SAS 2011

Formal model reduction

Jérôme Feret Laboratoire d'Informatique de l'École Normale Supérieure INRIA, ÉNS, CNRS

Friday, September the 16th

Joint-work with...

Vincent Danos Edinburgh

Ferdinanda Camporesi Bologna / ÉNS

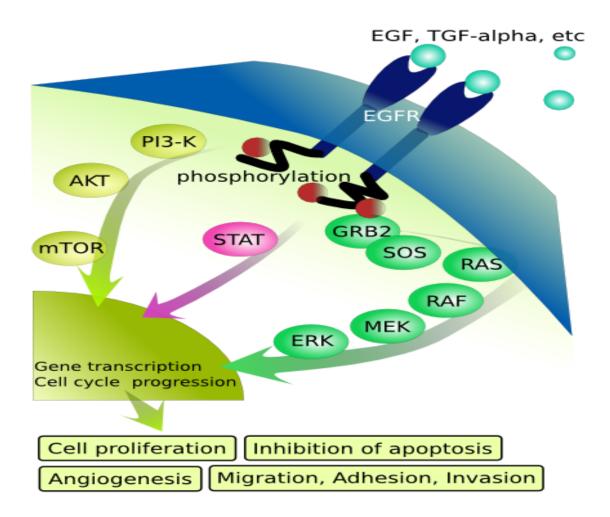
Russ Harmer Harvard Medical School

Jean Krivine Paris VII

Overview

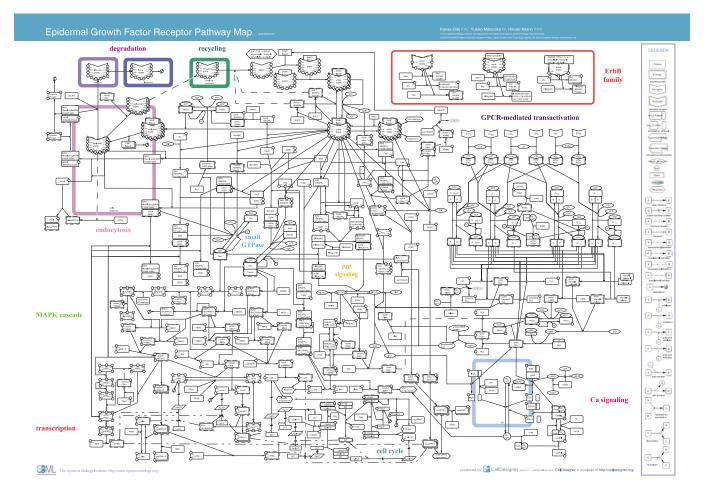
- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Signalling Pathways



Eikuch, 2007

Pathway maps



Oda, Matsuoka, Funahashi, Kitano, Molecular Systems Biology, 2005

Differential models

$$\begin{cases} \frac{dx_1}{dt} = -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\ \frac{dx_2}{dt} = -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\ \frac{dx_3}{dt} = k_1 \cdot x_1 \cdot x_2 - k_{-1} \cdot x_3 + 2 \cdot k_2 \cdot x_3 \cdot x_3 - k_{-2} \cdot x_4 \\ \frac{dx_4}{dt} = k_2 \cdot x_3^2 - k_2 \cdot x_4 + \frac{v_4 \cdot x_5}{p_4 + x_5} - (k_3 \cdot x_4 - k_{-3} \cdot x_5) \\ \frac{dx_5}{dt} = \cdots \\ \vdots \\ \frac{dx_n}{dt} = -k_1 \cdot x_1 \cdot c_2 + k_{-1} \cdot x_3 \end{cases}$$

- do not describe the structure of molecules;
- combinatorial explosion: forces choices that are not principled;
- a nightmare to modify.

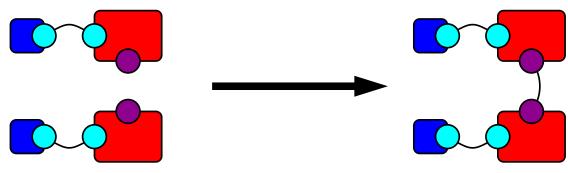
A gap between two worlds

Two levels of description:

- 1. Databases of proteins interactions in natural language
 - + documented and detailed description
 - + transparent description
 - cannot be interpreted
- 2. ODE-based models
 - + can be integrated
 - opaque modelling process, models can hardly be modified
 - there are also some scalability issues.

Rule-based approach

We use site graph rewrite systems



- 1. The description level matches with both
 - the observation level
 - and the intervention level

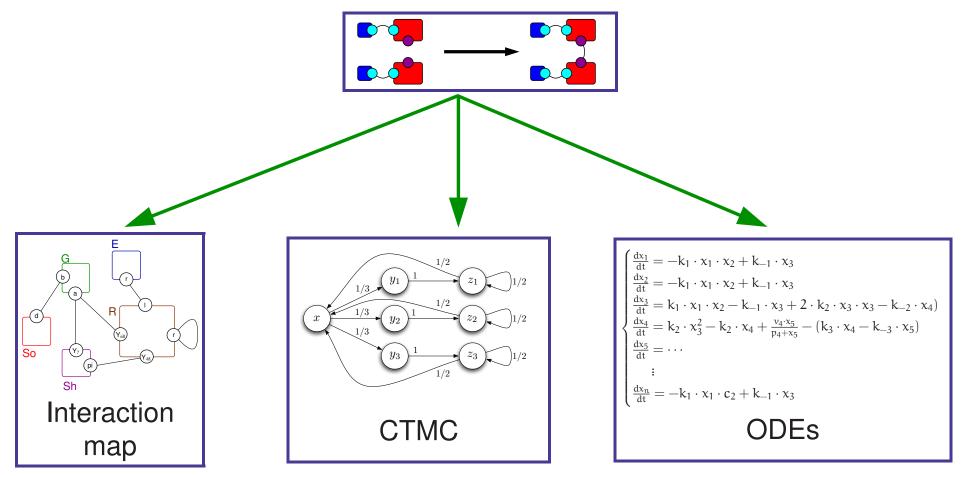
of the biologist.

We can tune the model easily.

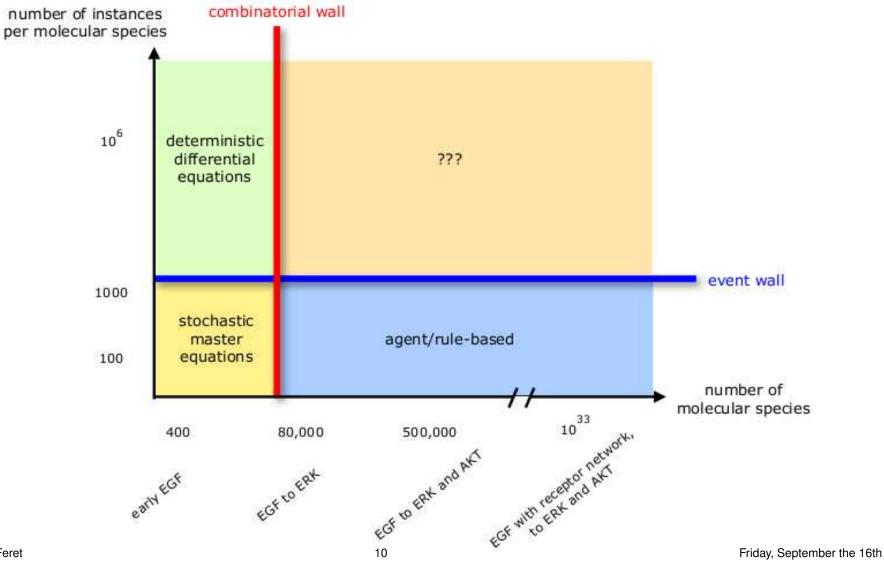
2. Model description is very compact.

Semantics

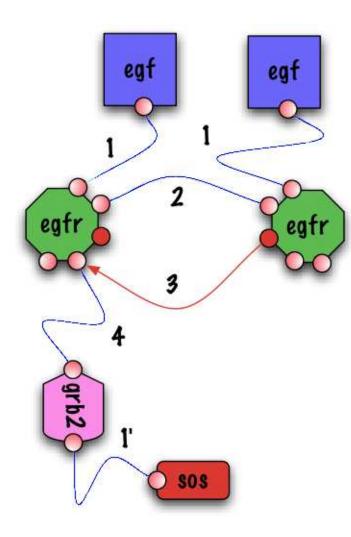
Several semantics (qualititative and/or quantitative) can be defined.

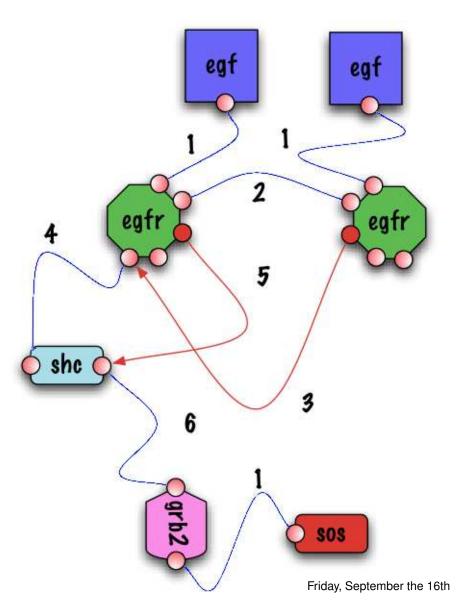


Complexity walls



A breach in the wall(s) ?

