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Context

• proving the absence of run time error in critical embedded software.

Filter behavior is implemented at the software level, using hardware
floating point numbers.

=⇒ Full certification requires special care about these filters.
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Issues

• Control flow detection: to locate filter resets and filter iterations.

• Invariant inference:
We seek precise bounds on the output, using information inferred about
the input. (Linear invariants do not yield accurate bounds).

• Floating-point arithmetics:
(in the concrete semantics and when implementing the abstract do-
main).
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The second order filter (simplified)

V ∈ R;

E := 0; S0 := 0; S1 := 0; S2 := 0;

while (V ≥ 0) {

V ∈ R; T ∈ R;

E ∈ [−1; 1];

if (T ≥ 0) {S0 := E;S1 := E;}

else {S0 := 1.5 × S1 − 0.7 × S2 + E;}

S2 := S1; S1 := S0;

}
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Linear versus quadratic invariants
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Ellipsoidal constraints

Theorem 1 (second order filter (simplified) )
Let a, b, K ≥ 0, m ≥ 0, X, Y, Z be real numbers such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY2 ≤ K,

3. aX + bY − m ≤ Z ≤ aX + bY + m.

We have:

1. Z2 − aZX − bX2 ≤
(√

−bK + m
)2

;

2.






√
−b < 1

K ≥
(

m

1−
√

−b

)2
=⇒ Z2 − aZX − bX2 ≤ K.
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Filter family

A filter class is given by:

• the number p of outputs and the number q of inputs involved in the
computation of the next output;

• a (generic/symbolic) description of F with parameters;

• some conditions over these parameters

In the case of a second order filter using the last three inputs:

• p = 2, q = 3;

• F(Sn+1, Sn, En+2, En+1, En) = a.Sn+1 + b.Sn + c.En+2 + d.En+1 + e.En;

• a2 + 4b < 0.
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Filter domain

A filter constraint is a couple in TB × B where:

• TB ∈ ℘finite(Vm × R
n) with:

-- m, the number of variables that are involved in the computation of
the next output. m depends on the abstraction;

-- n, the number of filter parameters;

• B is an abstract domain encoding some “ranges”.

A constraint (t, d) is related to ℘(V → R), by a concretization function:

γB : TB × B → ℘(V → R).

An approximation of second order filter may consist in relating:

• the last two outputs and the first two coefficients of the filter (a and b)

• to the ‘ratio’ of an ellipsoid.
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Assignment

FIRST 

OTHER

ITERATION

ITERATIONS
⇐ filter iteration

⇐ BUILDB

⇐ filter iteration

X

X ′

X

X ′ = F(X)

X = X ′

X ′ = F(X)

X = X ′

X ′

X
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Merging computation paths

X ′ = F(X)

⇐ filter iteration

⇐ BUILDB

⇐ ⊔B

BUILDB ⇒
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Simplified first order filter

Theorem 2 ( Including rounding errors )
Let a, εa ≥ 0, D ≥ 0, m ≥ 0, X and Z be real numbers such that:

1. |X| ≤ D;

2. aX − (m + εa|X|) ≤ Z ≤ aX + (m + εa|X|).

We have:

• |Z| ≤ (|a| + εa)D + m;

•
[

|a| + εa < 1 and D ≥ m

1−(|a|+εa)

]

=⇒ |Z| ≤ D. �

Jérôme Feret, LIENS 15 January, 2005



Simplified second order filter

Theorem 3 ( Including rounding errors )
Let a, b, εa ≥ 0, εb ≥ 0, K ≥ 0, m ≥ 0, X, Y, Z be real numbers, such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY2 ≤ K,

3. aX + bY − (m + εa|X| + εb|Y|) ≤ Z ≤ aX + bY + (m + εa|X| + εb|Y|).
We have

1. Z2 − aZX − bX2 ≤
(

(
√

−b + δ)
√

K + m
)2

;

2.






√
−b + δ < 1

K ≥
(

m

1−
√

−b−δ

)2
=⇒ Z2 − aZX − bX2 ≤ K,

where δ = 2
εb+εa

√
−b√

−(a2+4b)
.

