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Signalling Pathways

Eikuch, 2007
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Differential models



dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

− do not describe the structure of molecules;
− combinatorial explosion: forces choices that are not principled;
− a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
− cannot be interpreted

2. ODE-based models
+ can be integrated
− opaque modelling process, models can hardly be modified
− there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.
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Semantics

Several semantics (qualititative and/or quantitative) can be defined.
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ODEs
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Complexity walls

Jérôme Feret 11 Thursday, May the 26th



A breach in the wall(s) ?
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A simple adapter

A C

B
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d
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A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d



d[A]
dt

= kAB
d · ([AB∅] + [ABC]) − [A]·kAB· ([∅B∅] + [∅BC])

d[C]
dt

= kBC
d · ([∅BC] + [ABC]) − [C]·kBC· ([∅B∅] + [AB∅])

d[∅B∅]
dt

= kAB
d ·[AB∅] + kBC

d ·[∅BC] − [∅B∅]· ([A]·kAB + [C]·kBC)
d[AB∅]
dt

= [A]·kAB·[∅B∅] + kBC
d ·[ABC] − [AB∅]· (kAB

d + [C]·kBC)
d[∅BC]
dt

= kAB
d ·[ABC] + [C]·kBC·[∅B∅] − [∅BC]· (kBC

d + [A]·kAB)
d[ABC]
dt

= [A]·kAB·[∅BC] + [C]·kBC·[AB∅] − [ABC]· (kAB
d + kBC

d )
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Two subsystems

A C

B
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Two subsystems

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

CA

BB

Jérôme Feret 15 Thursday, May the 26th



Two subsystems

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

CA

BB

[AB?] ∆= [AB∅] + [ABC]

[∅B?] ∆= [∅B∅] + [∅BC]
d[A]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

d[AB?]
dt

= [A]·kAB·[∅B?] − kAB
d ·[AB?]

d[∅B?]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

[?BC]
∆
= [∅BC] + [ABC]

[?B∅] ∆= [∅B∅] + [AB∅]
d[C]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]

d[?BC]
dt

= [C]·kBC·[?B∅] − kBC
d ·[?BC]

d[?B∅]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]
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Dependence index
We introduce:

[?B?] ∆= [?B∅] + [?BC].

The binding with A and with C would be independent if, and only if:

[ABC]

[?BC]
=

[AB?]
[?B?]

.

Thus we define the dependence index as follows:

X
∆
= [ABC]·[?B?] − [AB?]·[?BC].

We have (after a short computation):
dX

dt
= −X·

(
[A]·kAB + kAB

d + [C]·kBC + kBC
d

)
So the property:

[ABC] =
[AB?]·[?BC]

[?B?]
is an invariant (i.e. if it holds at time t, it holds at any time t ′ ≥ t).
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A system with a switch
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr
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A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr

d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(u,p,u)]

dt
= −kl·[(u,p,u)] + kc·[(u,u,u)] − kr·[(u,p,u)]

d[(u,p,p)]
dt

= −kl·[(u,p,p)] + kr·[(u,p,u)]
d[(p,p,u)]

dt
= kl·[(u,p,u)] − kr·[(p,p,u)]

d[(p,p,p)]
dt

= kl·[(u,p,p)] + kr·[(p,p,u)]
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Two subsystems
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Two subsystems
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Two subsystems

[(u,p,?)] ∆= [(u,p,u)] + [(u,p,p)]

[(p,p,?)] ∆= [(p,p,u)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,?)]
dt

= −kl·[(u,p,?)] + kc·[(u,u,u)]
d[(p,p,?)]

dt
= kl·[(u,p,?)]

[(?,p,u)] ∆= [(u,p,u)] + [(p,p,u)]

[(?,p,p)] ∆= [(u,p,p)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(?,p,u)]
dt

= −kr·[(?,p,u)] + kc·[(u,u,u)]
d[(?,p,p)]

dt
= kr·[(?,p,u)]
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Dependence index
We introduce:

[(?,p,?)] ∆= [(?,p,u)] + [(?,p,p)]

The states of left site and right site would be independent if, and only if:

[(p,p,p)]
[(p,p,?)]

=
[(?,p,p)]
[(?,p,?)]

.