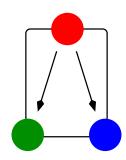




Overview

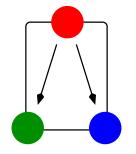
- 1. Context and motivations
- 2. Handmade ODEs
 - (a) using the flow of information
 - (b) using symmetries
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

A system with a switch



A system with a switch

- $(u,u,u) \longrightarrow (u,\mathbf{p},u) \mathbf{k}^{c}$
- $(u,p,u) \longrightarrow (p,p,u) \qquad k^{I}$
- $(u,p,p) \longrightarrow (p,p,p) \qquad k^{I}$
- $(u,\mathbf{p},u) \longrightarrow (u,\mathbf{p},\mathbf{p}) \mathbf{k}^{\mathbf{r}}$
- $(\mathbf{p},\mathbf{p},\mathbf{u}) \longrightarrow (\mathbf{p},\mathbf{p},\mathbf{p}) \mathbf{k}^{\mathbf{r}}$



A system with a switch

$$(u,u,u) \longrightarrow (u,p,u) \mathbf{k}^{c}$$

$$(u,p,u) \longrightarrow (p,p,u) \qquad k^{I}$$

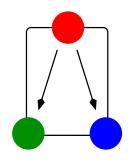
$$(u,p,p) \longrightarrow (p,p,p) \qquad k^{l}$$

$$(u,\mathbf{p},u) \longrightarrow (u,\mathbf{p},\mathbf{p}) \mathbf{k}^{r}$$

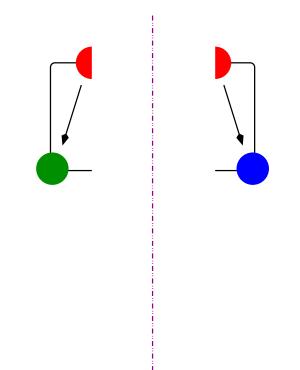
$$(\mathbf{p},\mathbf{p},\mathbf{u}) \longrightarrow (\mathbf{p},\mathbf{p},\mathbf{p}) \mathbf{k}^{\mathbf{r}}$$

$$\begin{aligned} \frac{d[(u,u,u)]}{dt} &= -k^{c} \cdot [(u,u,u)] \\ \frac{d[(u,p,u)]}{dt} &= -k^{l} \cdot [(u,p,u)] + k^{c} \cdot [(u,u,u)] - k^{r} \cdot [(u,p,u)] \\ \frac{d[(u,p,p)]}{dt} &= -k^{l} \cdot [(u,p,p)] + k^{r} \cdot [(u,p,u)] \\ \frac{d[(p,p,u)]}{dt} &= k^{l} \cdot [(u,p,u)] - k^{r} \cdot [(p,p,u)] \\ \frac{d[(p,p,p)]}{dt} &= k^{l} \cdot [(u,p,p)] + k^{r} \cdot [(p,p,u)] \end{aligned}$$

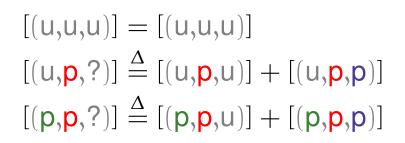
Two subsystems



Two subsystems



Two subsystems



$$\begin{cases} \frac{d[(u,u,u)]}{dt} = -k^{c} \cdot [(u,u,u)] \\ \frac{d[(u,p,?)]}{dt} = -k^{l} \cdot [(u,p,?)] + k^{c} \cdot [(u,u,u)] \\ \frac{d[(p,p,?)]}{dt} = k^{l} \cdot [(u,p,?)] \end{cases}$$

[(u,u,u)] = [(u,u,u)] $[(?,p,u)] \stackrel{\Delta}{=} [(u,p,u)] + [(p,p,u)]$ $[(?,p,p)] \stackrel{\Delta}{=} [(u,p,p)] + [(p,p,p)]$

$$\begin{cases} \frac{d[(u,u,u)]}{dt} = -k^{c} \cdot [(u,u,u)] \\ \frac{d[(?,p,u)]}{dt} = -k^{r} \cdot [(?,p,u)] + k^{c} \cdot [(u,u,u)] \\ \frac{d[(?,p,p)]}{dt} = k^{r} \cdot [(?,p,u)] \end{cases}$$

Dependence index

The states of left site and right site would be independent if, and only if: $\frac{[(?,p,p)]}{[(?,p,u)] + [(?,p,p)]} = \frac{[(p,p,p)]}{[(p,p,?)]}.$

Thus we define the dependence index as follows:

 $X \stackrel{\Delta}{=} [(p,p,p)] \cdot ([(?,p,u)] + [(?,p,p)]) - [(?,p,p)] \cdot [(p,p,?)].$

We have:

$$\frac{dX}{dt} = -X \cdot \left(k^{l} + k^{r}\right) + k^{c} \cdot \left[(p, p, p)\right] \cdot \left[(u, u, u)\right].$$

So the property (X = 0) is not an invariant.

Conclusion

We can use the absence of flow of information to cut chemical species into self-consistent fragments of chemical species:

 some information is abstracted away: we cannot recover the concentration of any species;

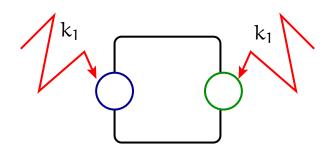
+ flow of information is easy to abstract;

We are going to track the correlations that are read by the system.

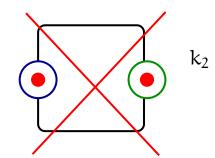
Overview

- 1. Context and motivations
- 2. Handmade ODEs
 - (a) using the flow of information
 - (b) using symmetries
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

A model with symmetries

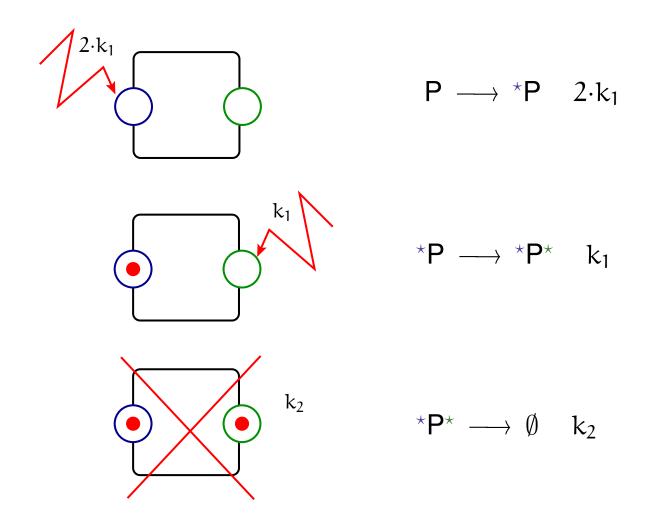


$P \longrightarrow {}^*P$	k_1	$P^{\star} \longrightarrow {}^{\star}P^{\star}$	k_1
$P \; \longrightarrow \; P^{\star}$	k_1	$*P \longrightarrow *P^*$	k_1



 $^{\star}P^{\star} \longrightarrow \emptyset \quad k_2$

Reduced model



Invariant

We wonder whether or not:

 $[{}^{\star}\mathsf{P}] = [\mathsf{P}^{\star}],$

Thus we define the difference X as follows: $X \stackrel{\Delta}{=} [{}^{*}P] - [P^{*}].$

We have:

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}\mathbf{t}} = -\mathbf{k}_1 \cdot \mathbf{X}.$$

So the property (X = 0) is an invariant.

Thus, if $[*P] = [P^*]$ at time t = 0, then $[*P] = [P^*]$ forever.

Conclusion

We can abstract away the distinction between chemical species which are equivalent up to symmetries (with respect to the reactions).

- 1. If the symmetries are satisfied in the initial state:
 - + the abstraction is invertible:

we can recover the concentration of any species, (thanks to the invariants).

- 2. Otherwise:
 - some information is abstracted away:

we cannot recover the concentration of any species;

+ the system converges to a state which satisfies the symmetries.

Overview

- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
 - (a) Concrete semantics
 - (b) Abstraction
 - (c) Bisimulation
 - (d) Combination
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Continuous differential semantics

Let \mathcal{V} , be a finite set of variables ; and \mathbb{F} , be a \mathcal{C}^{∞} mapping from $\mathcal{V} \to \mathbb{R}^+$ into $\mathcal{V} \to \mathbb{R}$, as for instance,

• $\mathcal{V} \stackrel{\Delta}{=} \{ [(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)] \} \}$

•
$$\mathbb{F}(\rho) \stackrel{\Delta}{=} \begin{cases} [(u,u,u)] \mapsto -k^{c} \cdot \rho([(u,u,u)]) \\ [(u,p,u)] \mapsto -k^{l} \cdot \rho([(u,p,u)]) + k^{c} \cdot \rho([(u,u,u)]) - k^{r} \cdot \rho([(u,p,u)]) \\ [(u,p,p)] \mapsto -k^{l} \cdot \rho([(u,p,p)]) + k^{r} \cdot \rho([(u,p,u)]) \\ [(p,p,u)] \mapsto k^{l} \cdot \rho([(u,p,u)]) - k^{r} \cdot \rho([(p,p,u)]) \\ [(p,p,p)] \mapsto k^{l} \cdot \rho([(u,p,p)]) + k^{r} \cdot \rho([(p,p,u)]). \end{cases}$$

The continuous semantics maps each initial state $X_0 \in \mathcal{V} \to \mathbb{R}^+$ to the maximal solution $X_{X_0} \in [0, T_{X_0}^{max}[\to (\mathcal{V} \to \mathbb{R}^+)$ which satisfies:

$$X_{X_0}(T) = X_0 + \int_{t=0}^T \mathbb{F}(X_{X_0}(t)) \cdot dt.$$

Overview

- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
 - (a) Concrete semantics
 - (b) Abstraction
 - (c) Bisimulation
 - (d) Combination
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Abstraction

An abstraction $(\mathcal{V}^{\sharp}, \psi, \mathbb{F}^{\sharp})$ is given by:

- \mathcal{V}^{\sharp} : a finite set of observables,
- ψ : a mapping from $\mathcal{V} \to \mathbb{R}$ into $\mathcal{V}^{\sharp} \to \mathbb{R}$,
- \mathbb{F}^{\sharp} : a \mathcal{C}^{∞} mapping from $\mathcal{V}^{\sharp} \to \mathbb{R}^{+}$ into $\mathcal{V}^{\sharp} \to \mathbb{R}$;

such that:

- ψ is linear with positive coefficients, and for any sequence $(x_n) \in (\mathcal{V} \to \mathbb{R}^+)^{\mathbb{N}}$ such that $(||x_n||)$ diverges towards $+\infty$, then $(||\psi(x_n)||^{\sharp})$ diverges as well (for arbitrary norms $|| \cdot ||$ and $|| \cdot ||^{\sharp}$),
- the following diagram commutes:

$$\begin{array}{ccc} (\mathcal{V} \to \mathbb{R}^+) & \xrightarrow{\mathbb{F}} & (\mathcal{V} \to \mathbb{R}) \\ & & & & \downarrow_{\ell^*} \\ (\mathcal{V}^{\sharp} \to \mathbb{R}^+) & \xrightarrow{\mathbb{F}^{\sharp}} & (\mathcal{V}^{\sharp} \to \mathbb{R}) \end{array}$$

i.e.
$$\psi \circ \mathbb{F} = \mathbb{F}^{\sharp} \circ \psi$$

Abstraction example

•
$$\mathcal{V} \stackrel{\Delta}{=} \{[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]\}$$

• $\mathbb{F}(\rho) \stackrel{\Delta}{=} \begin{cases} [(u,u,u)] \mapsto -k^{c} \cdot \rho([(u,u,u)]) \\ [(u,p,u)] \mapsto -k^{l} \cdot \rho([(u,p,u)]) + k^{c} \cdot \rho([(u,u,u)]) - k^{r} \cdot \rho([(u,p,u)]) \\ [(u,p,p)] \mapsto -k^{l} \cdot \rho([(u,p,p)]) + k^{r} \cdot \rho([(u,p,u)]) \\ \dots \end{cases}$

•
$$\mathcal{V}^{\sharp} \stackrel{\Delta}{=} \{ [(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)] \}$$

• $\psi(\rho) \stackrel{\Delta}{=} \begin{cases} [(u,u,u)] \mapsto \rho([(u,u,u)]) \\ [(?,p,u)] \mapsto \rho([(u,p,u)]) + \rho([(p,p,u)]) \\ [(?,p,p)] \mapsto \rho([(u,p,p)]) + \rho([(p,p,p)]) \\ ... \end{cases}$
• $\mathbb{F}^{\sharp}(\rho^{\sharp}) \stackrel{\Delta}{=} \begin{cases} [(u,u,u)] \mapsto -k^{c} \cdot \rho^{\sharp}([(u,u,u)]) \\ [(?,p,u)] \mapsto -k^{r} \cdot \rho^{\sharp}([(?,p,u)]) + k^{c} \cdot \rho^{\sharp}([(u,u,u)]) \\ [(?,p,p)] \mapsto k^{r} \cdot \rho^{\sharp}([(?,p,u)]) \\ ... \end{cases}$

(Completeness can be checked analytically.)

Abstract continuous trajectories

Let $(\mathcal{V}, \mathbb{F})$ be a concrete system. Let $(\mathcal{V}^{\sharp}, \psi, \mathbb{F}^{\sharp})$ be an abstraction of the concrete system $(\mathcal{V}, \mathbb{F})$. Let $X_0 \in \mathcal{V} \to \mathbb{R}^+$ be an initial (concrete) state.

We know that the following system:

$$Y_{\psi(X_0)}(\mathsf{T}) = \psi(X_0) + \int_{\mathsf{t}=0}^{\mathsf{T}} \mathbb{F}^{\sharp}\left(Y_{\psi(X_0)}(\mathsf{t})\right) \cdot d\mathsf{t}$$

has a unique maximal solution $Y_{\psi(X_0)}$ such that $Y_{\psi(X_0)} = \psi(X_0)$.

Theorem 1 Moreover, this solution is the projection of the maximal solution X_{X_0} of the system

$$X_{X_0}(\mathsf{T}) = X_0 + \int_{t=0}^{\mathsf{T}} \mathbb{F}\left(X_{X_0}(t)\right) \cdot dt.$$

(i.e. $Y_{\psi(X_0)} = \psi(X_{X_0})$)

Abstract continuous trajectories Proof sketch

Given an abstraction $(\mathcal{V}^{\sharp}, \psi, \mathbb{F}^{\sharp})$, we have:

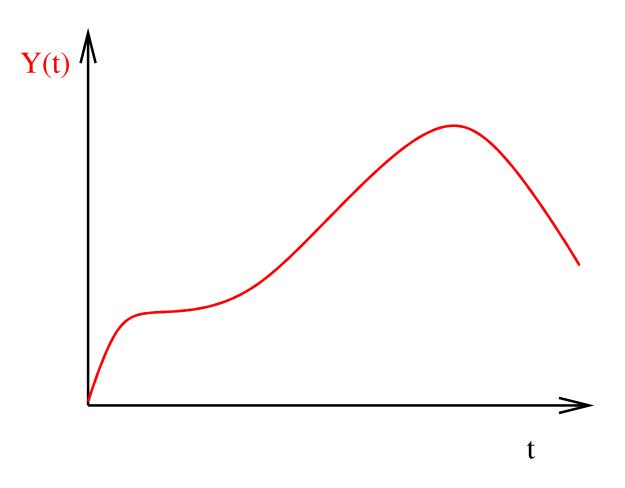
$$\begin{split} X_{X_0}(T) &= X_0 + \int_{t=0}^{T} \mathbb{F}\left(X_{X_0}(t)\right) \cdot dt \\ \psi\left(X_{X_0}(T)\right) &= \psi\left(X_0 + \int_{t=0}^{T} \mathbb{F}\left(X_{X_0}(t)\right) \cdot dt\right) \\ \psi\left(X_{X_0}(T)\right) &= \psi(X_0) + \int_{t=0}^{T} [\psi \circ \mathbb{F}]\left(X_{X_0}(t)\right) \cdot dt \text{ (ψ is linear)} \\ \psi\left(X_{X_0}(T)\right) &= \psi(X_0) + \int_{t=0}^{T} \mathbb{F}^{\sharp}\left(\psi\left(X_{X_0}(t)\right)\right) \cdot dt \text{ (\mathbb{F}^{\sharp} is ψ-complete)} \end{split}$$

We set $Y_0 \stackrel{\Delta}{=} \psi(X_0)$ and $Y_{Y_0} \stackrel{\Delta}{=} \psi \circ X_{X_0}$. Then we have:

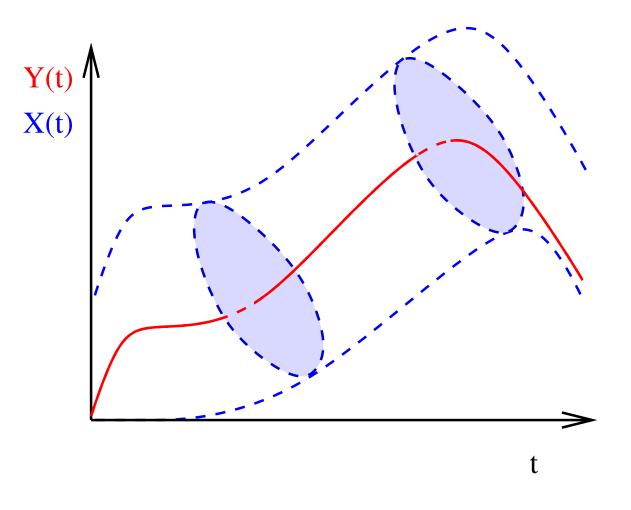
$$Y_{Y_0}(T) = Y_0 + \int_{t=0}^T \mathbb{F}^{\sharp}\left(Y_{Y_0}(t)\right) \cdot dt$$

The assumption about $\|\cdot\|$, $\|\cdot\|^{\sharp}$, and ψ ensures that $\psi \circ X_{X_0}$ is a maximal solution.

Fluid trajectories



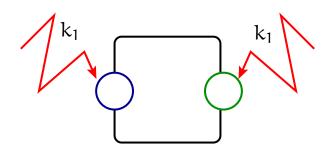
Fluid trajectories



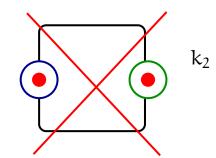
Overview

- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
 - (a) Concrete semantics
 - (b) Abstraction
 - (c) Bisimulation
 - (d) Combination
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

A model with symmetries



$P \longrightarrow {}^{\star}P$	k_1	$P^{\star} \longrightarrow {}^{\star}P^{\star}$	k_1
$P \longrightarrow P^{\star}$	k_1	$* P \longrightarrow * P^*$	k_1



 $^{\star}P^{\star} \longrightarrow \emptyset \quad k_2$

Differential equations

• Initial system:

$$\frac{d}{dt} \begin{bmatrix} \mathsf{P} \\ {}^{*}\mathsf{P} \\ \mathsf{P}^{*} \\ {}^{*}\mathsf{P}^{*} \end{bmatrix} = \begin{bmatrix} -2 \cdot k_{1} & 0 & 0 & 0 \\ k_{1} & -k_{1} & 0 & 0 \\ k_{1} & 0 & -k_{1} & 0 \\ 0 & k_{1} & k_{1} & -k_{2} \end{bmatrix} \cdot \begin{bmatrix} \mathsf{P} \\ {}^{*}\mathsf{P} \\ \mathsf{P}^{*} \\ {}^{*}\mathsf{P}^{*} \end{bmatrix}$$

• Reduced system:

$$\frac{d}{dt} \begin{bmatrix} \mathsf{P} \\ *\mathsf{P} + \mathsf{P}^* \\ 0 \\ *\mathsf{P}^* \end{bmatrix} = \begin{bmatrix} -2 \cdot k_1 & 0 & 0 & 0 \\ 2 \cdot k_1 & -k_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & k_1 & 0 & -k_2 \end{bmatrix} \cdot \begin{bmatrix} \mathsf{P} \\ *\mathsf{P} + \mathsf{P}^* \\ 0 \\ *\mathsf{P}^* \end{bmatrix}$$

