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Signalling Pathways

Eikuch, 2007
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Differential models



dx1
dt

= −k1 · x1 · x2 + k−1 · x3
dx2
dt

= −k1 · x1 · x2 + k−1 · x3
dx3
dt

= k1 · x1 · x2 − k−1 · x3 + 2 · k2 · x3 · x3 − k−2 · x4)
dx4
dt

= k2 · x23 − k2 · x4 +
v4·x5
p4+x5

− (k3 · x4 − k−3 · x5)
dx5
dt

= · · ·
...

dxn
dt

= −k1 · x1 · c2 + k−1 · x3

− do not describe the structure of molecules;
− combinatorial explosion: forces choices that are not principled;
− a nightmare to modify.
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A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
+ documented and detailed description
+ transparent description
− cannot be interpreted

2. ODE-based models
+ can be integrated
− opaque modelling process, models can hardly be modified
− there are also some scalability issues.
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Rule-based approach

We use site graph rewrite systems

1. The description level matches with both

• the observation level
• and the intervention level

of the biologist.
We can tune the model easily.

2. Model description is very compact.

3. Quantitative semantics can be defined.
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Complexity walls
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A breach in the wall(s) ?
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Case study 1: A simple adapter

A C

B
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Case study 1: A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d
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Case study 1: A simple adapter

A C

B A , ∅B∅ ←→ AB∅ kAB,kAB
d

A , ∅BC ←→ ABC kAB,kAB
d

∅B∅ , C ←→ ∅BC kBC,kBC
d

AB∅ , C ←→ ABC kBC,kBC
d



d[A]
dt

= kAB
d · ([AB∅] + [ABC]) − [A]·kAB· ([∅B∅] + [∅BC])

d[C]
dt

= kBC
d · ([∅BC] + [ABC]) − [C]·kBC· ([∅B∅] + [AB∅])

d[∅B∅]
dt

= kAB
d ·[AB∅] + kBC

d ·[∅BC] − [∅B∅]· ([A]·kAB + [C]·kBC)
d[AB∅]
dt

= [A]·kAB·[∅B∅] + kBC
d ·[ABC] − [AB∅]· (kAB

d + [C]·kBC)
d[∅BC]
dt

= kAB
d ·[ABC] + [C]·kBC·[∅B∅] − [∅BC]· (kBC

d + [A]·kAB)
d[ABC]
dt

= [A]·kAB·[∅BC] + [C]·kBC·[AB∅] − [ABC]· (kAB
d + kBC

d )
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Case study 1: Two subsystems

A C

B
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Case study 1: Two subsystems
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CA

BB

[AB?] ∆= [AB∅] + [ABC]

[∅B?] ∆= [∅B∅] + [∅BC]
d[A]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

d[AB?]
dt

= [A]·kAB·[∅B?] − kAB
d ·[AB?]

d[∅B?]
dt

= kAB
d ·[AB?] − [A]·kAB·[∅B?]

[?BC]
∆
= [∅BC] + [ABC]

[?B∅] ∆= [∅B∅] + [AB∅]
d[C]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]

d[?BC]
dt

= [C]·kBC·[?B∅] − kBC
d ·[?BC]

d[?B∅]
dt

= kBC
d ·[?BC] − [C]·kBC·[?B∅]
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Case study 1: Dependence index
We introduce:

[?B?] ∆= [?B∅] + [?BC].

The binding with A and with C would be independent if, and only if:

[ABC]

[?BC]
=

[AB?]
[?B?]

.

Thus we define the dependence index as follows:

X
∆
= [ABC]·[?B?] − [AB?]·[?BC].