Thus we define the dependence index as follows:

X
∆
= [(p,p,p)]·[(?,p,?)] − [(?,p,p)]·[(p,p,?)].

We have (after a short computation):

dX

dt
= −X ·

(
kl + kr

)
+ kc·[(p,p,p)]·[(u,u,u)].

As a consequence, the property X = 0 is not an invariant.
We can split the system into two subsystems,
but we cannot recombine both subsystems without errors.
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Erroneous recombination
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Conclusion
• Independence:

+ the transformation is invertible:
we can recover the concentration of any species;

− it is a strong property
which is hard to prove,
which is hardly ever satisfied.

• Self-consistency:
− some information is abstracted away

we cannot recover the concentration of any species;
+ it is a weak property

which is easy to ensure,
which is easy to propagate;

+ it captures the essence of the kinetics of systems.
We are going to track the correlations that are read by the system.
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1
P −→ P? k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Reduced model

2·k1

P −→ ?P 2·k1

k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Continuous differential semantics
Let V, be a finite set of variables;
and F, be a C∞ mapping from V → R+ into V → R,
as for instance,

• V ∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

• F(ρ) ∆
=



[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
[(p,p,u)] 7→ kl·ρ([(u,p,u)]) − kr·ρ([(p,p,u)])
[(p,p,p)] 7→ kl·ρ([(u,p,p)]) + kr·ρ([(p,p,u)]).

The continuous semantics maps each initial state X0 ∈ V → R+ to the maxi-
mal solution XX0 ∈ [0, Tmax

X0
[→ (V → R+) which satisfies:

XX0(T) = X0 +

∫ T
t=0

F(XX0(t))·dt.
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Abstraction
An abstraction (V ], ψ,F]) is given by:
• V ]: a finite set of observables,
• ψ: a mapping from V → R into V ] → R,
• F]: a C∞ mapping from V ] → R+ into V ] → R;

such that:
• ψ is linear with positive coefficients,

and for any sequence (xn) ∈ (V → R+)N such that (||xn||) diverges
towards +∞, then (||ψ(xn)||

]) diverges as well
(for arbitrary norms || · || and || · ||]),
• F] is ψ-complete, i.e. the following diagram commutes:

(V → R+)
F

−→ (V → R)

ψ

y yψ
`∗ `∗

(V ] → R+)
F]
−→ (V ] → R)

i.e. ψ ◦ F = F] ◦ψ.
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Abstraction example
• V ∆

= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

• F(ρ) ∆
=


[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
· · ·

• V ] ∆= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

• ψ(ρ) ∆
=


[(u,u,u)] 7→ ρ([(u,u,u)])
[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])
[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])
. . .

• F](ρ])
∆
=


[(u,u,u)] 7→ −kc·ρ]([(u,u,u)])
[(?,p,u)] 7→ −kr·ρ]([(?,p,u)]) + kc·ρ]([(u,u,u)])
[(?,p,p)] 7→ kr·ρ]([(?,p,u)])
. . .

(Completeness can be checked analytically.)
Jérôme Feret 30 Thursday, May the 26th



Abstract continuous trajectories
Let (V,F) be a concrete system;
Let (V ], ψ,F]) be an abstraction of the concrete system (V,F);
Let X0 ∈ V → R+ be an initial (concrete) state.
We know that the following system:

Yψ(X0)(T) = ψ(X0) +

∫ T
t=0

F]
(
Yψ(X0)(t)

)
·dt

has a unique maximal solution Yψ(X0) such that Yψ(X0) = ψ(X0).

Theorem 1 Moreover, this solution is the projection of the maximal solution
XX0 of the system

XX0(T) = X0 +

∫ T
t=0

F
(
XX0(t)

)
·dt,

which satisfies XX0(0) = X0.
(ie Yψ(X0) = ψ(XX0))
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Abstract continuous trajectories
Proof sketch

Given an abstraction (V ], ψ,F]), we have:

XX0(T) = X0 +
∫T
t=0F

(
XX0(t)

)
·dt

ψ
(
XX0(T)

)
= ψ

(
X0 +

∫T
t=0F

(
XX0(t)

)
·dt
)

ψ
(
XX0(T)

)
= ψ(X0) +

∫T
t=0[ψ ◦ F]

(
XX0(t)

)
·dt (ψ is linear)

ψ
(
XX0(T)

)
= ψ(X0) +

∫T
t=0F

]
(
ψ
(
XX0(t)

))
·dt (F] is ψ-complete)

We set Y0
∆
= ψ(X0) and YY0

∆
= ψ ◦ XX0.