Differential equations

• Initial system:

$$\frac{d}{dt} \begin{bmatrix} \mathsf{P} \\ {}^{*}\mathsf{P} \\ \mathsf{P}^{*} \\ {}^{*}\mathsf{P}^{*} \end{bmatrix} = \begin{bmatrix} -2 \cdot k_{1} & 0 & 0 & 0 \\ k_{1} & -k_{1} & 0 & 0 \\ k_{1} & 0 & -k_{1} & 0 \\ 0 & k_{1} & k_{1} & -k_{2} \end{bmatrix} \cdot \begin{bmatrix} \mathsf{P} \\ {}^{*}\mathsf{P} \\ \mathsf{P}^{*} \\ {}^{*}\mathsf{P}^{*} \end{bmatrix}$$

• Reduced system:

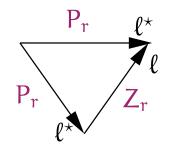
$$\frac{d}{dt} \begin{bmatrix} \mathsf{P} \\ *\mathsf{P} + \mathsf{P}^* \\ 0 \\ *\mathsf{P}^* \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathsf{P}} \cdot \begin{bmatrix} -2 \cdot k_1 & 0 & 0 & 0 \\ k_1 & -k_1 & 0 & 0 \\ 0 & k_1 & k_1 & -k_2 \end{bmatrix} \cdot \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\mathsf{Z}} \cdot \begin{bmatrix} \mathsf{P} \\ *\mathsf{P} + \mathsf{P}^* \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pair of projections induced by an equivalence relation among variables

Let r be an idempotent mapping from \mathcal{V} to \mathcal{V} . We define two linear projections $P_r, Z_r \in (\mathcal{V} \to \mathbb{R}^+) \to (\mathcal{V} \to \mathbb{R}^+)$ by:

•
$$\begin{split} \textbf{P}_r(\rho)(V) &= \begin{cases} \sum \{\rho(V') \mid r(V') = r(V)\} & \text{when } V = r(V) \\ 0 & \text{when } V \neq r(V); \end{cases} \\ \textbf{\bullet} \quad Z_r(\rho) &= \begin{cases} V \mapsto \rho(V) & \text{when } V = r(V) \\ V \mapsto 0 & \text{when } V \neq r(V). \end{cases} \end{split}$$

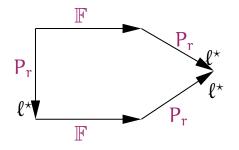
We notice that the following diagram commutes:



Induced bisimulation

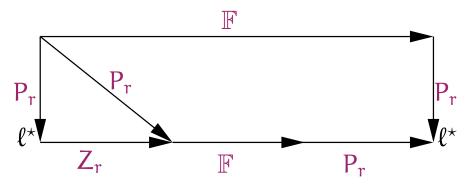
The mapping r induces a bisimulation, $\stackrel{\Delta}{\Longleftrightarrow}$ for any $\sigma, \sigma' \in \mathcal{V} \to \mathbb{R}^+$, $P_r(\sigma) = P_r(\sigma') \implies P_r(\mathbb{F}(\sigma)) = P_r(\mathbb{F}(\sigma'))$.

Indeed the mapping r induces a bisimulation, \iff for any $\sigma \in \mathcal{V} \to \mathbb{R}^+$, $P_r(\mathbb{F}(\sigma)) = P_r(\mathbb{F}(P_r(\sigma)))$.



Induced abstraction

Under these assumptions $(r(\mathcal{V}), P_r, P_r \circ \mathbb{F} \circ Z_r)$ is an abstraction of $(\mathcal{V}, \mathbb{F})$, as proved in the following commutative diagram:



Overview

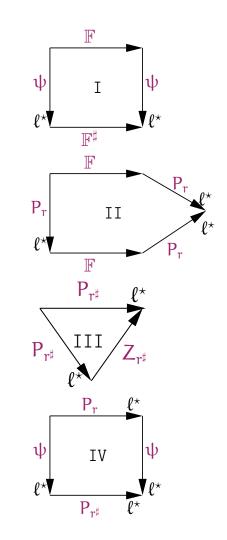
- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
 - (a) Concrete semantics
 - (b) Abstraction
 - (c) Bisimulation
 - (d) Combination
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Abstract projection

We assume that we are given:

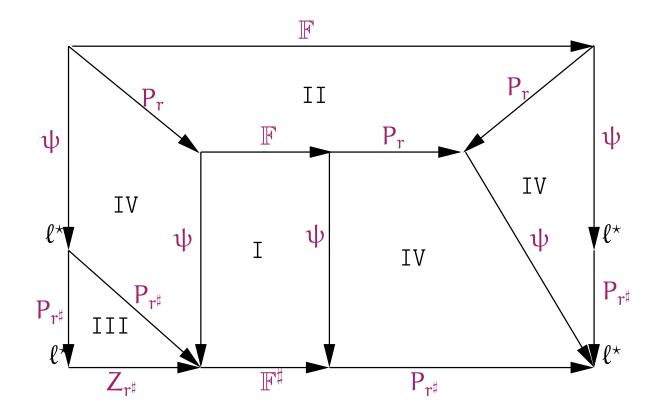
- a concrete system $(\mathcal{V}, \mathbb{F})$;
- an abstraction $(\mathcal{V}^{\sharp}, \psi, \mathbb{F}^{\sharp})$ of $(\mathcal{V}, \mathbb{F})$ (I);
- an idempotent mapping r over V which induces a bisimulation (II);
- an idempotent mapping r^{\sharp} over \mathcal{V}^{\sharp} (III);

such that: $\psi \circ P_r = P_{r^{\sharp}} \circ \psi$ (IV).



Combination of abstractions

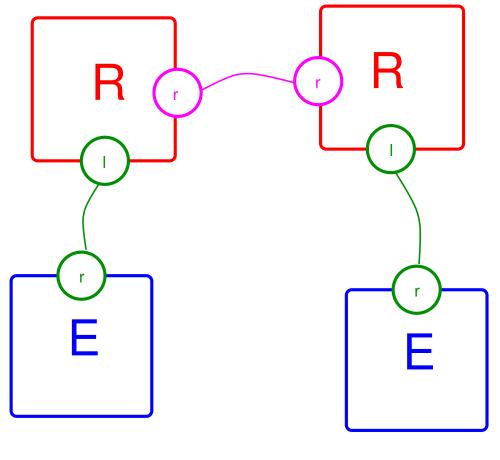
Under these assumptions, $(r^{\sharp}(\mathcal{V}^{\sharp}), P_{r^{\sharp}} \circ \psi, P_{r^{\sharp}} \circ \mathbb{F}^{\sharp} \circ Z_{r^{\sharp}})$ is an abstraction of $(\mathcal{V}, \mathbb{F})$, as proved in the following commutative diagram:



Overview

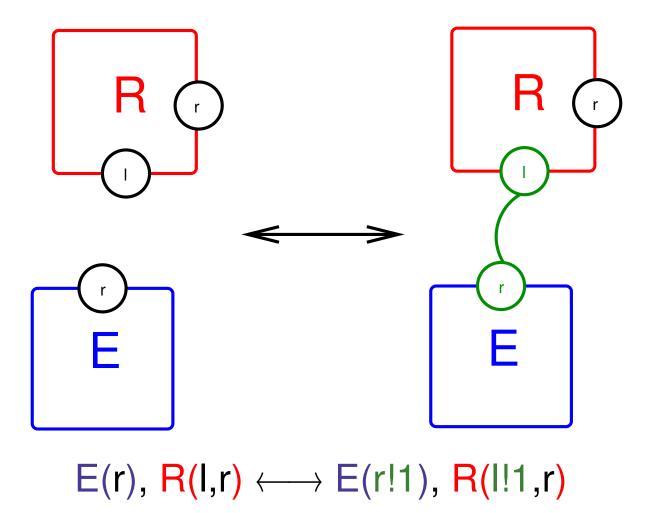
- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

A species

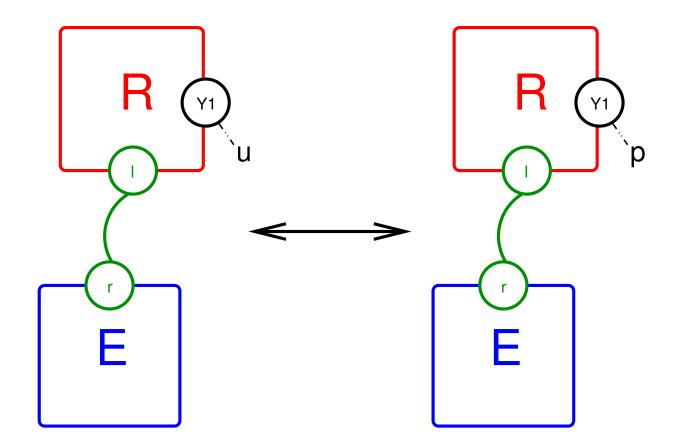


E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)

A Unbinding/Binding Rule

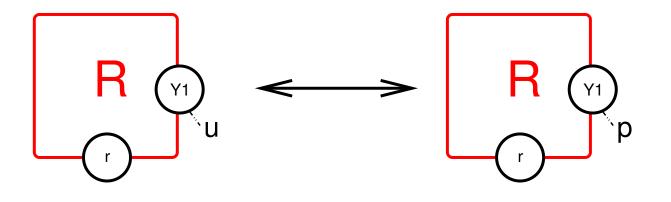


Internal state

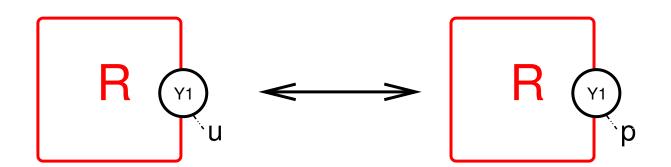


 $\mathbf{R}(Y1 \sim u, |!1), \ \mathbf{E}(r!1) \longleftrightarrow \mathbf{R}(Y1 \sim p, |!1), \ \mathbf{E}(r!1)$