We have (after a short computation):
dX

dt
= −X·

(
[A]·kAB + kAB

d + [C]·kBC + kBC
d

)
So the property:

[ABC] =
[AB?]·[?BC]

[?B?]
is an invariant (i.e. if it holds at time t, it holds at any time t ′ ≥ t).
Jérôme Feret 14 June 10, 2010



Overview

1. Context and motivations
2. Handmade ODEs

(a) Independent subsystems
(b) Self-consistent subsystems

3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion

Jérôme Feret 15 June 10, 2010



Case study 2: A system with a switch
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Case study 2: A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr
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Case study 2: A system with a switch

(u,u,u) −→ (u,p,u) kc

(u,p,u) −→ (p,p,u) kl

(u,p,p) −→ (p,p,p) kl

(u,p,u) −→ (u,p,p) kr

(p,p,u) −→ (p,p,p) kr

d[(u,u,u)]
dt

= −kc·[(u,u,u)]
d[(u,p,u)]

dt
= −kl·[(u,p,u)] + kc·[(u,u,u)] − kr·[(u,p,u)]

d[(u,p,p)]
dt

= −kl·[(u,p,p)] + kr·[(u,p,u)]
d[(p,p,u)]

dt
= kl·[(u,p,u)] − kr·[(p,p,u)]

d[(p,p,p)]
dt

= kl·[(u,p,p)] + kr·[(p,p,u)]
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Case study 2: Two subsystems
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Case study 2: Two subsystems

[(u,p,?)] ∆= [(u,p,u)] + [(u,p,p)]

[(p,p,?)] ∆= [(p,p,u)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(u,p,?)]
dt

= −kl·[(u,p,?)] + kc·[(u,u,u)]
d[(p,p,?)]

dt
= kl·[(u,p,?)]

[(?,p,u)] ∆= [(u,p,u)] + [(p,p,u)]

[(?,p,p)] ∆= [(u,p,p)] + [(p,p,p)]


d[(u,u,u)]

dt
= −kc·[(u,u,u)]

d[(?,p,u)]
dt

= −kr·[(?,p,u)] + kc·[(u,u,u)]
d[(?,p,p)]

dt
= kr·[(?,p,u)]
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Case study 2: Dependence index
We introduce:

[(?,p,?)] ∆= [(?,p,u)] + [(?,p,p)]

The states of left site and right site would be independent if, and only if:

[(p,p,p)]
[(p,p,?)]

=
[(?,p,p)]
[(?,p,?)]

.

Thus we define the dependence index as follows:

X
∆
= [(p,p,p)]·[(?,p,?)] − [(?,p,p)]·[(p,p,?)].

We have (after a short computation):

dX

dt
= −X ·

(
kl + kr

)
+ kc·[(p,p,p)]·[(u,u,u)].

As a consequence, the property X = 0 is not an invariant.
We can split the system into two subsystems,
but we cannot recombine both subsystems without errors.
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Case study 2: Erroneous recombination
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)
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Conclusion
1. Independence:

+ the transformation is invertible:
we can recover the concentration of any species;

− it is a strong property
which is hard to prove,
which is hardly ever satisfied.

2. Self-consistency:
− some information is abstracted away

we cannot recover the concentration of any species;
+ it is a weak property

which is easy to ensure,
which is easy to propagate;

+ it captures the essence of the kinetics of systems.
We are going to track the correlations that are read by the system.
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Continuous differential semantics
Given V, a finite set of variables;
and F, a C∞ mapping from V → R+ into V → R.

as for instance,

• V ∆
= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]},

• F(ρ) ∆
=



[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
[(p,p,u)] 7→ kl·ρ([(u,p,u)]) − kr·ρ([(p,p,u)])
[(p,p,p)] 7→ kl·ρ([(u,p,p)]) + kr·ρ([(p,p,u)]);

we can define the continuous differential semantics as follows:

Xc :

{
(V → R+)× R+ → (V → R+)

(X0, T) 7→ X0 +
∫T
t=0 F(Xc(X0, t))·dt.
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Abstraction
An abstraction (V ], ψ,F]) is given by:
• V ]: a finite set of observables,
• ψ: a mapping from V → R into V ] → R,
• F]: a C∞ mapping from V ] → R+ into V ] → R;

such that:
• ψ is linear with positive coefficients,
• F] is ψ-complete

i.e. the following diagram commutes:

(V → R+)
F

−→ V → R

ψ

y yψ
(V ] → R+)

F]
−→ V ] → R

i.e. ψ ◦ F = F] ◦ψ.
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Abstraction example
• V ∆

= {[(u,u,u)], [(u,p,u)], [(p,p,u)], [(u,p,p)], [(p,p,p)]}

• F(ρ) ∆
=


[(u,u,u)] 7→ −kc·ρ([(u,u,u)])
[(u,p,u)] 7→ −kl·ρ([(u,p,u)]) + kc·ρ([(u,u,u)]) − kr·ρ([(u,p,u)])
[(u,p,p)] 7→ −kl·ρ([(u,p,p)]) + kr·ρ([(u,p,u)])
· · ·

• V ] ∆= {[(u,u,u)], [(?,p,u)], [(?,p,p)], [(u,p,?)], [(p,p,?)]}

• ψ(ρ) ∆
=


[(u,u,u)] 7→ ρ([(u,u,u)])
[(?,p,u)] 7→ ρ([(u,p,u)]) + ρ([(p,p,u)])
[(?,p,p)] 7→ ρ([(u,p,p)]) + ρ([(p,p,p)])
. . .

• F](ρ])
∆
=


[(u,u,u)] 7→ −kc·ρ]([(u,u,u)])
[(?,p,u)] 7→ −kr·ρ]([(?,p,u)]) + kc·ρ]([(u,u,u)])
[(?,p,p)] 7→ kr·ρ]([(?,p,u)])
. . .

(Completeness can be checked analytically.)
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Abstract continuous trajectories

Given an abstraction (V ], ψ,F]), we have:

Xc(X0, T) = X0 +
∫T
t=0F (Xc(X0, t)) ·dt

ψ (Xc(X0, T)) = ψ
(
X0 +

∫T
t=0F (Xc(X0, t)) ·dt

)
ψ (Xc(X0, T)) = ψ(X0) +

∫T
t=0[ψ ◦ F] (Xc(X0, t)) ·dt (ψ is linear)

ψ (Xc(X0, T)) = ψ(X0) +
∫T
t=0F

] (ψ (Xc(X0, t))) ·dt (F] is ψ-complete)

We set Y0
∆
= ψ(X0) and Yc

∆
= ψ ◦ Xc.

Then we have:
Yc(X0, T) = Y0 +

∫T
t=0F

] (Yc(X0, t)) ·dt
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Fluid trajectories

t

Y(t)
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Fluid trajectories

t

Y(t)

X(t)
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A species

E

R R

E

l

r
r

l

r
r

E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule

E

R

E

R
l

r r

l

r r

E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state

E

R

E

R
l

r

p
l

r

Y1 Y1

u

R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)

Jérôme Feret 30 June 10, 2010



Don’t care, Don’t write

R
u

R
p

Y1

r

Y1

r

6=

R
u

R
p.

Y1 Y1
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Contact map

G
E

R
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r

r

Y7
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b

a

Y68

l

d

Y48
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Requirements

1. Reachable species
A set R of connected site-graphs such that:

• R is finite;
• R is closed with respect to rule application: i.e. applying a rule with

a tuple of site-graphs in R gives a tuple of site-graphs in R;

2. Rules are associated with kinetic factors

• the unit depends on the arity of the rule as follows:( L
mol

)arity−1

· s−1

where arity is the number of connected components in the lhs.
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Embedding

RR R

Φ

Φ

E E

Z Z ′

r

l

Y48

r

l

r

r

We write ZCΦ Z ′ iff:
• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).
• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Differential system
Let us consider a rule rule:

lhs→ rhs k.

