
NSAD’05

Numerical Abstract Domains
for Digital Filters

Jérôme Feret
École Normale Supérieure

http://www.di.ens.fr/∼ feret

January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 2 January, 2005

Context

• proving the absence of run time error in critical embedded software.

Filter behavior is implemented at the software level, using hardware
floating point numbers.

=⇒ Full certification requires special care about these filters.

Jérôme Feret, LIENS 3 January, 2005

Issues

• Control flow detection: to locate filter resets and filter iterations.

• Invariant inference:
We seek precise bounds on the output, using information inferred about
the input. (Linear invariants do not yield accurate bounds).

• Floating-point arithmetics:
(in the concrete semantics and when implementing the abstract do-
main).

Jérôme Feret, LIENS 4 January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 5 January, 2005

The second order filter (simplified)

V ∈ R;

E := 0; S0 := 0; S1 := 0; S2 := 0;

while (V ≥ 0) {

V ∈ R; T ∈ R;

E ∈ [−1; 1];

if (T ≥ 0) {S0 := E;S1 := E;}

else {S0 := 1.5 × S1 − 0.7 × S2 + E;}

S2 := S1; S1 := S0;

}

Jérôme Feret, LIENS 6 January, 2005

Linear versus quadratic invariants

X U F(X)

X
F(X)

F(X)
X

X U F(X)

Jérôme Feret, LIENS 7 January, 2005

Ellipsoidal constraints

Theorem 1 (second order filter (simplified))
Let a, b, K ≥ 0, m ≥ 0, X, Y, Z be real numbers such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY2 ≤ K,

3. aX + bY − m ≤ Z ≤ aX + bY + m.

We have:

1. Z2 − aZX − bX2 ≤
(√

−bK + m
)2

;

2.

√
−b < 1

K ≥
(

m

1−
√

−b

)2
=⇒ Z2 − aZX − bX2 ≤ K.

Jérôme Feret, LIENS 8 January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 9 January, 2005

Filter family

A filter class is given by:

• the number p of outputs and the number q of inputs involved in the
computation of the next output;

• a (generic/symbolic) description of F with parameters;

• some conditions over these parameters

In the case of a second order filter using the last three inputs:

• p = 2, q = 3;

• F(Sn+1, Sn, En+2, En+1, En) = a.Sn+1 + b.Sn + c.En+2 + d.En+1 + e.En;

• a2 + 4b < 0.

Jérôme Feret, LIENS 10 January, 2005

Filter domain

A filter constraint is a couple in TB × B where:

• TB ∈ ℘finite(Vm × R
n) with:

-- m, the number of variables that are involved in the computation of
the next output. m depends on the abstraction;

-- n, the number of filter parameters;

• B is an abstract domain encoding some “ranges”.

A constraint (t, d) is related to ℘(V → R), by a concretization function:

γB : TB × B → ℘(V → R).

An approximation of second order filter may consist in relating:

• the last two outputs and the first two coefficients of the filter (a and b)

• to the ‘ratio’ of an ellipsoid.

Jérôme Feret, LIENS 11 January, 2005

Assignment

FIRST

OTHER

ITERATION

ITERATIONS
⇐ filter iteration

⇐ BUILDB

⇐ filter iteration

X

X ′

X

X ′ = F(X)

X = X ′

X ′ = F(X)

X = X ′

X ′

X

Jérôme Feret, LIENS 12 January, 2005

Merging computation paths

X ′ = F(X)

⇐ filter iteration

⇐ BUILDB

⇐ ⊔B

BUILDB ⇒

Jérôme Feret, LIENS 13 January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 14 January, 2005

Simplified first order filter

Theorem 2 (Including rounding errors)
Let a, εa ≥ 0, D ≥ 0, m ≥ 0, X and Z be real numbers such that:

1. |X| ≤ D;

2. aX − (m + εa|X|) ≤ Z ≤ aX + (m + εa|X|).

We have:

• |Z| ≤ (|a| + εa)D + m;

•
[

|a| + εa < 1 and D ≥ m

1−(|a|+εa)

]

=⇒ |Z| ≤ D. �

Jérôme Feret, LIENS 15 January, 2005

Simplified second order filter

Theorem 3 (Including rounding errors)
Let a, b, εa ≥ 0, εb ≥ 0, K ≥ 0, m ≥ 0, X, Y, Z be real numbers, such that:

1. a2 + 4b < 0,

2. X2 − aXY − bY2 ≤ K,

3. aX + bY − (m + εa|X| + εb|Y|) ≤ Z ≤ aX + bY + (m + εa|X| + εb|Y|).
We have

1. Z2 − aZX − bX2 ≤
(

(
√

−b + δ)
√

K + m
)2

;

2.