Don't care, Don't write



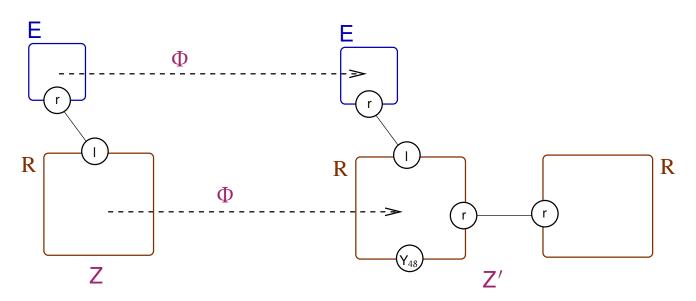
 \neq



Overview

- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Embedding



We write $Z \triangleleft_{\Phi} Z'$ iff:

- Φ is a site-graph morphism:
 - i is less specific than $\Phi(i)$,
 - if there is a link between (i, s) and (i', s'), then there is a link between $(\Phi(i), s)$ and $(\Phi(i'), s')$.
- Φ is an into map (injective):

– $\Phi(i) = \Phi(i')$ implies that i = i'.

Requirements

1. Reachable species

We are given a set \mathcal{R} of connected site-graphs such that:

- \mathcal{R} is finite;
- \mathcal{R} contains at most one site-graph per isomorphism class;
- \mathcal{R} is closed with respect to rule application;

2. Rules are associated with kinetic factors.

Differential system

Let us consider a rule *rule*: $lhs \rightarrow rhs$ k.

A ground instanciation of *rule* is defined by an embedding ϕ between *lhs* into a tuple (r_i) of elements in \mathcal{R} such that:

- 1. *Ihs* and $IM(\phi)$ have the same number of connected components;
- 2. ϕ preserves disconnectiveness.

and is written: $r_1, \ldots, r_m \rightarrow p_1, \ldots, p_n \quad k$.

For each such ground instantiation, we get:

$$\frac{d[r_i]}{dt} \stackrel{=}{=} \frac{k \cdot \prod [r_i]}{\text{SYM}(\textit{lhs})} \qquad \text{and} \qquad \frac{d[p_i]}{dt} \stackrel{+}{=} \frac{k \cdot \prod [r_i]}{\text{SYM}(\textit{lhs})}$$

where $SYM(E) = \sharp \{ \Phi \mid E \lhd_{\Phi} E \}.$

Overview

- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
 - (a) Fragments
 - (b) Soundness criteria
- 7. Conclusion

Abstract domain

We are looking for suitable pair $(\mathcal{V}^{\sharp}, \psi)$ (such that \mathbb{F}^{\sharp} exists).

The set of linear variable replacements is too big to be explored.

We introduce a specific shape on $(\mathcal{V}^{\sharp}, \psi)$ so as:

- restrict the exploration;
- drive the intuition (by using the flow of information);
- having efficient way to find suitable abstractions $(\mathcal{V}^{\sharp},\psi)$ and to compute $\mathbb{F}^{\sharp}.$

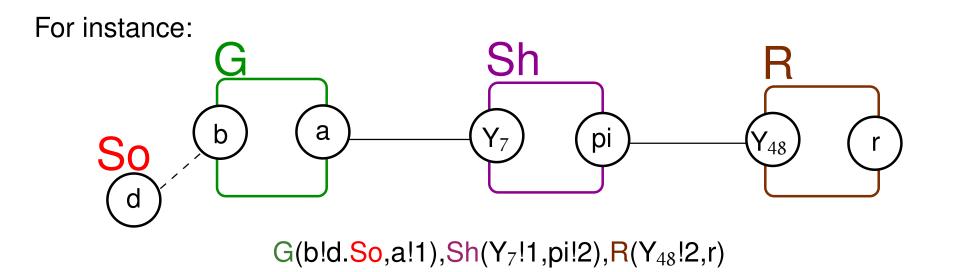
Our choice might be not optimal, but we can live with that.

Partial species

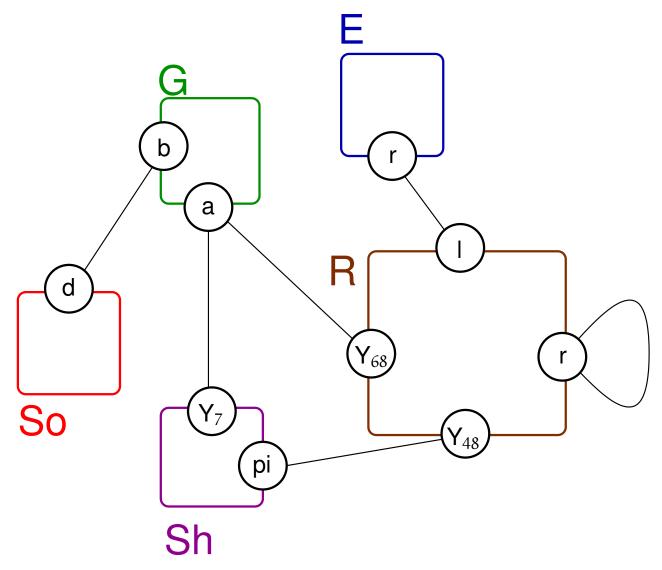
Fragments are well-chosen partial species.

A partial species $X \in \mathcal{P}$ is a connected site-graph such that:

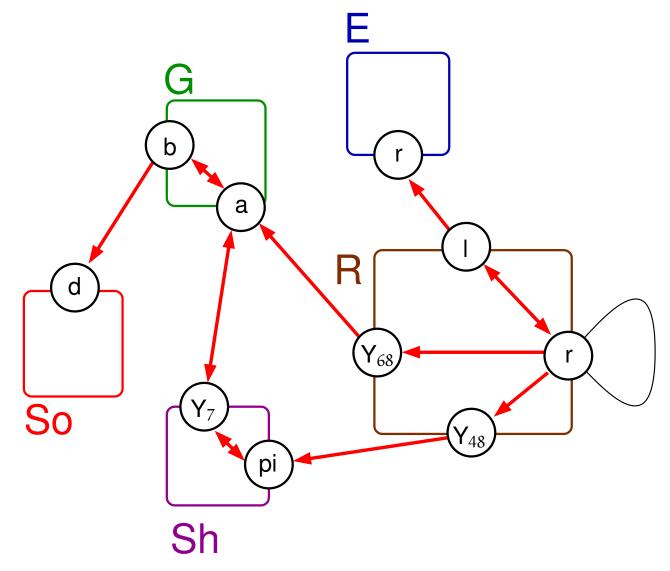
- the set of the sites of each node of type A is a subset of the set of the sites of A;
- sites are free, bound to an other site, or tagged with a binding type.



Contact map



Annotated contact map

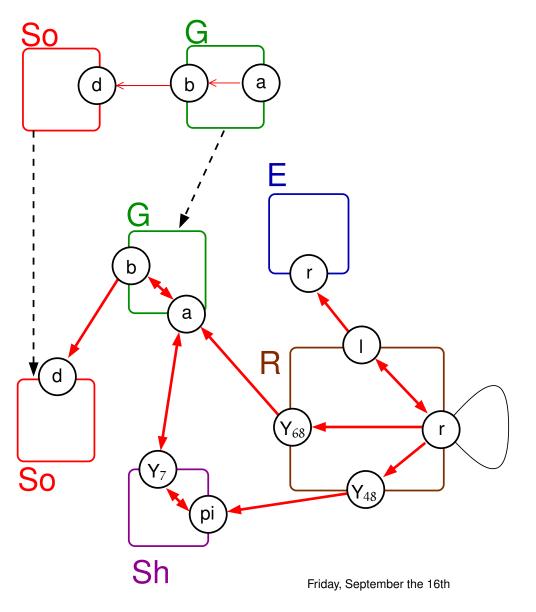


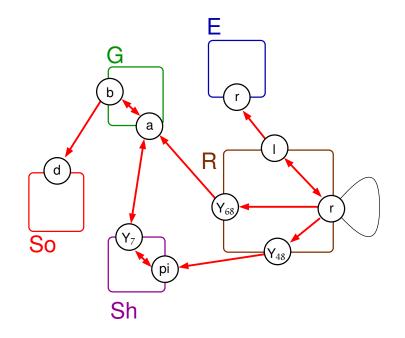
Fragments and prefragments

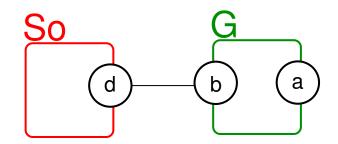
A prefragment is a partial species which can be annotated with a binary relation \rightarrow over the sites, such that:

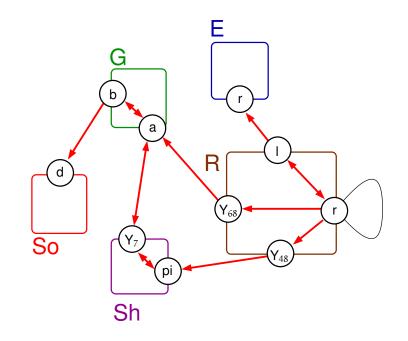
- There would be a site which is reachable from each other site, via the reflexive and transitive closure of →;
- 2. Any relation over sites can be projected over a relation on the annotated interaction map.

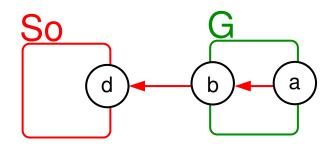
A fragment is a maximal prefragment (for the embedding order).