1. We write lhs as a multi-set {Ci} of non empty connected components.
2. A ground instantiation of the rule rule is defined by a tuple (ri, Φi) such

that ∀i, ri ∈ R and Ci CΦi ri.
3. The ground instantiation can be written as follows:

r1, . . . , rm → p1, . . . , pn k.

4. The activity of a ground instantiation is defined as:

act(ri,Φi) =
k ·
∏

[ri]

]{Φ | lhs CΦ lhs}
.

5. Each ground instantiation induces the following contributions:

d[ri]

dt

+
= −act(ri,Φi),

d[pi]

dt

+
= act(ri,Φi).
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Abstract domain

We are looking for suitable pair (V ], ψ) (such that F] exists)

The set of linear variable changement is too big to be explored.

We introduce a specific shape on (V ], ψ) so as:

• restrict the exploration;

• drive the intuition;

• having efficient way to find suitable abstractions (V ], ψ)

and to compute F].

Our choice might be not optimal, but we can live with that.

Jérôme Feret 38 June 10, 2010



Partial species

Fragments are well-chosen partial species.

A partial species is a connected site-graph such that:

• the set of the sites of each node of type A is a subset of the set of the
sites of A;

• sites are free, bound to an other site, or tagged with a binding type.

For instance:

So

G Sh R

d

a Y7 rb pi Y48

G(b!d.So,a!1),Sh(Y7!1,pi!2),R(Y48!2,r)
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Annotated contact map

G
E

R

Sh

So

r

r

Y7

pi

b

a

l

d

Y48

Y68
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Are they fragments ?

G
E

R

Sh

So

r

r

Y7

pi

b

a

l

d

Y48

Y68
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Are they fragments ?

GSo
abd

G
E

R

Sh

So

r

r

Y7

pi

b

a

l

d

Y48

Y68
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Are they fragments ?

So

G

Sh
d

a
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Are they fragments ?

So

G Sh

d

a Y7b

G
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So
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Y7
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a

l

d

Y48

Y68
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Are they fragments ?

So

G Sh

d

a Y7b pi
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Are they fragments ?

GSo
abd

no

So

G

Sh
d

a

Y7

b

no

So

G Sh

d

a Y7b

no

So

G Sh

d

a Y7b pi
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E

R

Sh

So

r

r

Y7

pi

b
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l

d

Y48

Y68
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Basic properties

The set of fragments enjoys two convenient properties:

1. Closure with respect to the operational semantics:
When we apply a rule with a tuple of fragments, we get a tuple of frag-
ments.

2. Subfragments:
We can express the concentration of any sub-fragment as a linear com-
bination of the concentration of some fragments.

Which other properties do we need so that the function F] can be defined ?
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Fragments consumption
Proper inter

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is consumed by this rule (above)?
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Fragments consumption
Proper intersection

ShRShR

ShR

r r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

No, because we have abstracted away the correlation between the state of
the site r and the state of the site l.
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Fragments consumption
Proper intersection

ShRShR

ShR

r

r

r

l

Y7 Y7

Y7

Y48pi pi

pi

Y48

Y48

u

u

p

Whenever a fragment intersects a connected component of a lhs on a modi-
fied site, then the connected component must be embedded in the fragment!
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Fragment consumption
Syntactic criteria

R

Sh

G
E

R

Sh

So
∀

∀

r

pi

Y7

r

r

Y7

pi

b

a

l

d

Y48

Y68

Y48

We reflect each path that stems from a modified site (in the lhs of a rule) into
the annotated contact map.
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Connected components
Sub-fragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

We need to express the “concentration” of any connected component of a lhs
with respect to the “concentration” of fragments.
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Connected components
Sub-fragment

R

So

G

So

G

Sh

R

Sh

b

r l

b

dd
pi

Y7

Y48

l r

pi

Y7

Y48

Each connected component of a lhs must be a sub-fragment. Blapcsqldcld-
cjldclkdcnNlkcdmdsmcdCD.
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Connected components
Syntactic criteria