√
−b + δ < 1

K ≥
(

m

1−
√

−b−δ

)2
=⇒ Z2 − aZX − bX2 ≤ K,

where δ = 2
εb+εa

√
−b√

−(a2+4b)
.

�

Jérôme Feret, LIENS 16 January, 2005

Reduced product

y

x

Initial conditions

y

x

Output refinement

Jérôme Feret, LIENS 17 January, 2005

Higher order simplified filters

A simplified filter of class (k, l) is defined as a sequence:

Sn+p = a1.Sn + ... + ap.Sn+p−1 + En+p,

where the polynomial P = Xp − ap.X
p−1 − ... − a1.X

0 has no multiple roots (in
C) and can be factored into the product of k second order irreducible polyno-
mials X2 − αi.X − βi and l first order polynomials X − δj.
Then, there exists sequences (xi

n)n∈N and (y
j
n)n∈N such that:

Sn = (Σ
1≤i≤k

xi
n) + (Σ

1≤j≤l
y

j
n)

xi
n+2 = αi.x

i
n+1 + βi.x

i
n + Fi(En+2, En+1)

y
j

n+1
= δj.y

j
n + Gj(En+1).

The initial outputs (xi
0, xi

1, y
j

0
) and filter inputs Fi, Gj are given by solving sym-

bolic linear systems, they only depend on the roots of P.

Jérôme Feret, LIENS 18 January, 2005

Higher order simplified filters

Soundness of the factoring algorithm into irreducible polynomials is not re-
quired.

Whenever we meet a higher order filter assignment τ,

1. we compute the characteristic polynomial P,

2. we compute a potentially unsound factoring P ′ of P,

3. we expand P ′,

4. we consider the filter assignment τ ′ such that the characteristic polyno-
mial of τ ′ is P ′,

5. we bound the difference between τ and τ ′

(by using symbolic computation),

6. we integrate this bound into the input stream.

Jérôme Feret, LIENS 19 January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 20 January, 2005

Other filters

We have:
{

Sk = ik, 0 ≤ k < p

Sn+p = F(Sn, ..., Sn+p−1) + G(En+p+1−q, ..., En+p)

Having bounds:

• on the input sequence (En),

• and on the initial outputs (ik)0≤k<p;

we want to infer a bound on the output sequence (Sn).

Jérôme Feret, LIENS 21 January, 2005

Splitting Sn

We split the output sequence Sn = Rn + εn into

• the contribution of the errors (εn);

{
εk = 0, 0 ≤ k < p;

εn+p = F(εn, ..., εn+p−1) + errn+p

we can use the simplified filter domain to limit (εn).

• the ideal sequence (Rn) (in the real field);

{
Rk = ik, 0 ≤ k < p

Rn+p = F(Rn, ..., Rn+p−1) + G(En+p+1−q, ..., En+p)

Jérôme Feret, LIENS 22 January, 2005

Limiting Rn

To refine the output, we need to limit the sequence Rn:

1. We isolate the contribution of the N last inputs:

Rn = lastNn (En, ..., En+1−N) + resN
n .

2. Since the filter is linear, we have, for n > N + p:

• lastNn = lastNN+p;

• resN
n can be limited by using the corresponding simplified filter do-

main.

Jérôme Feret, LIENS 23 January, 2005

Overview

1. Introduction

2. Case study

3. Generic framework

4. Simplified filters

5. Expanded filters

6. Conclusion

Jérôme Feret, LIENS 24 January, 2005

Benchmarks

We analyze three programs in the same family on a AMD Opteron 248, 8 Gb
of RAM (analyses use only 2 Gb of RAM).

lines of C 70,000 216,000 379,000
global variables 13,400 7,500 9,000
iterations 72 41 37 161 75 53 151 187 74
time/iteration 52s 1mn18s 1mn16s 3mn07s 5mn08s 4mn40s 4mn35s 9mn25s 8mn17s
analysis time 1h02mn 53mn 47mn 8h23mn 6h25mn 4h08mn 11h34mn 30h26mn 10h14mn
false alarms 574 3 0 207 0 0 790 0 0

1. without filter domains;

2. with simplified filter domains;

3. with expanded filter domains.

Jérôme Feret, LIENS 25 January, 2005

Conclusion

• a highly generic framework to analyze programs with digital filtering:
a technical knowledge of used filters allows the design of the adequate
abstract domain;

• the case of linear filters is fully handled:
We need to solve a symbolic linear system for each filter family. We
need an unsound polynomial reduction algorithm for each filter instance.

• filter detection is left as a parameter:

-- term rebuilding can be used [MinéPhD];

This framework has been used and was necessary in the full certification of
the absence of runtime error in industrial critical embedded software.

http://www.astree.ens.fr

Jérôme Feret, LIENS 26 January, 2005