Then we have:
YY0(T) = Y0 +

∫T
t=0F

]
(
YY0(t)

)
·dt

The assumption about || · ||, || · ||], and ψ ensures that ψ ◦ XX0 is a maximal
solution.
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Fluid trajectories

t

Y(t)
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Fluid trajectories

t

Y(t)
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A model with symmetries

k1 k1

P −→ ?P k1 P? −→ ?P? k1
P −→ P? k1

?P −→ ?P? k1

k2
?P? −→ ∅ k2
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Differential equations

• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

−2·k1 0 0 0

2·k1 −k1 0 0

0 0 0 0

0 k1 0 −k2

·
 P

?P + P?

0
?P?


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Differential equations
• Initial system:

d

dt

 P
?P
P?

?P?

 =

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

 ·
 P

?P
P?

?P?


• Reduced system:

d

dt

 P
?P + P?

0
?P?

 =

1 0 0 00 1 1 0

0 0 0 0

0 0 0 1


︸ ︷︷ ︸

P

·

−2·k1 0 0 0

k1 −k1 0 0

k1 0 −k1 0

0 k1 k1 −k2

·
1 0 0 00 1 0 0

0 0 0 0

0 0 0 1


︸ ︷︷ ︸

Z

·

 P
?P + P?

0
?P?


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Pair of projections induced by an
equivalence relation among variables

Let r be an idempotent mapping from V to V.
We define two linear projections Pr, Zr ∈ (V → R+)→ (V → R+) by:

• Pr(ρ)(V) =

{∑
{ρ(V ′) | r(V ′) = r(V)} when V = r(V)

0 when V 6= r(V);

• Zr(ρ) =

{
V 7→ ρ(V) when V = r(V)

V 7→ 0 when V 6= r(V).
We notice that the following diagram commutes:

Pr

Zr
`?

`?

`
Pr
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Induced bisimulation

The mapping r induces a bisimulation,
∆⇐⇒

for any σ, σ ′ ∈ V → R+, Pr(σ) = Pr(σ ′) =⇒ Pr(F(σ)) = Pr(F(σ ′)).

Indeed the mapping r induces a bisimulation,⇐⇒
for any σ ∈ V → R+, Pr(F(σ)) = Pr(F(Pr(σ))).

F

Pr

Pr
Pr

F
`?

`?

`?
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Induced abstraction

Under these assumptions (r(V), Pr, Pr ◦ F ◦ Zr) is an abstraction of (V,F):

As proved in the following commutative diagram:

Zr F Pr

Pr

F

Pr Pr

`? `?
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Abstract projection

We assume that we are given:

• a concrete system (V,F);
• an abstraction (V ], ψ,F]) of (V,F) (I);

• a mapping r over V which induces a
bisimulation (II);

• (Pr, Zr), the pair of projections induced
by r;

• a mapping r] over V ];

• (P]
r]
, Z]

r]
), the pair of projections over V ]

induced by r] (III);

such that: ψ ◦ Pr = P]r] ◦ψ (IV).

ψI

`?

F]

F

ψ

`?

F

Pr

Pr
Pr

F

II

`?

`?

`?

P]
r]

Z]

r]
III

`?

`?

P]
r]

ψIV

`?

`?P]
r]

Pr `?

ψ

`?
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Combination of abstractions

Under these assumptions, (r](V ]), P]
r]
◦ψ, P]

r]
◦ F] ◦ Z]

r]
) is an abstraction of

(V,F),
as proved in the following commutative diagram:

F

F Pr

IV

Pr II

ψ

P]
r]

IV

I

Z]

r]

ψ

P]
r]

F]

III

ψ ψ

P]
r]

P]
r]

IV
ψ

Pr

`?

`?

`?