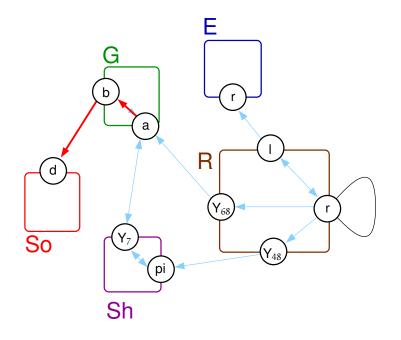


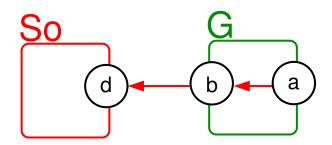




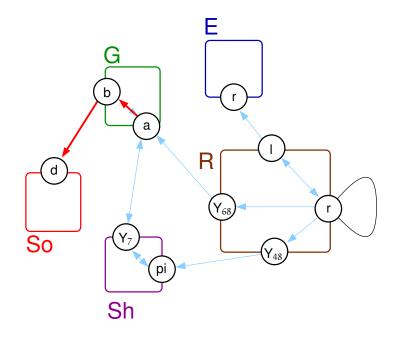


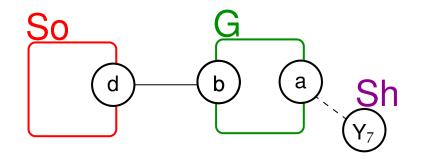
Thus, it is a prefragment.

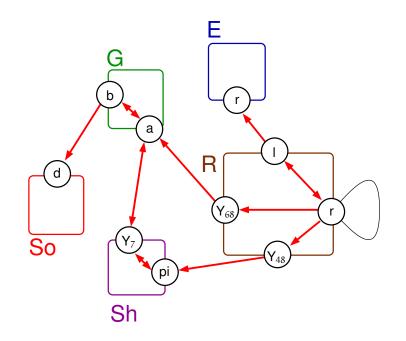


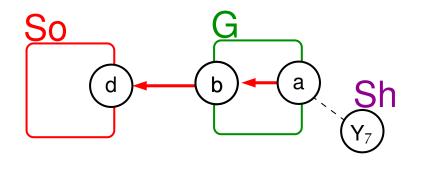


It is maximally specified. Thus it is a fragment.

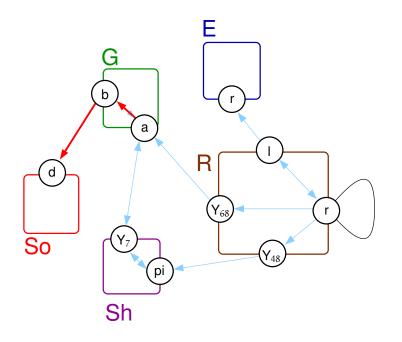


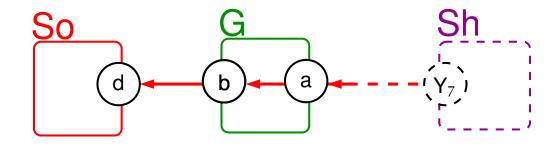




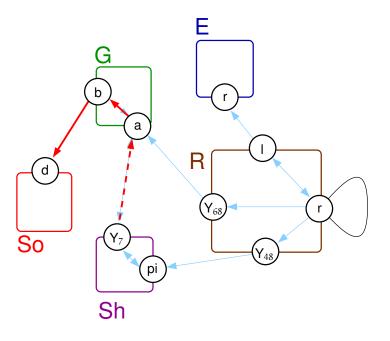


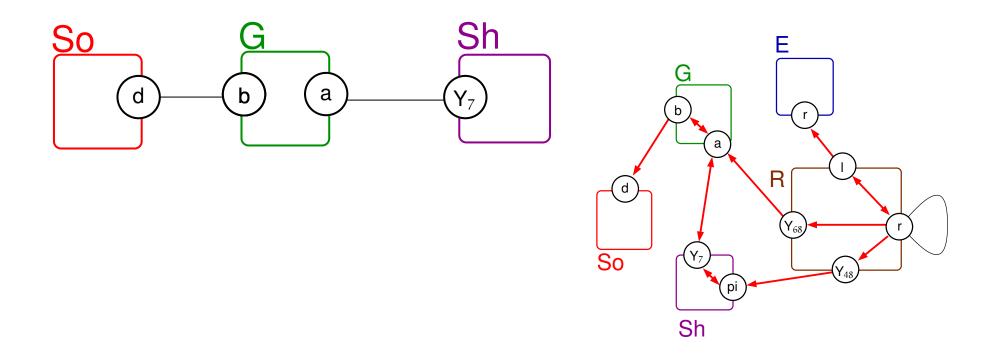
Thus, it is a prefragment.

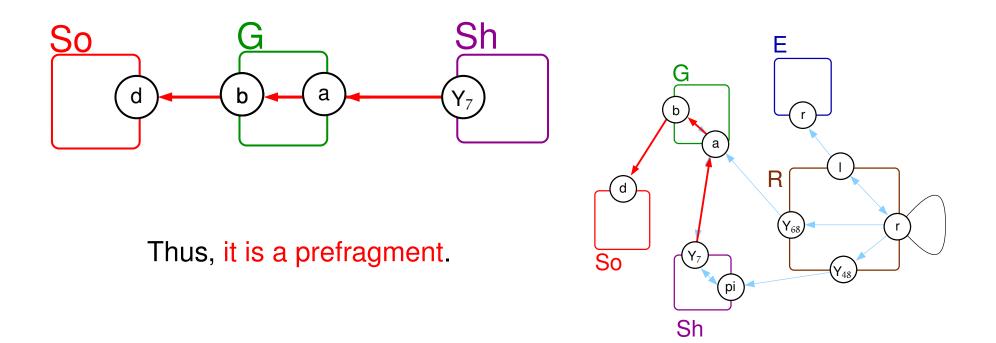


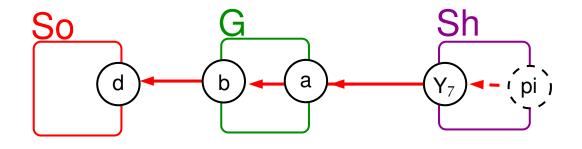


It can be refined into another prefragment. Thus, it is not a fragment.

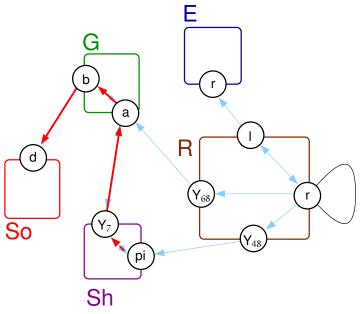


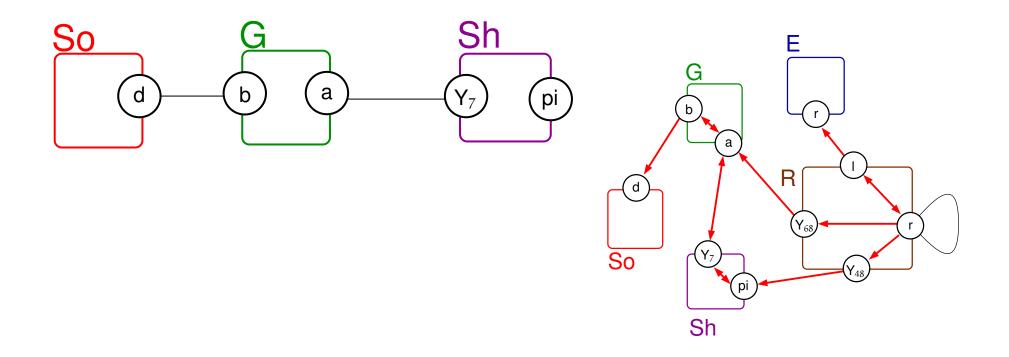


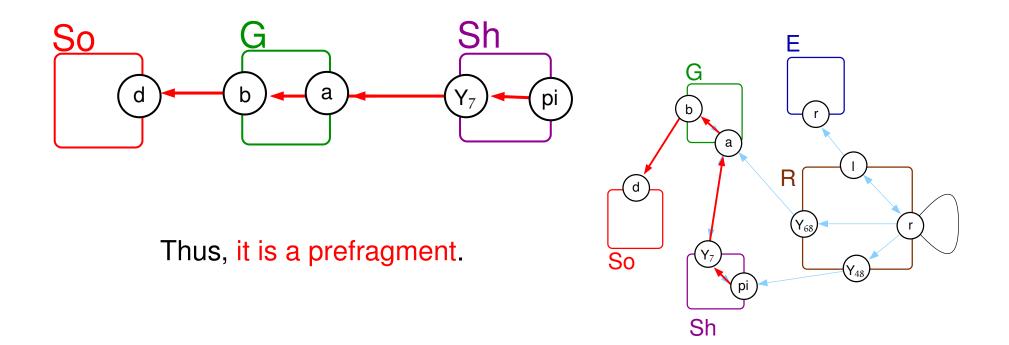


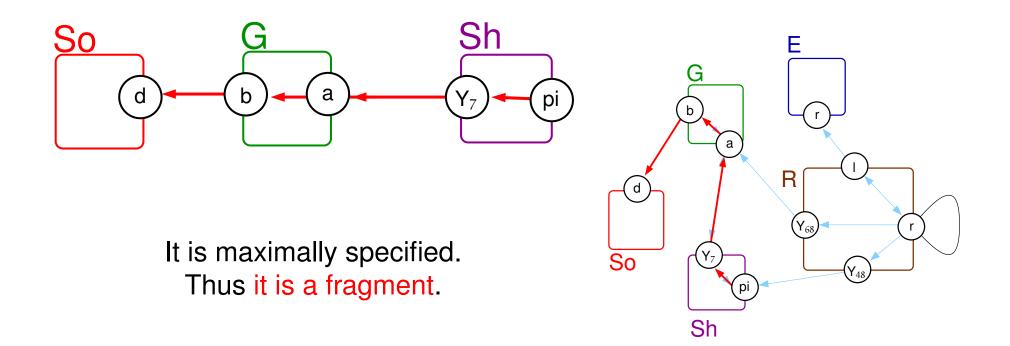


It can be refined into another prefragment. Thus, it is not a fragment.

