries in site-graphs
- 4. Symmetric models
- 5. Conclusion

Conclusion

A fully algebraic framework to infer and use symmetries in Kappa;

- Compatible with the SPO semantics (see [FSTTCS'2012]);
- Can handle side-effects (see the paper);
- Induces forward and/or back and forth bisimulations;
- Can be applied to discover model reductions for the qualitative semantics, the ODEs semantics, and the stochastic semantics [MFPSXXVII];
- Can be combined with other exact model reductions [MFPSXXVI].

This framework is cleaner and more general that the process algebra based one [MFPSXXVII].

42

Camporesi <u>et al.</u>, Combining model reductions. MFPS XXVI (2010) Camporesi <u>et al.</u>, Formal reduction of rule-based models, MFPS XXVII (2011) Danos <u>et al.</u>, Rewriting and Pathway Reconstruction for Rule-Based Models, FSTTCS 2012

Future work

- Investigate which specific classes of symmetries and which specific classes of rules ensure that rules are forward and/or backward compatible with the symmetries;
- Check the compatibility with the DPO (Double Push-Out) semantics;
- Design approximate symmetries using bisimulation metrics (ask Norman Ferns, Post-doc at ÉNS).

Thank you !!!

We acknowledge the support of:

- 1. the AbstractCell ANR-Chair of Excellence 2009-2013
- 2. the ExeK project (Big Mechanism DARPA Program) 2014-2018.

We have open positions:

- at ÉNS-Ulm,
- at ÉNS-Lyon,
- at Paris-Diderot university,
- and at Harvard Medical School

for post-doc researchers and research engineers on the ExeK DARPA project.