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Signalling pathways

Eikuch, 2007
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dt
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Site-graphs rewriting

EGF r EGFRl

r
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r

EGF r EGFRl

r

EGF r EGFRl

r

• a language close to knowledge representation;

• rules are easy to update;

• a compact description of models.
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Choices of semantics
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ordinary differential equations
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Abstractions offer different perspectives
on models
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concrete semantics causal traces

EGF

r

EGFR

l

r

Y68

Y48

ShC
piY7

Grb2

a

b Sosd

information flow

��

�����

�����

�����

�����

�����

�� �� �� �� �� ���

�
�
�
�
�
�
��
�
���
�

����

��������������������������

����
�����

�������������

exact projection
of the ODE semantics
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The need for counters

Modelers makes a priori simplification because:

• some knowledge may be missing;

• there is no way to describe compactly what is known;

• mechanistic details would make models intractable.

Example: (cirdadian clock)

• KaiC has six phosphorylation sites;

• phosphorylation rate depends on the
number of sites already phosphorylated.
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Thanks to counters, there is no need to enumerate all the potential configurations.
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Bio-molecular complex
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Binding unbinding
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Phosphorylation rule

EGFR

r

EGFR

r

Y48

EGFR

r

EGFR

r

Y48

@ kp

13 April 8, 2019



Case-study

• Signature:

• Let f(i) be the rate of phosphorylation of a given site assuming that exactly i
sites are already phosphorylated.

• Phosphorylation of the site•when only the sites• and• are phosphorylated.

@f(2)

Overall we would need 4 · 23 rules to model phosphorylation.
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Counters

@k,≤3 ≤4, +1 @f(k)

• = 2, ≤ 3, ≥ 1: preconditions and postconditions about the value of a counter;

• @k binds k to the value of the counter (to define the rule rate);

• = 2, +1, −3: action on the value of a counter.
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Case study

4 rules are enough to describe our case study:

@k +1 @f(k)

@k +1 @f(k)

@k +1
@f(k)

@k +1
@f(k)
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Causal traces
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Challenges

Compute minimal traces up to commutation of concurrent events.

Parametric with respect to:

• the notion of states

• the notion of event

which can be seen at different levels of abstraction.

The choices of the syntax and of the semantics for the modelling paradigm are crucial.
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The biochemical structure is required

Reactions:

A → •A
A → A•
•A → •A•

A• → •A•

Causal traces:

A → •A → •A•

A → A• → •A•

Rules:

Causal traces:

$$

::
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Causal traces for the circadian clock
in classical Kappa

Example of causal trace:

// // // //
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Causal traces for the circadian clock
with flat counters

Example of causal trace:

=0

=0 =1

//
=1

=1 =2

//
=2

=2 =3

//
=3

=3 =4

//
=4

22 April 8, 2019



Causal traces for the circadian clock
with arithmetic counters

Only one causal trace:
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Simulation
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Rigidity
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One matching from a connected pattern into a pattern is fully characterised by the
image of an agent.
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Extension bases
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Counter encoding

We assume that counters may range between 0 and n (here n = 4)

J =2K =
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Tests

J =2K =

J ≥3K =

J ≤3K =
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Updates

J � ,2 +2 K =

� ,2

J � ,2 −2 K =

� ,2
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Coherence

Let QΣ be the set of states (initial signature).
Let ErrΣ be the set of erroneous states (whith some counters out of their bounds)
Let QJΣK be the set of states (signature of the encoding).

Theorem 1 (correspondence) Let G ∈ QΣ \ ErrΣ and r be a rule.
Both following properties are satisfied:

1. if ∃G ′ ∈ QΣ \ ErrΣ such that G
r
−→ G ′,

then JGK
JrK
−→ JG ′K;

2. if ∃E ′ ∈ QJΣK such that JGK
JrK
−→ E ′,

then ∃G ′ ∈ QΣ \ ErrΣ such that G
r
−→ G ′ and JG ′K = E ′.
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Benchmarks
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100 agents, 15 simulations of 105 events
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Goal of static analysis

At edit time:

1. Prove that the values of counters are bounded;

2. Infer the ranges of counters;

3. Retrieve the meaning of counters.
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Translation
Each agent instance is translated into a vector:

For instance, the following protein:

=2

gets translated into the following vector:

x◦• = 1, x
•
• = 0,

x◦• = 0, x
•
• = 1,

x◦• = 0, x
•
• = 1,

x◦• = 1, x
•
• = 0,

x◦ = 2.
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Abstract domain

We use a reduced product between:

• intervals (to express properties of interest);

• affine equalities (to make their proof).

In our example:

• inductive invariant:
x◦ = x

•
• + x

•
• + x

•
• + x

•
•

• invariant:
0 ≤ x◦ ≤ 4.
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Approximate reduced product

An exact reduced product would be NP.
We use:

• Gaus reduction:

{
x+ y+ z = 1

x+ y+ t = 2
=⇒ {

x+ y+ z = 1

t− z = 1

• Interval propagation:


x+ y+ z = 3

x ∈ [0;∞)

y ∈ [0;∞)

z ∈ [0;∞)

=⇒

x+ y+ z = 3

x ∈ [0; 3]

y ∈ [0;∞)

z ∈ [0;∞)

• Redundancy introduction:

{
x+ y− z = 3

x ∈ [1; 2]
=⇒


x+ y− z = 3

y− z ∈ [1; 2]

x ∈ [1; 2]

to get a cubic approximated reduced product.
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Benchmarks
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Conclusion

We are equipped Kappa with counters, including:

1. an extension of the SPO semantics;

2. a parsimonious notion of causality;

3. an efficient simulation;

4. static analysis to retrieve the meaning of counters and infer proofs obligations.

This provides a confortable model environment to describe and use models with a lot
of symmetries.

Future works
Make counters implicit:

• no need to specify them,

• allow preconditions that counts the number of sites satisfying a given property.
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