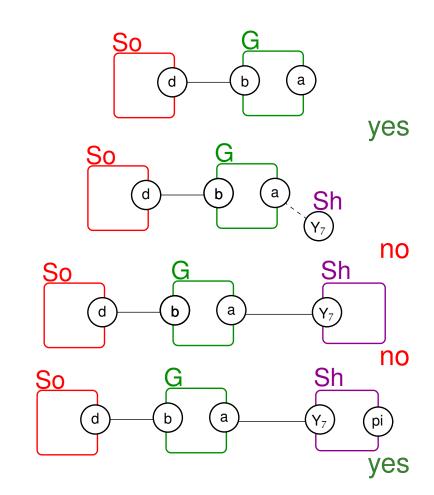


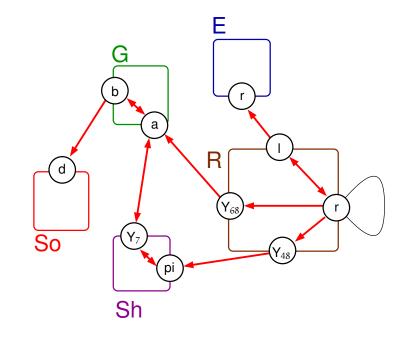






Are they fragments ?





Basic properties

Property 1 (prefragment) The concentration of any prefragment can be expressed as a linear combination of the concentration of some fragments.

We consider two norms $\|\cdot\|$ on $\mathcal{V} \to \mathbb{R}^+$ and $\|\cdot\|^{\sharp}$ on $\mathcal{V}^{\sharp} \to \mathbb{R}^+$.

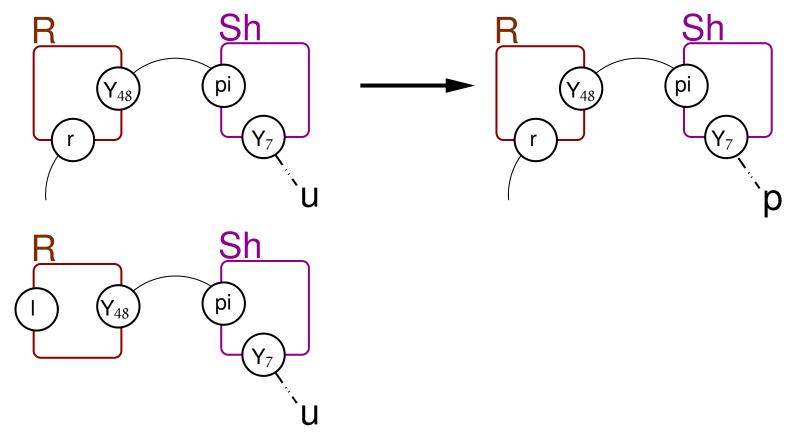
Property 2 (non-degenerescence) Given a sequence of valuations $(x_n)_{n \in \mathbb{N}} \in (\mathcal{V} \to \mathbb{R}^+)^{\mathbb{N}}$ such that $||x_n||$ diverges toward $+\infty$, then $||\phi(x_n)||^{\sharp}$ diverges toward $+\infty$ as well.

Which other properties do we need so that the function \mathbb{F}^{\sharp} can be defined ?

Overview

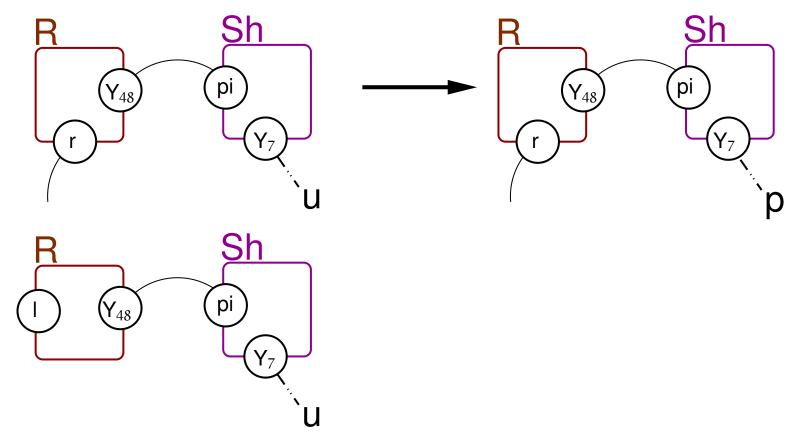
- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
 - (a) Fragments
 - (b) Soundness criteria
- 7. Conclusion

Fragments consumption



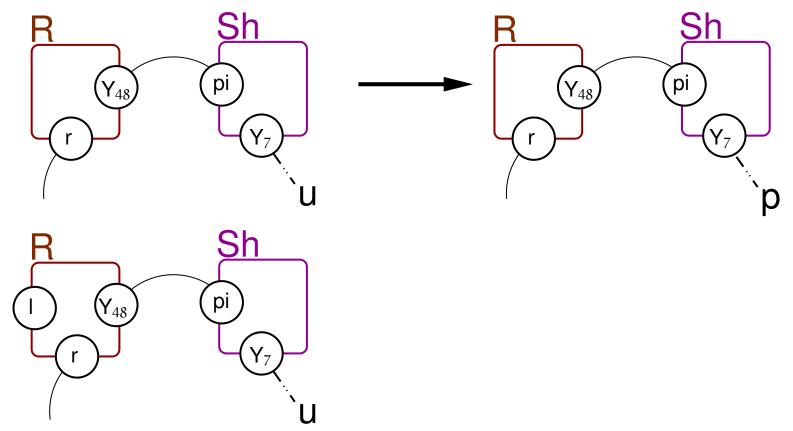
Can we express the amount (per time unit) of this fragment (bellow) concentration that is consumed by this rule (above)?

Fragments consumption



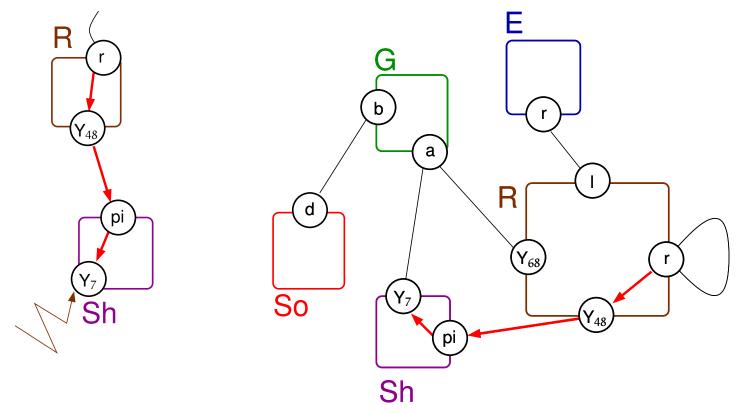
No, because we have abstracted away the correlation between the state of the site r and the state of the site l.

Fragments consumption Proper intersection



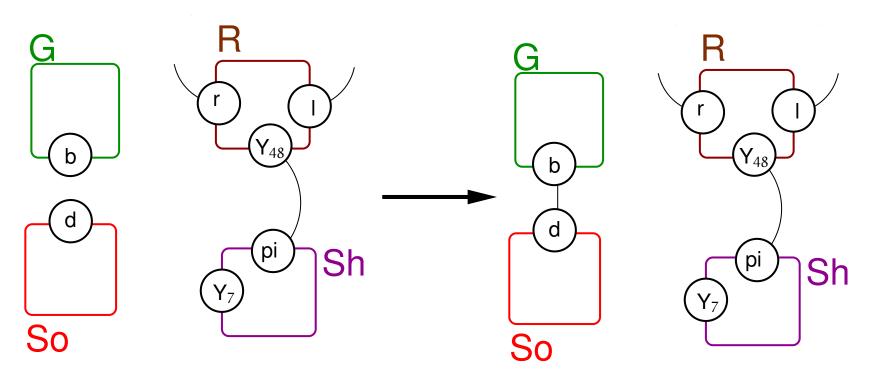
Whenever a fragment intersects a connected component of a lhs on a modified site, then the connected component must be embedded in the fragment!

Fragment consumption Syntactic criteria



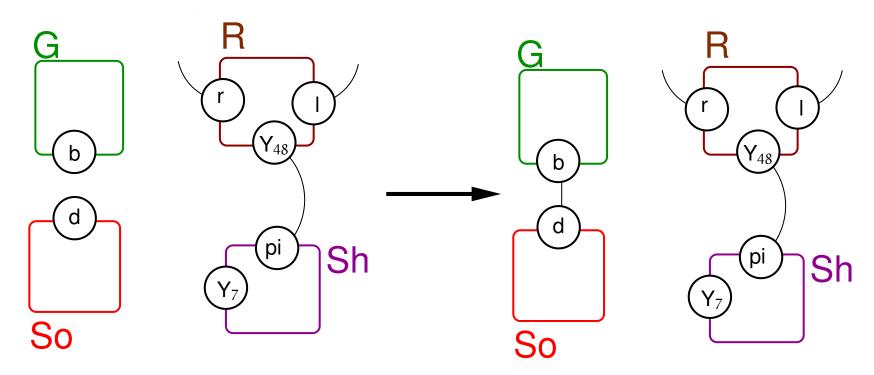
We reflect, in the annotated contact map, each path that stems from a tested site to a modified site (in the lhs of a rule).

