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Signalling Pathways
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A gap between two modeling methods

Epidermal Growth Factor Receptor Pathway Map ...
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Rule-based approach

We use site graph rewrite systems

ﬁ

1. The description level matches with both

e the observation level
e and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.
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Rule-based models
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Complexity walls

number of instances combinatorial wall
per molecular species
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Symmetric sites

e in BNGL or MetaKappa (multiple-occurrences of sites):

e in Formal Cellular Machinery or React(C) (hyper-edges):

K

Blinov et al., BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics 2004
Danos et al., Rule-Based Modelling and Model Perturbation, TCSB 2009

Damgaard et al., Formal cellular machinery, Damgaard et al., SASB 2011

John et al., Biochemical Reaction Rules with Constraints, ESOP 2011
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Other kinds of symmetries:
Circular permutations
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Other kinds of symmetries:
Homogeneous symmetries
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Case study
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State distribution
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Lumpability
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We can lump the system.
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Lumped system
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Macrostate distribution
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Probability ratios (wrong initial condition)
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In this talk

An algebraic notion of symmetries over site graphs:
e compatible with the SPO (Single Push-Out) semantics of Kappa;
e with a notion of subgroups of symmetries;
e with a notion of symmetric models.

Some conditions so that symmetries over a model induce
e a forward bisimulation;
e a backward bisimulation.

In this talk, we consider only a side-effect free fragment of Kappa.
The full language is handled with in the paper.
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Signature
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Site graph
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Applying symmetries

We would like to make pairs of symmetries act over push-outs,

q >q/ O'q_q >0'L / q/
L \ /
agree
| (O'a,O'/ ).T y
[— 1 R yat = 0q-R

whenever they act the same way on preserved agents.
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Symmetries over site graphs

e For any site graph G, we introduce a finite group of symmetries G..

e For any site graph G and any symmetry o € G, we introduce the site
graph o.G and we call it the symmetric of G by o.
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Restricting a symmetry
to the domain of an embedding
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Restricting a symmetry
to the domain of an embedding
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Jérome Feret

Restriction of symmetry
to the domain of an embedding
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Symmetry VS embedding composition

F— T F

Jérdme Feret

e (gf).c =f.(g.0)
e 0.(gf) = (0.9)((g.0).f)
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Jérdme Feret

® EF.F =F
o f.EF = €E
® EF.f = f

Symmetry product
VS restriction to embedding domain
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Symmetries VS rules

Forany rule: L —R
or any ru X A,

We introduce:
Y Gr é {(GL) O'R) € GL X GR | f.or = g.GR};

o (O']_, O'R).T A GLL GRR

oL TR

(for any (o, or) € G,).

We assume that:
1. G, Is stable upon pairwise product;

2. o.ris arule, for any pair of symmetries o € G,
(and we write r~go.1).
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Group actions over push-out

Theorem 1 Let r be arule. The function which maps each pair of symmetries
(o1, or) € G, and each push-out of the form:
/

K T R’
hLJ - JhR
L y -R
T
with r’=~gr, to the push-out:
/
Oo7,0pR).T
oL (o1,0R) -0%.R’

GL'hLJ - JGR'hR
(hL-GL)-L //>(hR-GR)'R

(hi.or,hg.OR).T
IS a group action.
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Subgroups of symmetries

Theorem 2
If, for any embedding h between two site graphs G and H:

e we have a subset G of G;

e for any symmetry o € G, G5 =G,

e for any two o, o’ symmetries in G, 60 0’ € G;
e for any symmetry o € G,,, h.o € Gg;

then the groups (G;) define a set of symmetries.
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Example:
Heterogeneous site permutations
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Example:
Homogeneous site permutations
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Symmetric model

We assume that the model contains atmost one rule per isomorphism class.

A model is G-symmetric if and only if:

e for any rule r in the model and any pair of symmetries o € G,, there is
(unique) a rule " in the model that is isomorphic to the rule o.r.

e and, with the same notations, we have g(r) = g(r’) where:

A k(r)
~ card({oc € G, | o.r and r are isomorphic})[/hs(r), Ihs(r)]’

g(r)
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Binding rules

Jérome Feret 36 2014, September 10



Unbinding rules
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Compatible embeddings

An embedding f between two site graphs G and H is said compatible if and
only if:

(that is to say that any symmetry that can be applied to the domain of f can
be extended to the image of f).

Compatible embeddings may not be preserved by subgroups of symmetries:

Fe 8§ py B9
l'l l'l l'l I'l

Heterogeneous permutations Homogeneous permutations
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Compatible rules

We say that a rule r is forward-compatible if and only if, for any push-out of

the following form:
\ /_
T

>

the embedding g is compatible.

We say that a rule r is backward-compatible if and only if, for any push-out of

the following form:
\ /E
T

>

the embedding f is compatible.
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Quantitative properties

Theorem 3 Let G be a set of symmetries and M be a G-symmetric model.
Then:

1. if each rule of r is forward compatible,
then we can lump the system.
(the proof relies on a forward bisimulation)

2. if each rule of r is both forward and backward compatible,
then the following property:

[P(q)[q, ql = P(o.q)lo.q, 0.ql, for any state q and any symmetry o € Gq}

IS an invariant of the system.
(the proof relies on a backward bisimulation)
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Conclusion

A fully algebraic framework to infer and use symmetries in Kappa;
e Compatible with the SPO semantics (see [FsTTCcs2012));
e Can handle side-effects (see the paper);
e Induces forward and/or back and forth bisimulations;

e Can be applied to discover model reductions for the qualitative seman-
tics, the ODEs semantics, and the stochastic semantics [MFPsxxvii;

e Can be combined with other exact model reductions [MFPsxxviI).

This framework is cleaner and more general that the process algebra based
one [MFPSXXVII].

Camporesi et al., Combining model reductions. MFPS XXVI (2010)
Camporesi et al., Formal reduction of rule-based models, MFPS XXVII (2011)
Danos et al., Rewriting and Pathway Reconstruction for Rule-Based Models, FSTTCS 2012
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Future work

e Investigate which specific classes of symmetries and which specific
classes of rules ensure that rules are forward and/or backward com-
patible with the symmetries;

e Check the compatibility with the DPO (Double Push-Out) semantics;

e Design approximate symmetries using bisimulation metrics
(ask Norman Ferns, Post-doc at ENS).
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