`?
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A species

E

R R

E

l

r
r

l

r
r

E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule

E

R

E

R
l

r r

l

r r

E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state

E

R

E

R
l

r

p
l

r

Y1 Y1

u

R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Don’t care, Don’t write

R
u

R
p

Y1

r

Y1

r

6=

R
u

R
p.

Y1 Y1
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Requirements

1. Reachable species

A set R of connected site-graphs such that:

• R is finite;
• R is closed with respect to rule application: i.e. applying a rule with

a tuple of site-graphs in R gives a tuple of site-graphs in R;

2. Rules are associated with kinetic factors

• the unit depends on the arity of the rule as follows:( L
mol

)arity−1

· s−1

where arity is the number of connected components in the lhs.
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Embedding

RR R

Φ

Φ

E E

Z Z ′

r

l

Y48

r

l

r

r

We write ZCΦ Z ′ iff:
• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).
• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Differential system
Let us consider a rule rule:

lhs→ rhs k.

1. We write lhs as a multi-set {Ci} of non empty connected components.
2. A ground instantiation of the rule rule is defined by a tuple (ri, Φi) such

that ∀i, ri ∈ R and Ci CΦi ri.
3. The ground instantiation can be written as follows:

r1, . . . , rm → p1, . . . , pn k.

4. The activity of a ground instantiation is defined as:

act(ri,Φi) =
k ·
∏

[ri]

]{Φ | lhs CΦ lhs}
.

5. Each ground instantiation induces the following contributions:

d[ri]

dt

+
= −act(ri,Φi),

d[pi]

dt

+
= act(ri,Φi).
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Abstract domain

We are looking for suitable pair (V ], ψ) (such that F] exists)

The set of linear variable replacements is too big to be explored.

We introduce a specific shape on (V ], ψ) so as:

• restrict the exploration;

• drive the intuition;

• having efficient way to find suitable abstractions (V ], ψ)

and to compute F].

Our choice might be not optimal, but we can live with that.
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Partial species

Fragments are well-chosen partial species.

A partial species X ∈ P is a connected site-graph such that:

• the set of the sites of each node of type A is a subset of the set of the
sites of A;

• sites are free, bound to an other site, or tagged with a binding type.

For instance:

So

G Sh R

d

a Y7 rb pi Y48

G(b!d.So,a!1),Sh(Y7!1,pi!2),R(Y48!2,r)
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Contact map

G
E

R

Sh

So

r

r

Y7

pi

b

a

Y68

l

d

Y48
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Annotated contact map

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Fragments and prefragments

A prefragment is a connected site-
graph which can be annotated with a
binary relation → over the sites, such
that:

1. There would be a site which is
reachable from each other sites,
via the reflexive and transitive
closure of→;

2. Any relation over sites can be
projected over a relation on the
annotated interaction map.

A fragment is a maximal prefragment
(for the embedding order).

GSo

G
E

R

Sh

So

abd

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G

Shd b a

Y7

b

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
abd bb Y7

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7bd bb

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It can be refined into another prefragment.
Thus, it is not a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

Thus, it is a prefragment.
Thus, it is a prefragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

So G Sh
a Y7d b pi

It is maximally specified.
Thus it is a fragment.

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a
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Are they fragments ?

GSo
abd

yes
So G

Shd b a

Y7

b

no
So G Sh

a Y7bd bb

no
So G Sh

a Y7d b pi

yes

G
E

R

Sh

So

r

r

pi

b

l

d

Y48

Y68

Y7

a

Jérôme Feret 64 Thursday, May the 26th



Basic properties

1. We call a sub-fragment any partial species which can be embedded into
a fragment.

Property 1 (sub-fragment) The concentration of any sub-fragment can
be expressed as a linear combination of the concentration of some frag-
ments.

2. We consider two norms || · || on V → R+ and || · ||] on V ] → R+.

Property 2 (non-degenerescence) Given a sequence of valuations
(xn)n∈N ∈ (V → R+)N such that ||xn|| diverges toward +∞, then ||φ(xn)||

]

diverges toward +∞ as well.