Connected components



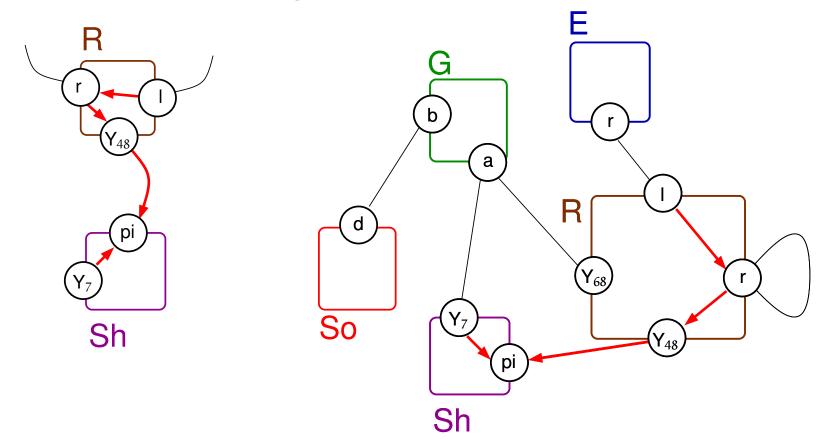
We need to express the "concentration" of any connected component of a lhs with respect to the "concentration" of fragments.

Connected components Prefragment



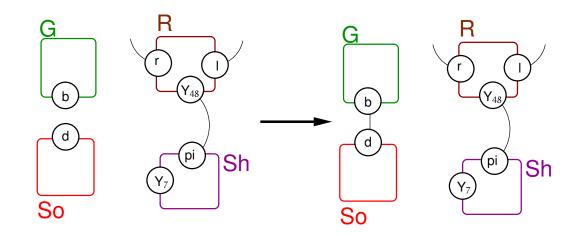
Each connected component of a lhs must be a prefragment.

Connected components Syntactic criteria



For each connected component of a lhs, there must exists a site which is reachable from all the other ones.

Fragment consumption



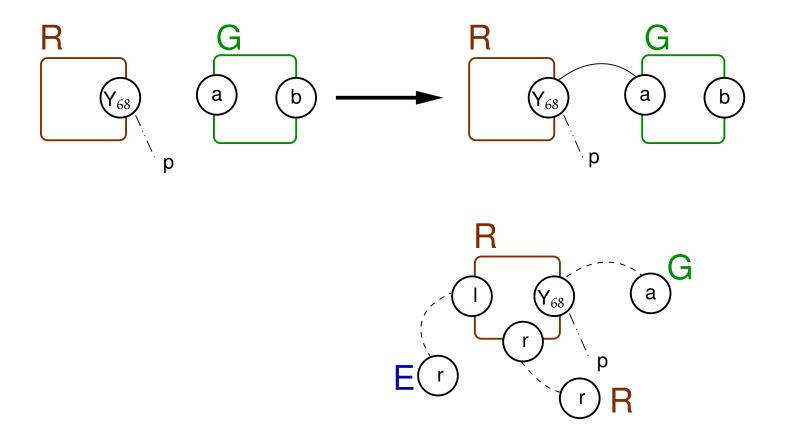
For any rule:

rule:
$$C_1, \ldots, C_n \rightarrow rhs$$
 k

and any embedding between a modified connected component C_k and a fragment F, we get:

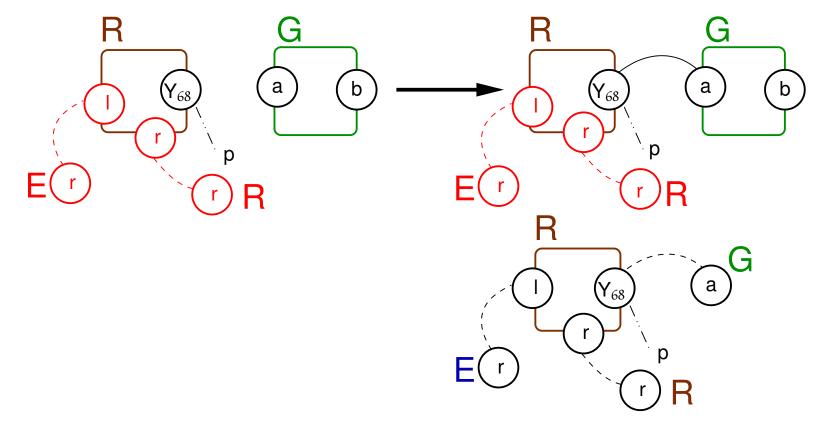
$$\frac{d[F]}{dt} \stackrel{=}{=} \frac{k \cdot [F] \cdot \prod_{i \neq k} [C_i]}{\mathsf{SYM}(C_1, \dots, C_n) \cdot \mathsf{SYM}(F)}.$$

Fragment production



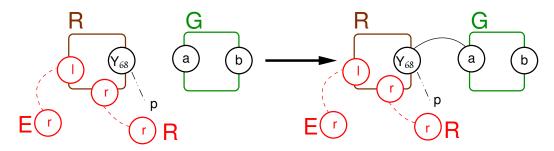
Can we express the amount (per time unit) of this fragment (bellow) concentration that is produced by the rule (above)?

Fragment production Proper intersection (bis)



Yes, if the connected components of the lhs of the refinement are prefragments. This is already satisfied thanks to the previous syntactic criteria.

Fragment production Proper intersection (bis)



For any rule:

$\textit{rule}:\ C_1,\ldots,C_m \rightarrow \textit{rhs} \quad k$

and any overlap between a fragment F and *rhs* on a modified site, we write C'_1, \ldots, C'_n the lhs of the refined rule; if m = n, then we get:

$$\frac{d[F]}{dt} \stackrel{+}{=} \frac{k \cdot \prod_{i} \left[C'_{i}\right]}{SYM(C_{1}, \dots, C_{m}) \cdot SYM(F)};$$

otherwise, we get no contribution.

Jérôme Feret

Fragment properties

lf:

- an annotated contact map satisfies the syntactic criteria,
- fragments are defined by this annotated contact map,
- we know the concentration of fragments;

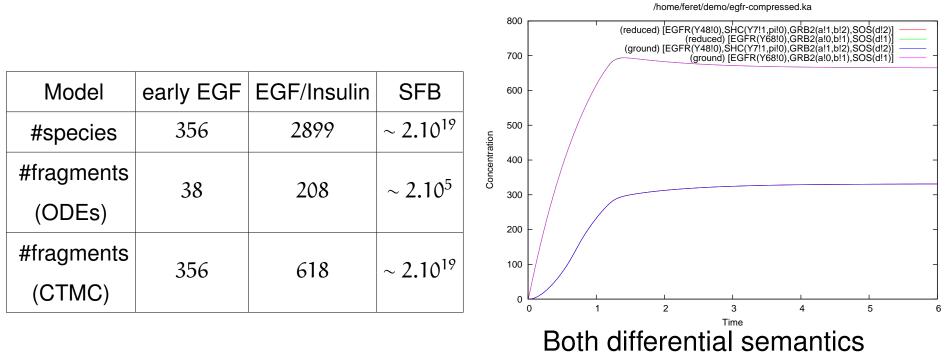
then:

- we can express the concentration of any connected component occuring in lhss,
- we can express fragment proper consumption,
- we can express fragment proper production,
- WE HAVE A CONSTRUCTIVE DEFINITION FOR \mathbb{F}^{\sharp} .

Overview

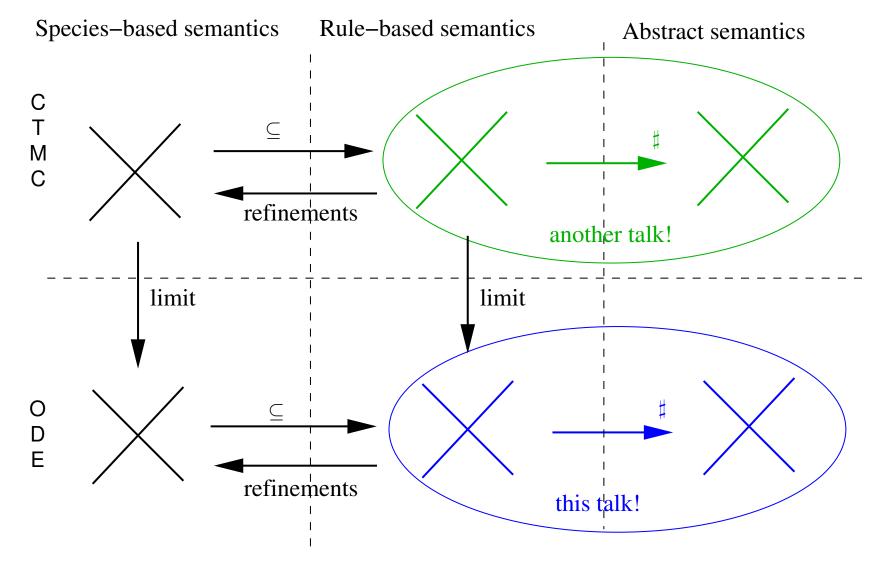
- 1. Context and motivations
- 2. Handmade ODEs
- 3. Abstract interpretation framework
- 4. Kappa
- 5. Concrete semantics
- 6. Abstract semantics
- 7. Conclusion

Experimental results



(4 curves with match pairwise)

Related issues I: Semantics comparisons



Related issues II: Semantics approximations

- 1. ODE approximations:
 - Concrete definition of the control flow and hierarchy of abstractions. A notion of control flow which would be invariant by:
 - neutral rule refinement;
 - compilation of a Kappa system into a Kappa system with only one agent type.

Joint work with Ferdinanda Camporesi (Bologna/ÉNS)

- 2. Stochastic semantics approximations:
 - Can we design abstraction ?
 - Find the adequate soundness criteria.

Joint work with Thomas Henzinger (IST-Vienna), Heinz Koeppl (ETH-Zurich), Tatjana Petrov (ETH-Zurich)