�
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Reduced product

y

x

Initial conditions

y

x

Output refinement
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Higher order simplified filters

A simplified filter of class (k, l) is defined as a sequence:

Sn+p = a1.Sn + ... + ap.Sn+p−1 + En+p,

where the polynomial P = Xp − ap.X
p−1 − ... − a1.X

0 has no multiple roots (in
C) and can be factored into the product of k second order irreducible polyno-
mials X2 − αi.X − βi and l first order polynomials X − δj.
Then, there exists sequences (xi

n)n∈N and (y
j
n)n∈N such that:






Sn = ( Σ
1≤i≤k

xi
n) + ( Σ

1≤j≤l
y

j
n)

xi
n+2 = αi.x

i
n+1 + βi.x

i
n + Fi(En+2, En+1)

y
j

n+1
= δj.y

j
n + Gj(En+1).

The initial outputs (xi
0, xi

1, y
j

0
) and filter inputs Fi, Gj are given by solving sym-

bolic linear systems, they only depend on the roots of P.
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Higher order simplified filters

Soundness of the factoring algorithm into irreducible polynomials is not re-
quired.

Whenever we meet a higher order filter assignment τ,

1. we compute the characteristic polynomial P,

2. we compute a potentially unsound factoring P ′ of P,

3. we expand P ′,

4. we consider the filter assignment τ ′ such that the characteristic polyno-
mial of τ ′ is P ′,

5. we bound the difference between τ and τ ′

(by using symbolic computation),

6. we integrate this bound into the input stream.
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Other filters

We have:
{

Sk = ik, 0 ≤ k < p

Sn+p = F(Sn, ..., Sn+p−1) + G(En+p+1−q, ..., En+p)

Having bounds:

• on the input sequence (En),

• and on the initial outputs (ik)0≤k<p;

we want to infer a bound on the output sequence (Sn).
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Splitting Sn

We split the output sequence Sn = Rn + εn into

• the contribution of the errors (εn);

{
εk = 0, 0 ≤ k < p;

εn+p = F(εn, ..., εn+p−1) + errn+p

we can use the simplified filter domain to limit (εn).

• the ideal sequence (Rn) (in the real field);

{
Rk = ik, 0 ≤ k < p

Rn+p = F(Rn, ..., Rn+p−1) + G(En+p+1−q, ..., En+p)
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Limiting Rn

To refine the output, we need to limit the sequence Rn:

1. We isolate the contribution of the N last inputs:

Rn = lastNn (En, ..., En+1−N) + resN
n .

2. Since the filter is linear, we have, for n > N + p:

• lastNn = lastNN+p;

• resN
n can be limited by using the corresponding simplified filter do-

main.
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Benchmarks

We analyze three programs in the same family on a AMD Opteron 248, 8 Gb
of RAM (analyses use only 2 Gb of RAM).

lines of C 70,000 216,000 379,000
global variables 13,400 7,500 9,000
iterations 72 41 37 161 75 53 151 187 74
time/iteration 52s 1mn18s 1mn16s 3mn07s 5mn08s 4mn40s 4mn35s 9mn25s 8mn17s
analysis time 1h02mn 53mn 47mn 8h23mn 6h25mn 4h08mn 11h34mn 30h26mn 10h14mn
false alarms 574 3 0 207 0 0 790 0 0

1. without filter domains;

2. with simplified filter domains;

3. with expanded filter domains.
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Conclusion

• a highly generic framework to analyze programs with digital filtering:
a technical knowledge of used filters allows the design of the adequate
abstract domain;

• the case of linear filters is fully handled:
We need to solve a symbolic linear system for each filter family. We
need an unsound polynomial reduction algorithm for each filter instance.

• filter detection is left as a parameter:

-- term rebuilding can be used [MinéPhD];

This framework has been used and was necessary in the full certification of
the absence of runtime error in industrial critical embedded software.

http://www.astree.ens.fr
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