Which other properties do we need so that the function F] can be defined ?
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Fragments consumption
Proper inter

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is consumed by this rule (above)?
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Fragments consumption
Proper intersection

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

No, because we have abstracted away the correlation between the state of
the site r and the state of the site l.
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Fragments consumption
Proper intersection

ShRShR

ShR

r

r

r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Whenever a fragment intersects a connected component of a lhs on a modi-
fied site, then the connected component must be embedded in the fragment!
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Fragment consumption
Syntactic criteria

R

Sh

G
E

R

Sh

G
E

R

Sh

So

pi

Y48

Y7

r

r

pi

b

l

d

Y48

Y68

Y7

a

rb

d

a

pi

Y7

r

l

Y48

Y68

r

We reflect, in the annotated contact map, each path that stems from a tested
site to a modified site (in the lhs of a rule).
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Connected components
Sub-fragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

We need to express the “concentration” of any connected component of a lhs
with respect to the “concentration” of fragments.
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Connected components
Sub-fragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

Each connected component of a lhs must be a sub-fragment. Blapcsqldcld-
cjldclkdcnNlkcdmdsmcdCD.
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Connected components
Syntactic criteria

R
G

E

R

Sh

G
E

R

Sh

SoSh

pi

r

Y48

Y48

Y7

Y7

r

r

pi

b

l

d

Y68

a

rb

d

a

pi

Y7

r

l

Y48

Y68

l

For each connected component of a lhs, there must exists a spanning tree,
which reflects it-self in the annotated contact map.
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Fragments production
Proper inter

E
R

GRGR

R
G

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is produced by the rule (above)?
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Fragments production
Proper intersection (bis)

E
R

GRGR

R
G

E R E R

aa

a

r

l

p
r

r

bY68bY68

p p

Y68

l

r

r

r r

r
l

r

Yes, if the connected components of the lhs of the refinement are sub-fragments.
This is already satisfied thans to the previous syntactic criteria.
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Fragment properties

If:

• an annotated contact map satisfies the syntactic criteria,

• fragments are defined by this annotated contact map,

• we know the concentration of fragments;

then:

• we can express the concentration of any connected component occur-
ing in lhss,

• we can express fragment proper consumption,

• we can express fragment proper production (eg. see the LICS’2010 paper),

• WE HAVE A CONSTRUCTIVE DEFINITION FOR F].
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A binding rule

Let us abstract the contribution of a binding rule:

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7
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A binding rule: reactants

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

For any (F,Φ) such that Ci CΦ F,

d[F]

dt

+
= −

k · [F] · [C3−i]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}

.
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Binding rules: products

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

If the edge is solid, for any (F1, Φ1) and (F2, Φ2), such that C1 CΦ1 F1 and
C2 CΦ2 F2,

d[F1 − F2]

dt
=

k · [F1] · [F2]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}
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Binding rules: products

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

If the edge is dotted, for any (F,Φ) such that Ci CΦ F,

d[F−]

dt

+
=

k · [F] · [C3−i]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}

.
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Experimental results

Model early EGF EGF/Insulin SFB

#species 356 2899 ∼ 2.1019

#fragments
38 208 ∼ 2.105

(ODEs)

#fragments
356 618 ∼ 2.1019

(CTMC)  0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6

C
on

ce
nt

ra
tio

n

Time

/home/feret/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

Both differential semantics
(4 curves with match pairwise)
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Related issues I: Semantics comparisons

this talk!

refinements

Species−based semantics Rule−based semantics Abstract semantics

limit limit

refinements

another talk!

]

C
T
M
C

O
D
E

⊆

⊆

]
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Related issues II:
Semantics approximations

1. ODE approximations:

• Concrete definition of the control flow and hierarchy of abstractions.
A notion of control flow which would be invariant by:

-- neutral rule refinement;
-- compilation of a Kappa system into a Kappa system with only

one agent type.

Joint work with Ferdinanda Camporesi (Bologna)
2. Stochastic semantics approximations:

• Can we design abstraction ?
• Find the adequate soundness criteria.

Joint work with Thomas Henzinger (IST-Vienna), Heinz Koeppl (ETH-
Zurich), Tatjana Petrov (EPFL)
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Call for paper/participation

Second Workshop on Static Analysis and Systems Biology
(SASB 2011)

(co-chaired with Andre Levchenko)
13th Sept 2011, Venice

http://www.di.ens.fr/sasb2011

Invited speakers:

• Boris Kholodenko

• Edda Klipp

• Jean Krivine
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