R

Sh

G
E
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Sh
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∃

∃

r

pi

Y7

Y48

l

r

r

Y7

pi

b

a

l

d

Y48

Y68

Each connected component of a lhs must be a sub-fragment.
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Fragments production
Proper inter

G

R G R G

E

R

R

E

a

l

r

r

a

r

Y68

Y68

b

Y68

b

a

r p

p

p

Can we express the amount (per time unit) of this fragment (bellow) concen-
tration that is produced by the rule (above)?
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Fragments production
Proper intersection (bis)

R G

G

R G

E
R RE

E
R

R

aY68

b

al

r r

r

r

r

l

r

al

r
r

r

Y68

Y68

bp p

p

Yes, if the connected components of the lhs of the refinement are subfrag-
ments, which is already ensured by previous syntactic criteria.
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Fragment properties

If:

• an annotated contact map satisfies the syntactic criteria,

• fragments are defined by this annotated contact map,

• we know the concentration of fragments;

then:

• we can express the concentration of any connected component occur-
ing in lhss,

• we can express fragment proper consumption,

• we can express fragment proper production (eg. see the LICS’2010 paper),

• WE HAVE A CONSTRUCTIVE DEFINITION FOR F].
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Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics

(a) Fragments
(b) Soundness criteria
(c) Abstract counterpart

7. Conclusion
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A binding rule

Let us abstract the contribution of a binding rule:

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7
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A binding rule: reactants

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

For any (F,Φ) such that Ci CΦ F,

d[F]

dt

+
= −

k · [F] · [C3−i]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}

.
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Binding rules: products

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

If the edge is solid, for any (F1, Φ1) and (F2, Φ2), such that C1 CΦ1 F1 and
C2 CΦ2 F2,

d[F1 − F2]

dt
=

k · [F1] · [F2]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}
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Binding rules: products

G GSh

R

Sh

R

C1 C2

k

a b a b

pipi

Y48Y48

Y7Y7

If the edge is dotted, for any (F,Φ) such that Ci CΦ F,

d[F−]

dt

+
=

k · [F] · [C3−i]
]{Φ ′ | C1, C2 CΦ ′ C1, C2}

.
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Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
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Experimental results
On early egfr, 356 species are simplified into 38 fragments:
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/home/feret/MFPS/demo/egfr-compressed.ka

(reduced) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(reduced) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

(ground) [EGFR(Y48!0),SHC(Y7!1,pi!0),GRB2(a!1,b!2),SOS(d!2)]
(ground) [EGFR(Y68!0),GRB2(a!0,b!1),SOS(d!1)]

Superposition of the ground and the abstract differential semantics.

On a bigger example, ≈ 2·1019 species are simplified into ≈ 2·105 fragments.
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Related issues I: Semantics comparisons

refinements

refinements

Species−based semantics Rule−based semantics Abstract semantics

limit limit

]

C
T
M
C

O
D
E

⊆

⊆
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Related issues II:
Semantics approximations

1. ODE approximations:

• Because of the use of annotated contact map, fragments have a
homogeneous structure (or signature).
Can we design and use heterogeneous fragments ?

Joint work with Ferdinanda Camporesi (Bologna)

2. Stochastic semantics approximations:

• Can we design abstraction ?
• Find the adequate soundness criteria.

Joint work with Tatjana Petrov and Heinz Koeppl (EPFL)
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Announcements

• Call for candidates:
If you are interested in (at least one) of these issues, there are open
positions (Internships, PhD students or Post-doc fellows). . .

ANR-Chair of Excellence: AbstractCell
http://www.di.ens.fr/∼feret/abstractcell

• Call for paper/participation:

First Workshop on Static Analysis and Systems Biology (SASB 2010)
(co-chaired with Andre Levchenko)

13th Sept 2010, Perpignan
http://www.di.ens.fr/sasb2010
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